前言:寻找写作灵感?中文期刊网用心挑选的教学形式理论下固体物理教学论文,希望能为您的阅读和创作带来灵感,欢迎大家阅读并分享。
一、多媒体与三维模型的应用
随着计算机的普及和利用,多媒体教室普遍存在,并被广泛使用。多媒体教学手段的利用,有助于学生对固体微观结构的理解。例如,可以通过视频或PowerPoint文件,可以直观地展示晶体的微观结构、原胞的选取、原胞的形状等。与传统板书相比,利用多媒体呈现并分析固体的微观结构以及晶体的结构特征,对教师而言,更加省时、省力;几何关系的表达也更为准确,便于学生的理解。此外,若能结合三维的原子实物模型,那么,固体的微观结构将能更为直观地展现在学生眼前。多媒体与三维模型的应用对于学生理解固体的微观结构、晶格的周期性、原胞、晶体的对称性等基础概念很有好处。当然,多媒体教学也存在着一定的局限性。例如,在公式的推导、基础概念的讲解等方面,板书其实更受学生的欢迎。与多媒体教学相比,板书的节奏慢,师生间可以有较多的互动;学生相对容易跟上教师思考问题、解决问题的步伐,学生也能有较充分的时间来理解各个知识点、梳理要点以及做笔记等。因此,多媒体教学还需适当地与传统板书相结合才能达到较好的教学效果。
二、教学内容的取舍
由于固体物理学融合了普通物理、热力学与统计物理、量子力学、晶体学等多学科的知识,其知识面广、量大,在有限的学时里,不可能面面俱到地讨论固体物理学所涉及的所有知识点。因此,实际教学中可以结合本专业的特色,有选择地取舍部分教学内容。例如,侧重固体热学性质的专业可以考虑以晶格振动等内容为主;而侧重微电子的专业则可以考虑以能带理论、半导体中的电子等内容为主。当然,一些多个领域都涉及到的基础知识也应是这门课程不可缺少的一部分内容。固体的微观结构和结合方式是固体物理学的基础,因此,晶体的结构和晶体的结合等知识点应是这门课程的基础知识之一。考虑到理想晶格由原子实和电子组成,晶格的运动主要在晶格振动等部分讨论;而电子的运动主要在能带理论等部分讨论,具体还可以分为金属中电子的运动和半导体中电子的运动等部分。尽管这原子实和电子的运动实际上相互联系,但很多时候,可以分别侧重讨论。此外,实际晶体也并非理想晶体;实际晶体除了有边界之外,也常含有缺陷。但在许多情况下,晶格的振动、电子的运动和缺陷的影响依然可以依据实际情况分别讨论,并得到与实际较为符合的理论结果。因此,晶格振动、能带理论和缺陷等知识点之间相对独立,或可根据各专业的实际情况取舍部分教学内容。在许多固体物理学的教材中,例如黄昆等的《固体物理学》教材和阎守胜的《固体物理基础》教材,密度泛函理论并没有被提到。事实上,密度泛函理论是一个被广泛使用的基础理论,它是凝聚态物理前言研究的有效手段之一,也是材料设计的一种有效方法。教学过程中,教师可以结合各专业的实际情况介绍一些密度泛函理论的基础知识。同时,还可以介绍一些最新的相关研究进展,以拓展学生的知识面、提高学生的学习兴趣。
三、模块化的教学形式
如前所述,固体物理学中的许多知识点间相对独立;基于这门课程的特征,教师在教学过程中可以考虑模块化的教学形式,以子课题的形式将相应内容呈现给学生。可能的模块如:讨论晶体的结构和晶体的结合方式的基础模块———晶体的结构与结合;讨论晶体中原子实运动的模块———晶格振动;讨论晶体中电子运动的模块———能带理论;讨论实际晶体中可能存在的缺陷的模块———晶体的缺陷等;其中,能带理论部分还可分为:近自由电子模型、紧束缚模型、赝势方法等数个部分。这样做首先有利于教学内容的取舍;其次,有利于学生对各知识点的理解、有利于学生梳理清楚各个知识点之间的关系。