前言:一篇好的文章需要精心雕琢,小编精选了8篇纳米分解技术范例,供您参考,期待您的阅读。
纳米药物载体在临床医学的应用
【摘要】现阶段,我国医学水平发达,纳米药物的载体在立场医学上已经有了较为广泛的应用,在医药领域,纳米级粒子可以是要物在人体内的传输变得更加方便,当纳米粒子包裹的药物进入到人体之后,可以自行搜索人体内的手大红组织以及器官,然后对其急性针对性的修复。本文对于纳米药物载体在临床医学中的应用进行了简要的分析以及研究。
【关键词】纳米药物;载体;临床医学;应用
在现阶段,临床医学当中,纳米药物载体以及有了较为广泛的应用。在人工器官移植的领域,当人工器官的外面涂上纳米粒子,可以有效的防治人工移植器官出现排异的反应。在医学检验的领域,使用纳米技术也有较为理想的效果,只需要检验了少量的血液,就可以通过其中的蛋白质结构以及DNA结构来诊断出其是否患有疾病。在抗癌治疗的过程当中,此项技术也有着不俗的表现,德国的一家公立医院研发出了一些非常细小的氧化铁纳米颗粒,当其注入患者肿瘤中的时候,可以使患者置身与可以变化的磁场当中,当温度升到一定高度的时候,对肿瘤细胞会造成破坏的效果,并且不会影响到正常的组织健康。本文主要对纳米药物载体以及其应用进行了详细的介绍。
1纳米药物的载体系统
对于现阶段的纳米药物来说,药物制剂的给药途径以及方法是非常重要的。一般情况下,对于空腹的要物来说,主要会受到两种效应的影响,即肠胃上皮细胞中的酶系的生物代谢以及肝中酶系的生物代谢,这些都会对口服药的效果造成一定程度的影响,很多的口服药物都是由于代谢消耗了大部分的药效,在实际到达患处之后的其效能已经非常低了,并不能起到较为理想的治疗效果,因此,在很多时候,都要将口服的药物改成静脉注射的药物,这样在治疗效果上会有一定的增强。由于通过静脉注射之后,非靶向性药物可以在血液当中自由循环,在到达病灶之前那会经历多个过程,最后到达患处的药效也只有很小的一部分,这也导致其治疗的效果并不理想。靶向给药的目的就是提高靶区药物的浓度,并且在一定程度上降低要物自身的副作用,这一研究课题在我国已经有多年的历史,随着我国医学的不断进步,纳米药物的出现是实现这一目的的关键转折[1]。根据我国医学专家的发现,一种较为理想的药物已经改具备以下的特性:第一,颗粒要小;第二,能够携带不同种类的化学药品;第三,载体要能够携带数量较多的药品,从而使靶向区域的药物浓度达到治疗的浓度在,这样才能取得较好的治疗效果;第四,当载体到达靶向细胞之后,其药物的释放量必须使其可以控制,并且能够对其进行精准的预测;第五,经体外包装过的药物在靶向细胞进行释放的时候,循环半衰期进行支持。现阶段,我国医学领域最具有代表性的纳米载体有以下几个:第一,纳米磁性颗粒。纳米磁性颗粒在实际应用的过程中有较为理想的效果,这与其自身的效能与特点有很大的关系,当前药物研究的主要热点方向之一就是对于磁性纳米颗粒的研究,特别是对于顺磁性或者是超磁性的研究,其在铁氧体纳米颗粒外加磁场的作用之下,温度在不断的升高,当温度达到40度左右的时候,并可以达到杀灭肿瘤细胞的目的,这种纳米粒子还在研发当中,技术尚且不成熟;第二,高分子纳米药物载体。现阶段我国对于纳米高分子药物载体的研究已经进入了一个全新的阶段,这也是现阶段我国业内研究的有一个热点方向,高分子纳米药物降解载体或是基因载体,通常会通过降解来进入定向的靶细胞,从而对其进行治疗,表层的药物被将结合之后,还可以通过其它的组织进行释放,这是一项新的技术创新,在此之前并没有哪一种要物载体可以做到,在很大程度上避免了药物的浪费,使其药效可以得到较为充分的发挥;第三,纳米脂质体。纳米脂质体在我国的研发也已经有很长一段时间了,其微囊主要是作为药物载体的研究,在很早的时候就已经在药物试剂上进行了应用,直至今日,纳米脂质体还处于研发的过程当中,纳米脂质体是人们设计出较为理想的纳米药物等载体模式。
