前言:一篇好的文章需要精心雕琢,小编精选了8篇化学反应论文范例,供您参考,期待您的阅读。
国际IB化学实验课程探析
摘要:基于化学学科核心素养的视角,对国际IB课程中独具特色的、研究型化学实验课程设置、实验教学方式与实验评价考核体系所呈现出的整体性与一致性进行了评析,以期为一线高中化学教师在实验课程的实施和教学改革中提供一定的借鉴与参考。
关键词:国际IB课程;化学学科核心素养;化学实验
一、课内必做实验涵盖多学科的交叉,注重宏观辨识与微观探析的关联
IB课程化学实验分为标准水平(standardlevel简称为SL)和高水平(highlevel简称为HL)两个不同级别,每个级别由三部分实验内容组成:Practicalactivi⁃ties(实践活动即课内必做实验)、Individualinvestiga⁃tion(课外自主探究实验)和Group4project(课外小组合作实验)。在IB课程化学实验标准中对每部分实验的所需时长作出了明确规定,详见表1中所示。在“Practicalactivities”(课内必做实验)中,以教师为主体,一共设置了11个实验内容,涵盖了化学的四大分支:无机化学、有机化学、物理化学和分析化学中的经典基础性实验,比如:无机化学实验内容包含测定化学常数,如阿伏伽德罗常数,气体常数R;焰色反应观察;用计算机模拟实验探究元素周期律,探究化学键及其结构,如用计算机模拟分子的VESPER模型等。有机化学实验包含鉴别烷烃和烯烃;肥皂的制作;固体熔点的测定;蒸馏、分流有机混合物;有机化合物(如阿司匹林)的合成;用计算机模拟有机分子的三维模型等等。实验内容的设置,不仅涉及了物质微观结构与宏观性质的关联,还涉及运用计算机软件对微观结构与宏观性质进行探究,充分体现出学科知识点之间的交叉性与关联性,其目的是引导学生基于不同层次、多角度地认识物质,从化学学科的高度,甚至从整个科学学科的角度去认识化学的本质。同时,在“课内必做实验”中虽然明确了以教师为主体,但并没有规定严格的实验教学顺序列表,教学大纲的顺序并不一定是教师的实际教学顺序,由教师根据实际教学情况及学生的学习情况自行安排实验顺序以达到最好的效果。教师还可根据需要在更高层次的课程中选取内容来开展实验,这种方式给予了教师相对较大的自主权,在实验教学中具有更大的开放性。
二、课内必做实验明确定量实验的重要性,培养变化观念与平衡思想
基于对定性、定量实验具有同等重要性的充分认识,在IB化学实验中设置了有关物理化学中反应焓的测定;探究催化剂、温度、压强、反应物浓度对化学反应的影响以及原电池的制作等内容;基于分析化学的理论知识,在实验中相应设置了酸碱滴定(包括采用交互式软件对强酸弱酸,强碱弱碱不同性质的探究);氧化还原滴定法分析过渡金属离子,用分光分度计测定金属离子浓度等内容;同时,还专门设置了正确处理数据及其相关误差分析的章节,以及运用专业软件处理相关数据并制作图谱表格、撰写科研论文报告等内容,比如:分析实验中用spreadsheet电子制表软件进行数据分析与处理,绘制标准曲线等。在强调定量实验重要性的基础上,充分体现出了实验数据和纯粹数学计算之间的不同,使学生能够在实验中认识化学变化所需要的条件及能量的转化;认识化学变化的限度是可以进行调控的;能从多角度、动态地利用实验数据探究并分析化学反应,运用化学反应原理解释相关实际问题,充分体现了化学学科核心素养中关于变化观念与平衡思想的培养要求。
三、课内课外注重信息技术与实验的深度融合,促进证据推理与模型的认知
化学工程教学改革探讨
[摘要]在国家“双一流”高校建设背景下,实施化学工程学科教学改革对于提高教学质量和学科影响力具有重要作用。以化学反应工程课程教学为例,将多层次过程分析与计算机模拟有机结合,开展项目驱动式教学,可以让学生不断提高综合分析能力,增强工程意识,做到从理论知识到实际应用的有序转变。