此外,固体物理学是凝聚态物理前沿研究的基础之一;其基础知识、理论推导、实验背景以及处理问题的方式方法等,都是开展凝聚态物理研究的基础。而模块化教学,以课题研究的形式提出问题、解决问题,将教学内容以问题为导向呈现给学生,这有助于培养学生的学习能力和解决实际问题的能力。而且,课题研究的教学模式,既是在教授学生知识,也是在开展科研,有助于提高学生对科研的认识、有助于培养学生的科研能力。这种课题研究的模块化教学形式还可以结合基于原始问题的教学来开展。
四、基于原始问题的教学
所谓原始问题,可简单理解为:现实生活中实际存在的、未被抽象加工或简化的问题。于克明教授、邢红军教授等人详细探讨了原始物理问题的诸多方面;此外,周武雷教授等人还讨论了原始物理问题含义的界定等相关问题,并呼吁将基于原始物理问题的教学实践引入大学物理的教学中。这应是个值得提倡的建议,毕竟现实生活中遇到的具体问题都是原始问题。与传统的习题不同,原始问题未被抽象、加工或简化。学生处理实际问题的第一步便是将问题适当简化,这也是学生需要学习的一种能力。事实上,合理的模型简化是各种理论的基础,也是实际应用或科研必不可少的一种能力。例如,讨论晶格热容的爱因斯坦模型和德拜模型,尽管模型简单,但它们数十年来是我们讨论、分析相应问题的基础。今天,那些被写进教科书的基础理论,在当时、在理论刚被提出时,都是为了原始问题的解决。下面以晶体热容为例,稍加详述。问题的背景:根据经典的热力学理论,晶体的定体摩尔热容是个与温度无关的常数。实验发现晶体的热容在高温下确实接近于常数,但是晶体的热容在低温下并不是个常数,其与温度的三次方成比例关系。问题的提出:理论预言与实验观测为何不相符?如何解释实验现象?20世纪初刚刚发展起来的量子力学是否能解释这个实验现象?这些问题在爱因斯坦的年代应该都是前言的科研问题。问题的简化:(1)不考虑边界、缺陷、杂质等的影响,将实际晶体抽象为理想晶体;(2)基于绝热近似,不考虑电子的具体空间分布,将原子当作一个整体,原子—原子间存在相互作用;(3)基于近邻近似,只考虑近邻原子间的相互作用;(4)基于简谐近似,将原子间的相互作用势在原子的平衡位置作泰勒级数展开,并保留到二阶项。问题的解决:基于上面的模型简化,写出描述原子运动的牛顿第二定律,并求解方程组,这些方程组与相互独立的简谐振子的运动方程组相对应。结合量子力学,得到体系的能量本征值;写出晶格振动总能的表达式,继而给出由晶格振动贡献的晶格热容的表达式。由于晶格热容的表达式复杂,很难直接与实验结果对比,因此引入进一步的简化和近似———爱因斯坦模型或德拜模型。这种提出问题、分析问题、解决问题的方式与做前言科学研究的方式相接近,既能提高学生对科研的认识、培养学生的科研能力,又能培养学生理论联系实际、解决实际问题的能力。
五、小结
针对固体物理学这门课程的一些特点,本文从教学手段、教学内容和教学形式等方面提出了一些教学改革的心得体会。教学手段上,可以利用多媒体和三维模型等教学手段,以便让学生更容易理解固体的微观结构。教学内容上,可以针对专业特色,有选择地取舍部分章节。而模块化的教学形式,可以将相对独立的知识点以子课题的形式呈现给学生,既能帮助学生梳理知识点,又能让学生对课题研究有所认识。最后,通过课题研究的教学形式、理论联系实际的讨论分析以及基于原始问题的教学,培养学生学习和应用的能力。致谢:感谢上海高校外国留学生英语授课示范性课程《英文大学物理》建设项目的资助。
作者:李重要 单位:上海理工大学理学院