2对于癌症的治疗
人们通常所说的癌症,指的就是恶性肿瘤,这也是危害人们生命健康的最大元凶之一,也以这是医学界重点关注的焦点。现阶段,很多的癌症药物并不能够起到较为理想的治疗效果,更多的药物只是起到调养的作用,根本不能根治病症。癌症的治疗关键是要把药物定向传送到癌症细胞同时有不会伤害到正常的细胞,这是其运行的根本前提。许多的药物已经应用到了这个系统,在实际应用的时候取得了一定的成果,例如脂质体、微胶囊等这些药物载体的而应用都取得了较为理想的效果。而对于纳米粒子来说,由于其体积微小,也开始受到人们的关注,纳米粒子抗肿瘤要物在患者的体内存留的时候,在一定程度上减缓了肿瘤的生长速度,与其它游离性质的药物进行比较之后,不难发现,在很大程度上延长了患有肿瘤动物的存活时间。由于其自身具有较强的吞噬能力,对于肿瘤细胞的生长以及繁衍也会有一定程度的阻碍,所以,静脉途径纳米细胞的纳米粒子可以在肿瘤的内部进行传送,并且其传送的效果较为理想,这也在一定程度上减少了药剂使用之后的副作用。通过对粒子的修饰,可以在很大程度上增加其对肿瘤细胞的靶向特异性[2]。
纳米技术在食品科学工程中应用价值
随着我国食品科学研究不断发展,食品加工的技术水平也在不断升级。纳米技术是一种利用单个原子分子制造物质的科学技术,将纳米技术融入到食品工业之中,可以对食品的分子结构进行改变,提高食品的质量,也可以促进食品科学工业的全面发展。
一、纳米技术在食品包装上的应用
目前对于纳米材料的研究已经获得了巨大的成就,纳米高阻隔包装、纳米活性包装等应用较多。纳米颗粒有很大的表面面积,仅需一次添加就能促进聚合物形成强界面相互作用,增强原材料的力学性能、阻隔性能和热稳定性。纳米活性包装技术还可以混合特定活性成分,快速吸收食品包装中的异味氧气和过多水分,迅速释放抗菌剂和二氧化碳到包装中。这些年来,对于纳米活性包装的研究,主要集中在抗菌型和保险型纳米包装材料方面,其中抗菌型的应用领域非常广泛。在菌系材料中加入表面涂覆金属或者金属氧化物,利用金属离子或者光催化的效果,使得食品表面菌体活性丧失,起到抑菌杀菌的整体效果,同时也能够避免食品腐败。在保险型纳米包装材料中,主要是利用特定的纳米粒子能够使乙烯氧化分解的原理,从而起到抑制果蔬的呼吸、延长果蔬的保存时间的作用。
二、纳米技术在食品加工领域中的应用
在食品加工领域中,纳米技术最常用的案例就是纳米微粒、微纳米胶囊、纳米膜分离、纳米包埋。其中纳米微粒能够对原料进行快速处理,增强食品的纳米化功能,在功能性食品的生产中运用较多。生产功能性食品的目的是为了获取生理性活性物质,这些活性物质主要包括活性多糖、氨基酸与蛋白质、维生素、矿物质等。功能性生理活性物质具有高效和微量等特性,这也使得传统的食品加工技术无法满足功能性食品发展的需要,将纳米技术应用到食品原材料加工中,不会产生过热现象,能够在低温状态下快速进行,避免对功能性活性物质造成破坏。另外,功能性食品中的生理活性物质在储存时非常容易受到氧气、光线、高温等的影响,从而失去应用价值,利用纳米微胶囊技术,可以有效隔绝功能性食品的生理活性物质被其影响,有效减缓其活性释放的效果,同时也能够与周围的环境相隔离,确保功能性食品生理活性物质不被感染,避免营养之间相互作用,提高生理性活性物质的品质。而纳米膜滤膜技术可以快速分离食品中的诸多营养物质,纳滤介于超滤和反渗透之间的膜分离处理,可以截留200-1000da的范围,比反渗透膜疏松得多,操作压力也比反渗透膜低,能够对浓缩乳清牛奶、调味液脱色,对鸡蛋黄中的免疫球蛋白进行快速提取。对纳米技术在食品工业中的应用进展进行探究,能够促进食品工业产业的不断升级,满足人民群众的需要。随着纳米技术在食品行业的应用日益增多,食品工业将会迎来新的发展高潮。
