前言:寻找写作灵感?中文期刊网用心挑选的反应器造纸废水处理论文,希望能为您的阅读和创作带来灵感,欢迎大家阅读并分享。
1厌氧反应器工艺介绍
ExpandedGranuiarSludgeBlanke(tEGSB)全称为膨胀颗粒污泥床反应器。该反应器是在UASB的基础上,附加一套外循环系统,反应器的出水经外循环系统回流后并与进水混合。以BIO-THANE公司的EGSB为例,废水在调节池和反应器的部分出水混合后泵入EGSB,使得进入EGSB水力负荷不受污水水量变化影响。EGSB反应器顶部约有l米的空间,反应器产生的沼气可储存在此。由于储存空间带压,故无需额外增加沼气输送设备。InternalCirculation(IC)全称为内循环反应器。以PAQUES公司的IC为例,污水经布水器后,与反应器下降管内降落的泥水混合液充分在流化床反应室内混合。污水中大部分COD均在流化床反应室内进行降解,最终产生沼气。沼气先由第一级三相分离器,进行收集、分离、气提。气提产生的负压将泥水混合液由反应器内的上升管提升至顶部,并经第二级三相分离器将沼气和泥水进行分离,泥水混合液经下降管重新回至反应器底部,沼气则离开反应器。IC是集布水、流化床反应室、内循环系统、深度处理为一体的厌氧反应器。其主要特点是有效防止污泥流失,处理高纤维含量污水不堵塞不积累,抗冲击及毒性负荷较大。由于IC的COD负荷和高径比为这三种反应器最大,故就占地而言IC是最经济合理的。目前IC反应器最大直径为12.5m,高度却可达最大28m。由于反应器顶部缺少储存沼气的空间,故需增加沼气稳压柜。另外,IC产生的废气经废气风机抽出送至曝气池。为了维持反应器内的压力,IC顶部设有通气口,不可避免的有氧气进入三相分离器上部的空间,在有氧条件下,三相分离器附近的防腐是极其重要的。
2各厌氧反应器处理造纸废水时的参数选择及比较
根据上述三种厌氧反应器的原理,其设计时采用COD负荷,并用上升流速校核。在设计过程中,若COD负荷取值偏高,则反应器内的污泥将处于过饱,否则反应器内的污泥将处于饥饿。反应器内的污泥在过饱情况下,污泥会性质会发生改变,相反在饥饿情况下将影响反应器的出水水质。上升流速的取值同样会影响反应器的处理效果。若反应器上升流速取值偏高,会造成反应器内的污泥流失,否则反应器内的泥水混合液未能有效的混合,从而影响反应器的出水水质。由于COD负荷和上升流速取值偏低的情况下,则反应器占地就会偏大,Hybrid反应器占地最大。另颗粒污泥的形成与维持,与废水的性质以及足够的水力冲刷有关。由于其上升流速较低,未能形成对颗粒污泥的有效冲刷,因此Hybrid反应器较适合在絮状污泥的状态下运行。其次Hybrid反应器内的UFF填料对悬浮物的累积会导致厌氧污泥灰分的不断增加,使有效菌种逐渐失去主导地位,且UFF填料的堵塞仍未有效解决。IC反应器在COD负荷和上升流速方面是最高的。目前运行的几个项目中,IC反应器的设计参数均在范围之内。若在满足容积负荷的条件的情况下,其上升流速未达到8m/h,则需要增加外循环。Hybrid和EGSB反应器均有外循环系统,而IC反应器是否附加外循环系统则需要根据上升流速来确定。外循环系统的实质就是取得足够的上升流速。抗水力冲击负荷方面,EGSB的外循环保证了其进水流量恒定。当进水水量波动时,通过调整循环比以保证进水水量的恒定,进水水量的恒定也就意味着上升流速的恒定。而没有设置外循环的IC反应器,抗水力冲击方面较差,进水量的变化直接导致上升流速的变化。但EGSB的外循环无法应对COD负荷的冲击,而IC反应器抗COD负荷冲击的能力较强。其原因是由于存在内循环系统,当COD负荷增加时,通过增大内循环比,使其顶部的泥水混合液大量的回流至反应器底部,以便稀释进水。
3实际运行中的其他注意事项
这三种厌氧反应器就机理而言基本都一致,进水前先要调节温度、pH值、控制进水悬浮物浓度,由于造纸废水缺少氮磷等营养物质,还需额外添加尿素、磷酸盐等营养物质。性质不同的造纸废水,厌氧反应器对COD去除率也是有所差别的。
4结语
UBF、EGSB、IC在国内造纸行业均有运行的实际案例。在没有颗粒污泥启动和运行的情况下,推荐使用Hybrid厌氧反应器。而EGSB和IC虽在结构上有所差异,但均属于高负荷厌氧反应器。在国外造纸行业的厌氧处理单元采用EGSB厌氧反应器居多,而在国内制浆造纸行业从现有的工程情况看,IC厌氧反应器在实际运行中较为可靠。
作者:王华 赵文慧 单位:中信建设有限责任公司