运动控制课程设计创新实践

前言:寻找写作灵感?中文期刊网用心挑选的运动控制课程设计创新实践,希望能为您的阅读和创作带来灵感,欢迎大家阅读并分享。

运动控制课程设计创新实践

摘要:

通过对“运动控制课程设计教学的研究与实践,提出了交流电机矢量控制调速系统课程设计的新方法。将矢量控制的理论模型与变频器实际的矢量控制系统结构图进行对比分析,研究变频器的矢量控制和工艺流程PID控制器所包含模块的参数设置,综合运用现代运动控制系统的现场总线通信与PLC编程技术、人机界面与组态软件技术,完成具有实际工程背景的课程设计。丰富了运动控制课程设计的教学内容,促进了学生的理论知识与现代工程技术密切结合。

关键词:

课程设计;交流调速系统;矢量控制;变频器

“运动控制系统”教学容易出现重视理论分析和传统教学实验,轻视实际控制系统中先进技术应用的分析;“运动控制课程设计”又经常成为理论上的设计,或控制系统理论模型的仿真验证。受实践教学环境限制,选题一般是双闭环模拟直流调速系统设计及调试,或是数字直流调速系统设计及仿真。交流调速课程设计一般是基于稳态数学模型的SPWM变频技术、V/f协调控制方式、单闭环无静差数字调速系统设计及仿真;变频电源硬件电路包括三相电压源型变频电源主电路、保护电路、单片机的检测、控制电路和驱动电路设计。从开关器件、控制电路的参数计算到软件的设计编程,内容丰富、时间紧凑。虽然对系统的整体设计训练有很大帮助,但与实际工程应用现状差距很大。提高变频电源的效率在硬件电路上要求尽可能提高功率器件的开关频率、采用软开关技术、完善的功率器件驱动电路和缓冲电路的设计;软件上还得考虑改进正弦调制波等[1-2]。而两周的课程设计时间要完成类似这种交流调速系统的软、硬件设计,更进一步从变频电源到采用矢量控制理论的数字调速系统的设计及仿真,会有很大难度。考虑到无论采用什么数学模型处理交流电动机变频调速问题,变频电源硬件电路基本上是一样的或是通用的。因此可以考虑在“电力电子技术”课程中布置大作业或开设“电力电子技术课程设计”,完成数字交、直流调速系统硬件电路的设计。基于动态数学模型的交流电动机矢量控制技术已经相当成熟,在中、高档变频器中得到广泛应用。因此课程设计的选题应该覆盖矢量控制技术,采取有效措施加强理论教学和实际工程先进技术应用的结合。深刻理解矢量控制理论在交流调速系统中的应用;如何利用变频器构成闭环控制系统;如何采用工业现场总线、PLC,将变频器集成在大型复杂控制系统中。为此实验室做了“运动控制课程设计”的教学改革研究,并设计了异步电动机协调控制的综合实验平台。

1矢量控制数学模型

交流调速的教学往往是数学公式推导多、仿真也仅限于课堂教学演示。学生缺少相关的训练,对电机数学模型及各种控制方法难以理解,更不清楚矢量控制理论在实际系统中如何实现[3-4]。所以课程设计开始要引导学生对教材中各种矢量控制系统模型特点进行分析总结,并对西门子MM440变频器的各种控制结构图[5]进行对比分析,找出理论上与实际交流调速系统最接近的控制模型,深刻理解矢量控制技术在实际系统中如何具体实现。相关文献[6-8]有多种矢量控制理论的异步电动机控制模型。按照转子磁场定向的矢量控制系统、根据其对磁链处理方法不同又分为间接矢量控制系统和直接矢量控制系统,后者模型一般包括速度调节器、转矩调节器、磁链调节器,甚至包括三相电流调节器。其中,逆变器采用空间矢量脉宽调制(SVPWM)的异步电动机直接矢量控制变频调速系统与实际变频器中的矢量控制模型比较接近。控制系统结构图都设置了转速和磁链两个闭环子系统,但实际系统没有设置磁链调节器和转矩调节器,而是通过励磁电流调节器和转矩电流调节器实现解耦控制。根据电机转速获取方法不同又分为不带编码器(SLVC)的和带编码器(VC)的矢量控制模型;两个模型根据控制系统给定值不同,又都具有转速控制及转矩控制两种方式。但这里的转矩控制是指变频器的控制方式,区别于理论上同样基于动态数学模型的异步电动机直接转矩控制系统。图2中速度调节器、转矩电流调节器及关于转子磁场定向角辨识的3个模块都含有可设定参数,根据系统运行可以精确调试,或者采用变频器默认参数值。磁链闭环子系统的不同是实际系统与理论模型的主要差别:磁链子系统中磁化曲线模块的输出,作为励磁电流调节器的给定值。因此实际操作中,预先通过变频器参数设定环节测量电动机的磁化曲线显得非常重要。通过模型分析,学生不仅深入了解矢量控制理论在实际系统中的应用技术,而且容易理解变频器有关矢量控制参数的物理意义以及设置。