作者:袁乃煬 单位:枣庄学院
机械制造测量技术理论问题探析
测量技术相关理论问题分析
(1)静态理论。测量技术中的静态理论在精度方面,主要会受到随机误差、系统误差、粗大误差、误差分解以及不确定度等因素的影响。其中前2种分别遵循着其自身的确定规律、随机规律,而粗大误差则跳出了这2种规律的限定。在误差分解方面,主要依靠测量人员采取有效措施来降低误差,测量的不确定度则要求测量人员在测量之前做出综合评定。这些方面便是静态测量理论所具有的测量精度特点,更侧重于对静态目标的测量。(2)动态理论。测量技术的动态理论实现了全系统的动态测量精度控制,可通过测量人员对内部误差及外部影响因素进行综合分析,实现误差的消解,以保证测量的高精度。同时,动态测量还包括误差分解的溯源理论和对误差所造成的精度损失进行诊断的技术,前者侧重于从误差发生的源头来控制测量误差,而后者则应用于对仪器产品进行精度的优化设计。此种测量理论更适用于动态目标的测量,其测量中面临着不容忽视的多种误差源问题。
当前机械制造对于测量技术的应用
新的机械生产制造要求推动了在线测量和在机测量技术的逐步提升,使测量精度实现了由微米向纳米的转变。在这种转变状态下,视频测量、非接触式扫描等测量方式得到了高度重视,质检工作由被动转为主动,同时误差补偿软件也得到了有效的应用。具体来讲,纳米位移测量技术主要应用了双频激光合成波,其测量仪器利用此种合成波对条纹细分工作进行干涉,以实现超高精度的制造测量;此外,纳米测量位移范围逐步扩大,因此可以说纳米测量技术是当前时期最前沿的机械制造测量技术。新型的石英传感器技术借用了压电扭转效应,从而使单体转矩的测量以及无定心钻削转矩的测量仪器得以出现,机械制造工作人员可以利用此种技术对机械试件进行任意的钻孔测试,而不必固定测量中心,这就极大地提升了测量技术的操作简便性,并扩大了使用范围。目前,在此种测量技术的支撑下,研究人员研发出了压电生物测力平台、三向磨削测力仪和电式三向车削测力仪等设备,这些设备对存在着复杂力学量的制造工作发挥着重要的测量作用。此种技术主要应用了当前我国自主研发的正交偏振激光器,并且研究人员以此设备为基础研发出了诸多其他测量设备,如激光器纳米测尺等,这些仪器具有测量便捷简单、精准度高等优势,极大提高了机械制造的量程以及线性度等的测量精准度。
目前研发出的现场空间尺寸测量及检验技术装置,为我国机械制造中各项校准工作及解决装置问题提供了极大帮助。此种技术装置以互易性回归的非线性校准理论以及滑块平移的放大结构等进行测量,减少了非线性误差的出现;同时,它还借助装置的基准尺寸、靶标的几何结构、不同位置测量的量值传递理论进行测量,极大地提升了传感器与测量系统的精准度,实现了对于大空间机械制造的现场测量与校准。我国所研发的此种技术实现了对于大范围回转润滑面的复合节流及匀压测量、气体与液体以及气体与固体两相复合的回转润滑测量,从而提高了回转设备的精度、转动的刚度和稳定性。同时,基于此种两相复合回转理论,直线运动的基准装置得以研发,提高了直线运动的精度、承载力以及稳定性。此外,差动共焦、二次共焦、复色共焦的扫描方法也得以应用,支撑研究人员研发出了显微镜及扫描装置,提高了测量的分辨率。这项技术的研发突破了我国在超精密测量方面的限制。
机械制造所应用的测量技术的发展趋势