[关键词]化学工程;多层次;计算机模拟
近年来,随着化工企业数量不断增加,技术含量不断上升,企业对高校化工类毕业生的数量需求不断增加,质量要求不断提高[1]。但一项针对高校化工类毕业生的调查显示,46%的毕业生在校时希望转到其他专业进行学习,只有半数毕业生将兴趣作为当初报考化学化工类专业的首要因素,另有很多毕业生认为化学化工企业危险、有害,工作环境差。化工类毕业生对于择业就业的忧虑,体现出高等教育专业人才培养的不合理性。化学工程是一门系统、复杂的交叉学科,包含化学分子动力学、流体力学、反应器设计与选择、传热传质等基本理论,涉及内容多、范围广,对于学生各方面能力均有较高的要求[2]。传统的“老师讲课,学生考试”的单一教学模式难以激发学生的学习兴趣,更难以培养社会需要的化工综合人才,已不再适应课程教学的需要。针对不少学生对该学科望而生畏,“不会学、不会用”的现象,如何通过优化教学模式提高学生的学习兴趣,使他们能将相关理论知识应用到实际工作中,对于综合性化工人才培养及化工企业的发展至关重要。
一、教学改革内容
(一)建立多层次教学模式
化学反应工程作为化工学科中集合微观、介观和宏观变化的一门综合性课程,涉及分子层面、反应器层面和化工流程层面[3]。目前该课程主要采用老师讲课、期末考试的授课和考核方式,教学效果不佳[4-5]。此外,大多数高校的化学反应工程教学仍停留在传授书本理论阶段,没有设置实践应用环节,学生难以将所学理论知识熟练地运用到工程实践中去,这门课的教学意义自然也大打折扣。现有的教学模式难以使学生真正理解和消化相关专业知识,改革迫在眉睫。化学反应工程教学应该有层次地递进,针对具体的工程应用案例,进行多层次的过程分解,并分析不同层次间的关联,最终达到提高学生分析和综合应用能力的目的。因此,教学中可将化工过程分为分子化学反应、反应器及流程系统等多个层次,从微观到介观再到宏观分别进行分析,以充分激发学生的学习兴趣,提高学生的学习效率和分析、解决实际问题的能力,实现理论最终服务于实践的目标。
(二)基于模拟软件强化学科各课程间的关联
工程教育下聚合物反应原理课程改革
[摘要]在工程教育认证的背景下,东北林业大学高分子材料科学与工程专业以“以学生为中心,以产出为导向,质量持续改进”的教育理念为指导,对《聚合物反应原理》课程进行了相关教学改革和探索,主要包括确定课程目标,构建课程知识体系,设计教学方法,建立课程评价体系及持续改进等内容。
[关键词]聚合物反应原理;课程知识体系;教学方法;教学改革
工程教育国际通行的工程教育质量保障制度,是实现工程教育国际互认和工程师资格国际互认的重要基础[1],也是评价工科类专业教育质量的一种有效方式[2]。工程教育认证的核心理念是“以产出为导向,以学生为中心,以质量持续改进为目的”。东北林业大学高分子材料与工程专业依据工程教育认证的核心理念,逐渐完善专业人才培养模式,建立持续改进措施,推进专业发展。专业课程是实现人才培养的直接渠道,因此,课程的改革与探索是工程教育认证的根本内容。《聚合物反应原理》是东北林业大学高分子材料与工程专业于2014年新建立的一门核心课程,是基于高分子化学、高分子物理、化工原理及有机化学等课程的一门综合性课程。课程整体设计紧紧围绕着工程教育认证的三大理念-以成果为导向、以学生为中性,质量持续改进展开,着重培养学生高分子材料制备与改性相关的工程意识,有效促使学生在毕业时达到专业的毕业要求,使学生的能力符合内外需求,并通过持续改进,不断优化课程目标、课程内容、教学方法、课程评价、教学设计等内容,促使学生能力不断提升,达到东北林业大学高分子材料与工程专业的学生毕业要求。
1课程目标的制定与课程内容的编排