2工业过程闭环控制

西门子MM440矢量变频器的控制方式按照电动机的数学模型可以分为两大类:基于稳态数学模型的V/f特性控制和基于动态数学模型的矢量控制[9]。前者又细分为V/f线性的、带有电压提升的、滑差补偿的几种方式,但都是电机转速开环控制;而后者是转速闭环控制。为了满足实际控制系统的要求,变频器提供了工艺流程PID控制器。以节能为主要目的的异步电动机调速系统一般只需要平滑调速,对动态性能要求不高,适合采用V/f特性控制方式,如变频供水和通风系统。课程设计题目要求学生设计由PLC、变频器和两台电机组成的“一拖多”变频供水系统。完成从变频器的控制方式、闭环控制系统的给定、反馈通道和反馈信号等变频器有关参数设置,到PLC的简单控制程序。熟悉系统的PID控制器默认参数及调节范围,并在最后实验过程中运行调试。硬件电路包括接触器、PLC的控制电路,还有从实验平台数字电压表箱取出负载发电机输出电压信号,模拟供水压力反馈信号给变频器的模拟输入端子。

3工业现场总线

现代运动控制系统很少是单台变频器(电机)运行,往往是数台变频器协调控制,系统中还有各种数据采集及其他智能终端设备。矢量变频器在复杂系统中仅仅是一个高智能的电机驱动器,依靠其扩展通讯模块集成到工业现场总线控制系统中。课程设计典型题目—多电机协调控制系统,要求学生设计卷绕机械装置驱动控制系统。这里不仅要控制卷材的张力还要协调两台电机的运行速度[10],两台电机分别采用转矩控制和转速控制。变频器适合采用无脉冲编码器的矢量控制(SLVC)方式。SLVC的控制性能取决于变频器相关参数的设置以及电动机数据测量的精度,因此,系统调试前必须用变频器对电动机所有参数进行自动检测。主、从电动机协调控制实验平台采用低成本的集成方式。采用西门子PLC200SMART可编程控制器和两台MM440变频器,通讯采用485总线、USS通讯协议,因此不需要额外的现场总线通讯模块。PLC200作为主站控制变频器,按照系统的设计要求设置变频器的控制参数,控制电动机的启动、停止,控制方式的切换,运行速度的协调等;并采集每台电动机的运行数据传送到工作站。除了交流调速系统外,典型的直流电机双闭环数字调速系统、机器人[11-12]及车辆控制等作为课程设计题目具有丰富的研究内容,所以要不断地为学生创造相应的实践教学环境。

4结语

“运动控制”课程设计的教学过程具有综合性、实践性和创新性的特点,课程设计过程要启发学生以掌握的理论知识去分析先进工程技术实际模型。这里特别要注重矢量控制结构图中理论与实际的差距,掌握变频器参数设置及工艺流程PID控制器的应用,以及现代运动控制系统中工业现场总线技术、人机界面与组态软件技术的综合应用。

作者:徐江宁 单位:大连理工大学电子信息与电气工程学部

参考文献:

[1]刘凤君.现代高频开关电源技术及应用[M].北京:电子工业出版社,2008:152-169.

[2]王兆安,刘进军.电力电子技术[M].5版,北京:机械工业出版社,2009:159-163.

[3]白锐,张健.交流调速控制系统课程的教学改革与实践[J].中国现代教育装备,2012(9):56-57,63.

[4]张敬南,彭辉.电力拖动控制系统课程教学改革与实践[J].实验室研究与探索,2014,33(9):236-239.

[5]西门子电气传动有限公司.MICROMASTER440参数手册[EB/OL].[2006-7-24].

[6]李华德,李攀,白晶.电力拖动自动控制系统[M].1版,北京:机械工业出版社,2009:158-176.

[7]周渊深,陈涛,朱希荣,等.电力拖动自动控制系统[M].北京:机械工业出版社,2013:231-247.

[8]陈伯时,陈敏逊.交流调速系统[M].3版,北京:机械工业出版社,2013:117-128.

[9]西门子电气传动有限公司.MICROMASTER440操作说明[EB/OL].[2006-12-5].

[10]张燕宾.变频器的转矩控制功能及其应用[J].电气时代,2005(2):84-86.

[11]陈卫东,韩兵,杨明,等.运动控制系统课程体系改进与创新[J].实验室研究与探索,2013,32(9):157-159.

[12]李新德,孙家明.运动控制系统课程实践教学模式的探讨[J].电力电子教学学报,2012,34(4):55-56