我国当前对于测量技术的大力研发,推动了诸多高精尖技术与设备的出现,极大地提升了我国机械制造方面测量技术的应用效率。就新时期测量技术的发展状况来看,测量技术在将来可能会实现以下几个方面的发展:(1)计量学方面的基本问题,比如计量标准、测量理论等应该会得到更加深入的研究,进而推动各种自主标定与校准技术在更高水平层面的研究及应用,以实现对于误差溯源要求的满足。(2)测量工作必将实现对于多种信息的更加协调高效的融合使用。当今时代,机械制造以及测量工作都面临着越来越多的信息量,如何对这些信息进行有效的收集、整合以及协调应用,便成为技术研发人员的重点关注对象。(3)测量仪器更加先进。未来测量技术将实现在可靠性、抗干扰能力、便捷、快速、稳定和高效等方面的发展,同时各种新的物理测量原理与技术将被研发及应用,进而推动更高端的测量仪器的出现,以有效解决各种新的测量问题。(4)测量工作将实现在动态测量、现场测量、在线测量方面的提升,实现对材料选用、产品设计、工艺流程以及产品质量等方面的同步优化,逐步将测量技术在更高程度上与生产制造系统相结合,推动机械制造工作的智能化。(5)极限制造方面的创新。在极限制造方面,研究人员将能够推动超大尺寸更高精密程度的测量状态的实现,使测量工作能有效满足机械制造的数字化以及非接触方面的要求。同时,极限制造测量在朝向纳米精度发展的同时,也会实现更高的实用性。
纳米粒子在家庭水处理的应用
[摘要]为发展中国家和发达国家提供安全饮用水是一个巨大的挑战。日益增长的需求和水源水质恶化导致探索新的技术创新,以更好地管理水。纳米技术通过设计创新的集中和分散(家庭一级)水处理系统,在确保安全饮用水方面有着巨大的前景。本文概述了(家庭一级)水处理工艺的纳米技术的最新进展,其工作原理为,纳米吸附剂、光催化剂、微生物消毒剂和膜。广泛实施纳米技术用于水处理将需要克服纳米材料的高成本,使其能够再利用和再生。这也将确保尽量减少潜在的环境暴露。纳米技术的潜在进步必须与环境健康齐头并进,以减轻对人类的任何不良后果。
[关键词]纳米粒子;吸附;膜处理
安全饮用水被认为是一个国家发展的重要指标,根据最近的报告,世界各地约有6.63亿人无法获得安全饮用水[1]。多年来,污染和滥用地表水导致全球50%以上人口依赖地下水作为饮用水。然而,地下水是氟化物、砷、铅、铬、硝酸盐、硒、氯化物、重金属以及放射性物质的避风港,这些离子极大地损害了地下水的质量,导致了健康问题[2]。此外,腺病毒、甲型肝炎、轮状病毒等病原体通常存在于地表水和地下水中,必须有效地灭活才能提供安全的水。饮用水安全是根据国家标准或国际准则来判断的,卫生组织的饮用水质量准则是最重要的准则之一,并由许多发展中国家实施。报告表明,在依赖改良水源的估计62亿人中,超过10亿人继续使用不安全的水。联合国可持续发展目标(SDG6)之一是到2030年实现人人享有安全和负担得起的饮用水水处理技术的进步可以在实现这一目标方面发挥作用。在传统上用于饮用水处理的各种技术中,砂(颗粒介质)过滤是最古老的处理技术之一。砂过滤最初被认为是通过粒子间间隙的尺寸排除工作的。然而,后来的研究表明,慢沙过滤器(SSF)在富含细菌种群的沙粒周围形成一种活性生物膜(称为Schmutzdecke),从而提高了介质的过滤能力。颗粒介质过滤的应用面临的挑战之一是,除了易受事故和流量变化的影响外,它无法有效地去除化学污染物。其他一些常规使用的技术包括化学氧化、吸附、化学沉淀/凝固、离子交换等等。最常见的化学氧化剂是氯,它为去除病原体提供了有效和坚固的屏障。另一方面,化学沉淀通过添加反离子来降低离子污染物的溶解度。这通常是絮凝和沉淀或过滤。近年来,人们对纳米粒子作为吸附剂在水处理中的应用越来越感兴趣。纳米技术显示出巨大的前景,作为处理持久性和新兴污染物的最佳可行方法[3]。纳米材料吸附与传统吸附剂相比,具有吸引力的替代品,因为它们具有较高的长径比,增强了反应活性,进而转化为较高的吸附容量。