根据工程教育认证标准,结合东北林业大学的人才培养定位以及东北林业大学高分子材料与工程专业的课程体系,在工程知识、问题分析、设计/开发解决方案、研究、使用现代工具、工程与社会、环境和可持续发展、职业规范、个人和团队、沟通、项目管理和终身学习十二点毕业要求中,《聚合物反应原理》课程着重承担学生在工程知识、问题分析及设计/开发解决方案方面能力的培养。因此,结合着高分子专业学生的培养需求,并围绕着课程所支撑的毕业要求,制定了课程的课程目标如下:基于不同类型的聚合机理、聚合工艺原理、聚合实施方法及工艺流程,能够分析关键工艺技术问题及各种工艺参数的影响因素,并能够利用分子反应模型正确表达聚合物生产过程及聚合物的化学反应历程,为毕业后从事高分子合成、改性、应用等相关工作奠定基础。通过本课程的学习,具备下列能力:课程目标1:能够基于聚合机理、聚合工艺原理、聚合实施方法及工艺流程,分析聚合物生产过程的制备方案及工艺条件。课程目标2:通过实际生产流程案例,能够运用高分子科学中的聚合机理、聚合工艺原理及分子反应模型正确的表达聚合物生产过程中的聚合反应历程及聚合物化学反应的过程。课程目标3:通过具体的实际生产案例,及不同种类聚合物生产的全流程全周期过程,从而认知聚合物的设计目标及技术方案的影响因素。表1描绘了课程目标与毕业要求指标点的对应关系。课程内容的编排也紧密围绕着课程目标进行的。在课程的编排中,《聚合物反应原理》不仅仅将聚合物合成原理与工艺作为核心内容,并将聚合物的化学反应从高分子化学课程中转移到此门课程之中(如表1所示),而且,课程内容的编排仅仅围绕着学生已经建立起的高分子化学知识体系框架而构建,依托聚合反应的机理(如自由基机理、离子聚合机理、配位聚合机理、缩合聚合机理及逐步加成聚合机理等)搭建合成工艺原理,结合工业生产实施例,为学生在知识体系的搭建和工程意识的建立提供了更坚实的基础,从而提升学生对于聚合物生产及聚合物的相关化学反应相关工程问题的认知、设计和解决等能力。
2教学方法探索与改革
工程教育认证及人才培养需求均强调以学生为中心,注重学生能力培养,着重培养学生的工程意识和解决复杂工程问题的能力。课堂教学是学生学习知识,提升综合能力的核心环节,因此,教师在课程教学实施中如何充分发挥学生的主动性,激发学生的自主学习意识,是“学生为中心”提升能力的重点问题[3]。在传统的教学方法中,教师是主体,学生在课堂中主要作为接收客体,较少主动参与课程的主体内容中,而根据学习金字塔可知,被动地听讲,是学习效果最差的;而通过试听、演示、讨论、实践、甚至授以于人则可以大大提升学生的学习效果,而这些高效地摄取知识养分的环节,大多以学生主动参与为基础。因此,改进课堂教学的方法,从教师为主体转换到学生为主体是迫在眉睫的。但是,学生在接触新知识时,并不能完全将内容理解透彻,因此,并不是说学生主体原则就是教师可以不进行讲授,而是教师需要辅以讲授,并结合板书、控制课程进程速度,给予学生思考和理解的时间,从而为学生解决复杂工程问题能力的提升奠定坚实的基础。《聚合物反应原理》课程中,着重学习生活中的高分子材料如何经历工业过程制备而成,学生在未接触到工业过程时,自然对于过程的理解无法深入,因此,在工业实例部分,教师可以利用多媒体、视频等手段为学生呈现动态过程,结合学生已具备的高分子化学理论基础引导学生分析和讨论,使学生利用所熟知的数学、化学及高分子化学等科学理论解决实际生产高分子材料过程中复杂工程问题,进而建立高分子材料合成工业的思维模式。新颖的教学方法是赋予课堂活力的重要源泉,也是激发学生学习兴趣的良方。因此,课程建立了多元化的教学方法:(1)互动式教学:即翻转课程教学,学生以小组为单位,根据特定的知识点,进行文献调研,并形成生动的演示文稿,并走上讲台进行讲述;讲解后,学生进行提问、教师进行评价等环节,鼓励学生分析问题、提升学生课堂参与度与兴趣。