此外,纳米吸附剂还提供了额外的可能性,如在家庭一级以不同形式使用的可能性,例如,以粉末形式使用,涂覆在衬底上或在过滤器中使用等。颗粒的较小尺寸也提供了构建紧凑处理系统的可能性。最近的研究还表明,纳米粒子可以被工程化,同时针对多种污染物,从而可能降低处理成本。然而,人们对纳米材料的安全处置及其对公共健康和生态系统的潜在风险还表示担忧。因此,本综述详细介绍了在水处理中使用纳米粒子的现有技术。虽然对纳米粒子在水处理中的应用进行了大量的研究,但几乎没有任何全面的评论对这一主题进行批判性分析,本文试图填补这一空白。
1纳米粒子在水处理中的应用
用于环境保护和水处理的新型纳米材料的开发和使用近年来受到了广泛的关注,因为它们的表面积与体积比更大,粒径更小[4]。纳米材料在水处理中的四个主要应用领域是(A)吸附去除,(B)催化降解,(C)消毒和(D)膜过滤。其中,吸附去除污染物和使用纳米材料消毒是主要内容。纳米技术使水处理做法有望克服现有技术目前面临的主要挑战,并为水的经济利用提供新的处理方法。
2吸附去除
不同种类的纳米粒子被用于吸附去除研究,即用于去除砷的铁基纳米粒子、用于去除氟化物的碳和铝基纳米材料等[2]。本文综述了在各种使用点(POU)饮用水处理系统中常用的纳米吸附剂。
染料废水的高级氧化处理技术探究
[摘要]染料废水主要来源于制革、纺织、食品、造纸、塑料等行业,具有有机物浓度高、成分复杂、色度高、难降解等特点。高级氧化法在处理有机废水具有鲜明的亮点,本文综述了染料废水的高级氧化处理技术研究进展,对臭氧氧化法、电化学氧化法、催化氧化法和物理氧化法四种方法进行了归纳和总结了其优缺点,且对染料废水处理的高级氧化法研究发展进行了展望。
[关键词]染料废水;高级氧化;催化氧化法;新型材料;物理氧化法
我国是染料生产和应用大国,众多的天然染料和合成染料广泛应用于制革、纺织、化妆品、食品、造纸、塑料和生物医学等行业。不仅在生产染料过程中会产生高浓度的染料废水,在使用染料的过程中还约有10%至15%[1]会在染色过程流失,这将产生大量染料废水。染料废水是一种带有特征有机污染物的废水,具有有机物浓度高、色度高、毒性强、酸碱性强及难降解等特点[2-3]。染料废水超标排放进入自然水体,将严重影响水体中植物的光合作用和其他微生物的生命活动。由于染料毒性还具有致癌、致畸和致突变性,对人类健康和其它生物生长也将造成严重危害[3-5]。因此,研究染料废水的去除方法势在必行。
1概述
因一些有机污染物的化学稳定性和低生物降解性,无法通过传统技术进行处理,高级氧化可作为一种生物处理的预处理提高可生化性,有利于后续处理,并且对于一些高级氧化方式的组合处理有机废水也是最近研究的热点。高级氧化技术通过氧化还原作用,将难生物降解的高毒性有机污染物完全分解为二氧化碳和水或转化为危害较小的矿化中间产物。后续生物处理的进行。高级氧化技术主要有臭氧氧化法、电化学氧化法、催化氧化法和物理氧化法。一般认为高级氧化是外部刺激氧化剂产生了羟基自由基(OH•−),硫酸根自由基(SO4•−),和超氧离子自由基(O2•−),氯自由基(Cl•)等,破坏了有机分子结构使其分解为较小分子,最终降解为二氧化碳和水,以达到降解有机物的目的。
2高级氧化法的分类
2.1臭氧氧化法。臭氧在污水处理中常被用作消毒剂和氧化剂。臭氧氧化可以通过臭氧的直接氧化和产生HOꞏ的间接氧化作用破坏有机物结构。单独使用时,孙志强等[6]研究臭氧处理实际分散染料废水可以去除偶氮键和苯并异噻唑类有机物,但是中间产物生成的物质为羟基自由基消除剂,致使有机物矿化度不高。和其他技术联用时,张秀等[7]研究O3/UV工艺在超重力旋转填充床处理200mg/L模拟罗丹明B染料废水,20min后脱色率和COD去除率分别可达100%和40%。
谈微观模拟的分子石油工程实验室研究
摘要:为促进学科交叉融合的复合型人才培养,建立了基于微观模拟的分子石油工程实验室。将材料科学的多尺度模拟技术应用于石油工程领域,提出了分子石油工程概念,从分子层面和微纳尺度上研究和揭示非常规油气、页岩油气、深层油气的赋存与渗流机制等。以高水平科研项目为依托,培养石油工程类学生的理性思维和材料科学学科学生的工程概念,推动学生的跨学科培养。
关键词:分子石油工程;微观模拟;实验室建设;分子模拟
石油与天然气依然是世界一次能源消费的主体。世界经济发展对能源的需求,促进了石油与天然气工程理论与技术的高速发展。进入21世纪后,油气钻探、开采及储运的主客观约束条件日趋复杂,非常规、超深层及深水油气的勘探开发,不断对石油与天然气工程领域科技创新提出越来越高的新要求,促使其与力学、化学、地质、材料、机械、电子、控制、环境等相关学科的联系更加紧密。此外,伴随信息、人工智能等领域的科技进步,石油与天然气工程逐步向着信息化、智能化及自动化方向加速发展。然而,我国油气资源相对缺乏,油气消费严重依赖进口,据统计2019年石油进口总量超过消费总量的70%,天然气进口超过消费总量的42%[1]。因此,本研究基于微观模拟思维,将材料科学的多尺度模拟技术引入石油工程领域,建立了分子石油工程实验室,对促进我国石油与天然气复合型工程技术人才培养具有重要的意义。
1分子模拟技术及其应用
1.1分子模拟
模拟技术是指利用相似原理建立研究对象的模型,如形象模型、描述模型、数学模型等,并通过模型间接地研究原型规律性的实验方法。分子模拟是指利用理论方法与计算技术,模拟或仿真分子运动的微观行为,应用于计算化学、计算生物学、材料科学等领域,小至单个化学分子,大至复杂生物体系或材料体系都可以成为它的研究载体。因此,计算机技术在科学研究方面的应用广泛性以及与其他学科的结合性已成为21世纪科技研究的大趋势。分子模拟技术是随着计算机在科研中的应用而发展起来的一门新的科学,是计算机科学与基础科学相结合的产物,也是数学、物理、化学等学科领域基础研究的重要手段。在2020年的科学家座谈会上,许多学者指出基础研究是科技创新的源头,要持之以恒地加强基础研究工作及创新人才培养。通过已有的研究报告显示,我国在应用科技领域处于快速发展阶段,每年的技术专利申报数和科技量在世界处于前列,但在基础研究能力和基础学科研究成果方面与发达国家相比具有明显差距。我国“十四五”规划将加大基础研究和前沿科技领域研究的投入,以便逐步缩小这一差距。
1.2分子模拟技术的应用
激光制造超疏水表面专利思考
摘要:激光制造超疏水表面是制造仿生超疏水表面的重要手段,本文概述了激光制造超疏水表面在自清洁、耐腐蚀和防覆冰等应用方面的专利发展脉络,重点针对激光制造超疏水表面的技术手段进行分析和总结,希望为激光制造超疏水技术在工程领域的应用研究提供参考。仿生材料是从生物体获得启示,通过对荷叶、稻叶表面微观结构的进一步研究,微米/纳米级复合结构被认为是获得人工超疏水表面的关键。激光微加工技术能够在基板材料上直接制备微纳结构,且能够在不同材料上制备不同的各向同性、各向异性、黏滞性可调等特殊浸润性表面,飞秒激光微加工技术已成为调控材料表面润湿性的重要手段。本文主要以DWPI专利数据库、SIPOABS专利数据库以及CNABS数据库中的检索结果为分析样本,通过从专利文献的视角对激光制造超疏水表面技术的发展脉络进行了全面分析,总结了激光制造超疏水表面技术在其应用方面的发展路线,希望能够对实际生产具有指导意义。
1.激光制造超疏水表面应用专利发展分析