(2)线上/线下混合式教学:教师通过在线课程网站及学习通APP推送知识点演示文稿、视频等材料,学生通过自主学习、课前预习、课后测验、课后复习巩固等环节完成自学,教师根据学生学习与讨论反馈情况,精准掌握学生反馈要点,进而精心备课;此外,教师可借助在线课程平台及学习通APP上传课程相关资料以及拓展资源,为学生提供用于拓展视野的材料,并结合课程知识点,能够提升学生对于不同问题的分析能力;总之,在课程进行过程中,教师可以将一切有关课程内容的材料与资源展示给同学,体现出了线上/线下混合式教学的独特优势,使方法多样性,知识共享更加高效。(3)案例式教学:课程中以大量的案例为主,且结合互动式教学,在多数案例中启用学生资料调研及讲解模式,有利于学生对于知识点的理解,能够有效调动学生的主动性;促进了学生对于工业生产全周期、全流程的认识,提升学生综合分析能力及解决复杂工程问题的能力;教师在过程中主要承担辅助引导作用,有利于提升教学能力。
变革大学化学教学办法
作者:李创举 胡思维 单位:华中科技大学文华学院
从电化学的角度出发,介绍了阳极氧化和电解抛光原理以及电解液的选用,分析和讨论这两种工艺的应用及其优缺点,让学生理解化学知识与专业实际息息相关,与工程技术紧密联系,并能学以致用。
改革教学方法,贯彻启发式学习理念
培养学生创新思维是教育的关键,而创新源于兴趣、起于自主、发于尝试。传统“教师中心论”的教学模式,教师处于完全的主导地位,在课堂上只向学生灌输知识,而不注意把握学生的心理,这与创新格格不入。因此要改革教学方法,贯彻启发式学习理念,充分调动学生学习的积极性。
(一)理论讲授要精心设计,遵循学生认知思路,突出以学生为中心的教学模式教学活动是学生在教师的指导下进行的有目的、有计划的学习活动。化学基本原理中大量公式的教学,应当是在教师引导下训练学生有意识地进行抽象逻辑思维活动。教师要设计一系列问题,并留出学生积极思考的时间,通过师生间的讨论和交流,使学生主动得出结论。如在讲授化学热力学中化学反应方向的判断时,教师可以设计下列的教学程序。首先,在压力为标准态和温度为298.15K时,判断标准是ΔrGθm(298.15K),它可以由参与反应的各个物质的ΔfGθm(298.15K)而计算出来,这一点学生都清楚。其次,教师引导学生思考“若压力仍是标准态,但温度不是298.15K,该怎么办?”并提示ΔrHθm(T)和ΔrSθm(T)与温度无关,提醒学生可以用吉—亥公式求解。然后,进一步发问:“若压力不是标准态,温度也不是298.15K,该怎么办?”此时提示学生利用热力学等温方程式中的ΔrGm与ΔrGθm的关系,将非标准状态化为标准状态,从而求解。通过学生和教师间的这种互动、提问、设疑、解答,学生在自觉、主动、多层次的参与过程中不但学会了复杂的化学反应原理,而且也掌握了分析问题、解决问题的科学方法。
(二)应用部分要勇于放手,让学生走向讲台教育的关键是使学生具备将所学知识应用于实际的能力。化学应用部分的目的正是培养学生利用所学的化学原理分析、解决工程实际问题的能力。在学生课后自学和相互讨论的基础上,学生和教师换位,由学生讲解该部分内容,对专业中遇到的实际问题,如金属腐蚀的防护与利用上升到化学原理加以分析,论述自己的观点。学生为了讲解清楚课堂内容必须认真预习,做好充分的准备。因此,他们在主动获取知识的同时,无形中提高了对这门课程的学习积极性。