随着对激光制造超疏水表面技术的产生机理和影响规律的研究不断深入以及激光技术的发展,激光制造超疏水表面技术在自清洁、耐腐蚀、防覆冰等方面得到了广泛应用。
1.1自清洁
以下对于激光制造超疏水表面自清洁方面的应用的专利发展路线总结如下:2006年吉林大学申请的专利文献CN1827838A公开了一种提高金属部件表面防黏性能的方法,该方法将金属部件表面制成分布有微米尺度的凸包或凹坑的非光滑表面,并在其凸包或凹坑的表面上通过物理或化学方法复合一层颗粒尺寸为30nm~120nm的Al2O3、TiO2或SiO2层。具有明显减黏、防黏效果,当水滴与其表面接触,接触角可以达到105°~140°,水滴可以在金属部件表面自由滚动,不留下残余痕迹。2010年长春理工大学申请的专利文献CN101844272A公开了一种采用激光干涉光刻技术制作自清洁表面结构的方法和系统,该方法或系统将多个相干激光束组合,对干涉场内的光强度分布进行强弱调制,用调制后重新分布的激光能量烧蚀被加工材料表面,在大面积范围内形成微米或纳米级密集的柱形或锥形浮雕结构,形成自清洁结构。2015年湖北工业大学的专利中通过激光技术在多种材料上制备了超疏水自清洁表面,例如不锈钢表面、锌合金表面、半透明硅橡胶表面等(可参见专利文献CN104907702A、CN104907698A、CN106903436A)。同年,长春理工大学申请的专利文献CN105401185A公开了一种铝合金耦合仿生自清洁表面及其制备方法,该方法将激光技术与刷镀工艺、热处理技术相结合,得到的铝合金涂层表面具有相对特殊的表面结构,具有的疏水性和表面低黏附、自清洁性可广泛应用于汽车制造、轮船、化工、航天等领域的各种零部件表面。2017年清华大学申请的专利文献CN107803587A公开了一种风电叶片超疏水自清洁表面及制备方法,其中通过将激光技术与涂层技术相结合,实现了激光在成品叶片表面原位形成微纳米二级结构,有效降低叶片经风吹雨淋造成的污染。2018年西安交通大学申请的专利文献CN109609950A公开了一种自清洁的水滴单向滚动超疏水表面的制备方法,该方法采用硬脂酸进行低表面能的修饰,形成超疏水表面;通过高精度纳秒激光在超疏水表面上标刻出亲水轨道,使得液滴在超疏水表面上沿着亲水轨道在重力作用下进行单方向滚动;本发明亲水轨道密布整个超疏水表面,间隔0.5mm的轨道排布方案在平行和垂直与轨道方向的接触角差值高达60°,最有利于液滴沿平行于轨道方向进行滚动而在垂直于轨道方向受到阻碍。2019年大连理工大学申请的专利文献CN110184602A公开了一种在金属上制备导电自清洁超滑移表面的方法,该方法利用激光加工方法在金属基底上扫线处理以构造微纳米级的粗糙结构,再以低表面能材料修饰后即可得到超疏水表面;最后通过预浸润一层表面能较低的润滑剂,得到能够稳定存在多尺度微纳米复合结构电极表面的油膜层。2021年浙江师范大学申请的专利文献CN113336425A公开了一种光伏玻璃液滴定向自发运动清洁方法,通过设置微纳梯形槽阵列和化学改性的方式改善光伏玻璃的表面润湿性能,使得液滴在光伏玻璃表面上能够进行定向的自发运动,带走灰尘从而完成自清洁,有效地提高除尘效率;此外,所述的光伏玻璃自清洁方法在改善表面润湿特性的同时,预留了一定面积的未加工区域,可以保持光伏玻璃的高透光性。
1.2耐腐蚀