(三)改革考试方法,以课程论文、实验设计代替闭卷考试学生学学化学的基本原理和方法的目的不是为了成为化学家,而是具备基本的化学素养的化学思维,能以化学的眼光、角度、世界观分析和解决工程实际中遇到的化学问题。若通过做习题来检测学生的学习效果,不管是开卷或闭卷的考核形式都没有意义。相反,布置课程论文,让学生在查阅资料的基础上,对一些典型案例抽象化,建立理论模型,再用课堂上所用的原理进行分析,提出自己的见解;或者要求学生运用化学基本原理,结合专业特点,对自己感兴趣的内容自行构思、自拟方案,完成一个综合实验设计,并通过实验验证。这两种方式表面上不直接考察学生理论知识,实际上考察他们运用理论知识解决实际问题的能力是更深层次的要求[4]。实践证明,布置论文或综合实验设计的考核方式行之有效,很多学生写出了较高质量的论文,大学化学实验设计也深受学生欢迎,真正达到了培养学生创新能力的目的。
新课程改革下初中化学乐学策略
摘要:在新课程改革背景下,在初中化学教学中,教师要从学生的实际水平出发,选择合理的教学内容,积极创新教学策略,优化课堂教学方式,让学生积极主动地掌握化学知识和技能;营造轻松的学习情境和氛围,激发学生的学习兴趣和思维;不断创新优化教学方法,调动学生的积极主动性;合理有效地运用现代信息技术,实现化学知识的多元化,强化教学效果;培养学生的化学素养和终身学习的好习惯,提高学生学习能力和效率。
关键词:新课程改革;初中化学;乐学教学
引言
初中阶段,化学是一门非常重要的学科,同时也是学生难以掌握的学科,化学中有很多比较抽象的概念和实验,学生理解起来有一定的困难,因此,在新课程改革背景下,教师要积极创新教学策略,让学生好学、乐学,进而不断提升学习化学的能力。基于此,本文主要阐述了新课程改革下有效优化、创新提高初中化学课堂教学的策略,旨在让学生乐学、会学、爱学,激发学生的学习兴趣,在掌握知识和技能的同时,提高学习效率。
一、营造愉悦生动的学习情境和氛围,激发学习兴趣
在初中化学教学中,教师应根据学生的实际水平和本地实际情况,结合学生的性格特点、兴趣爱好等因素,利用一些常见的自然现象,营造轻松愉悦的学习情境和氛围,激发学生的学习兴趣和思维,调动其求知欲和探索欲,让学生积极主动地探究学习,并在掌握知识的同时,收获快乐,从而真正实现素质教育。例如,在教学《氧气》一课时,为了让学生更好地了解和掌握化学反应的基本概念和原理、化学反应中的能量变化、化学反应现象及化学反应的基本特征,教师就要从以下几方面进行:(1)学习氧气的物理性质;(2)让学生观察氧、木、硫、铝等现象,利用多媒体课件演示氧的化学性质;(3)进行小组合作探究学习,画出氧的物理变化与化学变化,并区别两种变化,总结相关知识点;(4)详细解释化合反应和氧化反应;(5)启发和引导学生对比分析信息,了解化学变化及其基本特征。这样,学生就会积极主动地投入学习中,从而有效提升化学课堂学习效率。
二、不断创新优化教学方法,调动学生的积极主动性
有机化学在线课堂教学实践分析
摘要:2020年春季学期受到肺炎疫情的影响,全国各地高校的教学工作无法正常开展。我校积极响应教育部提出的“停课不停教、停课不停学”要求,利用“雨课堂”和“腾讯会议”等教学软件对学生进行在线课堂教学。本文以有机化学教学为例,介绍了在线课堂教学的实施过程和教学效果。针对在线课堂教学的特殊性,改变教学模式,确保教学工作正常有序进行。
关键词:肺炎疫情;有机化学;在线课堂教学;雨课堂;腾讯会议
2020年春季学期,为了既能够抗击肺炎疫情又能够减小疫情对学校正常教学的影响,教育部提出“停课不停教、停课不停学”的要求[1],南开大学积极响应,利用寒假时间迅速组织任课教师开展雨课堂、翻转课堂教学模式等教学培训工作,鼓励教师通过在线课堂教学方式授课。本文以本科生有机化学课程为例,介绍南开大学化学学院结合自身专业特点,利用“雨课堂”和“腾讯会议”等教学软件,开展本科生“在线课堂教学”实践,保证疫情期间教学活动正常有序进行。
1选择授课平台做好课前准备
线下课堂的授课方式是面对面的形式,容易掌握学生的课堂表现情况,在线课堂教学很难把控学生的上课状态。因此,为了吸引学生的注意力,提高上课效率,就需要任课教师课前精心备课。疫情爆发以来,全国各地高校纷纷开展在线课堂教学,《大学化学》也报道了不同高校开展在线课堂教学中的典型做法[2,3]。为保证教学质量,我们在“在线课堂教学”过程中采用主讲教师与学生助教合作教学模式,由教学经验丰富的有机化学全职教授担任课程主讲教师,同时聘用1–2名有机化学专业在读博士或硕士研究生担任课程助教组成教学团队,并分别建立教师教学微信群和学生课程微信群用于教学备课、分享预习资料以及布置课后作业。在线课堂教学区别于普通的课堂教学,对电子网络教学设备要求较高,每次上课前提前试课非常关键。在教师做好授课前各项准备工作的同时,也必须督促学生做好必要的课前预习工作。每次上课前主讲教师会提前将教学课件发送到课程微信群中,布置本次课程的主要教学内容。学生助教根据教学重点和难点,撰写预习提纲,帮助学生提前做好课程预习。学生通过学习预习提纲中的引导问题,明确学习重点,同时对不理解的部分做好标记,方便在听课过程中着重学习不懂的内容。
2结合疫情热点充实教学内容
由于有机化学已经渗透到国民经济的方方面面,在教学过程中适当增加教学内容,重点介绍有机化学与相关学科的交叉研究成果,对开阔学生视野,培养专业兴趣,掌握本学科发展的最新研究成果具有积极意义。2020年病毒(COVID-19)感染的肺炎疫情在全球爆发,在教学过程中我们首先引导学生针对当前疫情给人类造成的巨大危害,认识研发抗病毒药物对保护人类健康的重要性,培养学生的社会责任感,进而介绍抗病毒药物研发基本方法和有机化学在抗病毒药物研发过程中发挥的重要作用,引起学生的学习兴趣。2020年2月1日,美国报道其首例病毒感染者康复,美国吉利德科学公司(GileadSciences)研发的广谱抗病毒药物瑞德西韦(Remdesivir)发挥关键作用[4]。瑞德西韦是一种含磷手性核苷-磷酰氨基酸酯化合物,该药物的合成中涉及亲核加成反应、缩合反应、亲核取代反应、消除反应等反应类型,反应中还涉及官能团保护和脱保护合成策略,同时包含通过动力学拆分手段,利用手性诱导试剂不对称合成磷手性化合物的合成方法。这些基础知识已经在课堂上学习过。我们结合疫情热点,通过介绍瑞德西韦的合成,使学生了解有机化学在药物合成中的应用,促进理论与实践相结合。瑞德西韦的合成采用汇聚合成方法(图1),反应首先以二氢呋喃-2-酮衍生物1和7-碘-吡咯并[1,2-f][1,2,4]-三嗪-4-胺2为原料在碱性条件下发生亲核加成反应得到中间体3,然后通过官能团转化将中间体3中的羟基转化为氰基,同时脱除羟基保护基得到关键中间体C-核苷5。进一步以五氟苯氧基磷酰二氯7为原料,与苯酚和丙氨酸酯盐酸盐8在碱性条件下发生亲核取代反应生成另一个关键中间体磷酰胺酯9和9’。这时反应得到的磷酰胺酯是一对非对映异构体,可以通过柱层析方法分离得到手性磷(Sp)酰胺酯9和手性磷(Rp)酰胺酯9’。反应最后利用2’,3’-羟基丙叉保护的C-核苷6与手性磷(Sp)酰胺酯9在碱性条件下发生亲核取代反应得到瑞德西韦前体化合物10,然后在酸性条件下脱除2’,3’-羟基保护基即得到瑞德西韦[5]。瑞德西韦的合成步骤多,官能团转化复杂,涵盖的有机化学基本概念丰富,设计合成路线的集成化程度高,是有机合成教学非常典型的应用实例。我们在教学过程中一方面通过回顾合成瑞德西韦所涉及的基本化学反应类型,帮助学生巩固所学知识;另一方面鼓励学生积极发言,阐明每步反应的反应机理,熟悉和掌握多步有机合成的药物合成中的应用。课后教学效果反馈显示听课学生普遍认为非常“解渴”,教学内容贴近实际,紧扣当前疫情热点,将枯燥的书本知识与药物研发实际结合起来,使学生充分认识到正在学习的是非常“有用的化学”知识,大大激发了学生的学习热情。
药物化学论文投稿问题思考
一、资料与方法