以下对于激光制造超疏水表面耐腐蚀方面的应用的专利发展路线总结如下:2009年西安交通大学申请的专利文献CN101531335A公开了一种利用飞秒激光制备金属表面超疏水微结构的方法,该方法利用飞秒激光辐射场在金属靶材表面上制备超疏水周期性微/纳米结构,处理得到的周期性金属纳米结构排列整齐、均匀,并可以制备出不同尺寸和图案微/纳米周期性结构。同年中国科学院兰州化学物理研究所申请的专利文献CN102051615A公开了一种防爬行防腐蚀钛或钛合金材料的制备方法,将金属钛或钛合金通过激光刻蚀对其表面进行微加工处理得到微米结构粗糙化表面,然后再通过阳极氧化处理在微米结构化表面形成一层二氧化钛纳米管阵列膜,最后经过全氟硅烷或全氟硅氧烷的修饰得到超疏水和超疏油表面。2017年湖北工业大学申请的专利文献CN106984902A公开了一种利用脉冲激光制备船体钢超疏水表面的制备方法,该方法包括将船体钢样品表面进行抛光预处理;将经过抛光预处理后的船体钢样品表面进行清洗并晾干,得到洁净的船体钢样品表面;采用脉冲激光对船体钢样品表面进行激光扫描处理,在船体钢样品表面形成微结构;将船体钢样品经过自然时效处理或保温处理,制备得到船体钢样品超疏水、耐腐蚀、防水生物附着表面。2018年江苏理工学院申请的专利文献CN109249134A公开了一种具有耐腐蚀性能的超疏水铝表面的制备方法,该方法利用红外纳秒激光加工得到的微结构具有较好的稳定性,然后利用化学刻蚀进一步得到具有光栅状的微纳米尺度双层分级结构的铝表面,具有较强的耐腐蚀性能和超疏水性,其接触角可以达到160.72°。2019年太原理工大学申请的专利文献CN110744200A提出了一种提高奥氏体不锈钢表面耐腐蚀性的方法,该方法将激光加工技术与有机物表面接枝技术相结合,使不锈钢表面具有疏水性并提高了奥氏体不锈钢的耐腐蚀性,由水接触角测试结果可知:采用激光加工技术与有机物表面接枝技术复合处理后,水接触角相对于未处理不锈钢表面大幅提高,疏水性明显增加。
现代化机械设计及精密加工技术分析
摘要:随着我们经济社会不断的进步和发展,对于产品各方面的技术要求已经有了进一步的标准化和提高,市场对于产品的整体结构、品质、外观及操作的人性化等诸多方面也提出了更高的技术要求。目前现代机械制造的工艺和精密加工技术的广泛运用和研究就是能够满足对于产品各方面技术需求的重要保障,现代工业机械制造的工艺及精密加工的技术在我们的社会和经济的发展中起着非常大的影响和作用,所以对于现代工业机械制造的工艺和精密加工技术的运用和研究发展有着重大的影响和意义。
关键词:现代化机械设计制造工艺;精密加工技术;探究
1现代化机械设计制造工艺和精密加工技术概述
1.1现代化机械设计制造工艺
现代化机械设计制造工艺主要可以分为两个基本方面的内容,主要是包括用于制造一些中小型机械的自动化技术和加工机器以及采用特殊切削工序技术对机械原件内部进行加工的切削技术。现代工业机械制造的工艺和技术与传统的工业机械制造的工艺和技术相比,引进了更多先进的工业信息自动化技术、数字信息技术和机械自动化设备等技术,设计自动化的程度和工艺智能化的程度的提高,可以更好地实现对于机械和工艺的设计、检测以及维修的智能一体化,并且充分解放了现代人们的大脑和双手,通过先进的信息技术、自动化的技术就已经可以更好地实现对于机械的设计和加工。现阶段,由于现代人们环保和节能意识的不断提高和增强,在发展工业机械制造的过程中人们对于节能性和机械的环保性也进一步提出了更高的要求和关注,这也是进一步实现了我国的机械制造业健康持续发展的重要因素和战略。
1.2精密加工技术
精密机床的加工制造技术是一种高科技的技术,也是一种具有代表性的一种现代工业机械制造技术和工艺,其在现代工业机械制造领域和各种高新科技装备制造领域已经得到了非常广泛的研究和应用。其中例如:在精密车床和先进的航天航空制造领域均已经得到了广泛应用。在现代机械制造的过程中,由于经济发展人们对工业机械产品精密性能的要求越来越高,因此,要求其的精密性越来越好,可以有效地增强和提升机械企业的国际市场地位和竞争力,满足了人们对于机械产品的精密性要求。