选取ChineseChemicalLetters期刊2015—2017年药物化学专业稿件中退稿(或大修)稿件328篇。根据审稿专家意见、副主编意见和编辑专业知识,按照退稿原因进行分类和分析,归纳总结并提出具体建议和措施。
二、问题与分析
(一)摘要(Abstract)的信息量不全
摘要的内容是全文的核心内容,在文献检索中起着十分重要的作用。摘要应该具有独立性和自明性,并且具有与论文同等量的主要信息,即不阅读全文,就能获得必要的信息[2,3]。但是有些论文的摘要不能体现全文的主要内容,信息量偏少,要素不全,论述方法或结果太笼统。一般情况下,摘要由目的(Objective)、方法(Methods)、结果(Results)与结论(Conclusions)四部分组成,各部分应该具体明确,并且应该给出主要的实验结果和结论。
(二)引言(Introduction)部分的设计思路不明确、重点不突出
引言部分要求重点突出,避免空泛,通过研究相关文献后直接引出需要解决的问题[3]。如何指出当前研究的不足并有目的地引导出自己研究的重要性是引言写作的一个难点和重点。引言的撰写要有一定的逻辑性,并且不能出现较多语法错误。引言一般应该与结论相呼应,在引言中提出的问题,在结论中应有解答或讨论说明。如果作者未能在论文的引言部分就其分子设计思想提出有说服力的依据(例如药效团的拼合并非随意组合等),并且对母体药物的结构活性关系(SAR)没有给出必要的说明,给读者的印象是拼合片段的选择存在随意性,这样就会降低审稿专家对论文创新性的评价。其次,在生物活性筛选中虽然发现了一些与阳性对照药物作用强度相近的新化合物,但是作者对这些新化合物的优势或潜在优势没有提出有说服力的观点。文章的结论仅限于对实验结果的一般性概括,不能体现论文实验结果的重要性;另外,如果论文的英文写作语法错误还较多,这样的稿件一定会被退稿。例如有一篇抗菌药物合成的论文,审稿人提出:(1)在设计思路上,作者采用片段拼合方法设计新化合物,依据不充分。建议作者在分析具有明确抗菌活性化合物药效团基础上,采用结构多样的片段与药效团接合,获得新化合物。(2)英文撰写需要修改,过多重复,并且存在很多语法错误。再例如对于4-苯氨基喹唑啉类激酶抑制剂的报道已经很多,如果还是利用该骨架进行衍生合成新化合物,关键是要能做出自己的特色。如果对于化合物的设计思想并没有给出充分的理由,对于取代基的性质和种类也没有进行详细的研究,这样的论文会让审稿专家和读者感觉化合物设计比较盲目,没有创新的设计思路。如果根据母药或已有药物(leadcompound)设计新化合物,设计思想要有事实依据,指出候选药物的不足要有文献或数据支持,不能猜想,不然审稿人就会认为设计思想的基础不可靠。如果发现化合物体外(体内)活性与化合物结构不符一定要分析具体原因,否则审稿人也会提出疑问。最终设计的化合物要向着活性更好的化合物结构靠近。
化学合成制药工业废水处理难点及对策
摘要:化学合成制药废水处理难度大,根据各车间生产工艺、原料和产品的不同,其产生的废水特点亦不同。本文以实际化学合成制药厂废水为研究对象,以含氰废水、含抗生素废水、高氨氮废水三种典型的废水预处理为目的,分别提出有针对性的预处理方法和对策,以期为其他类似生产企业的废水治理提供参考。
关键词:化学合成制药;废水治理;预处理
1含氰废水
含氰废水主要来源于选矿、有色金属冶炼、炼焦、化工、制革等工业生产,氰化物是剧毒物质,从环境工程和生物安全角度考虑应非常重视含氰废水除毒处理问题。传统的含氰废水处理技术包括酸回收、膜分离法、萃取法、气提法、化学络合法、化学氧化法等[2,3]。化学氧化法操作简单、易于实现工业化而被大规模的应用。化学氧化法是利用了氰化物在碱性条件下易于被氧化的特点[4]。常用的氧化剂有含氯氧化剂、过氧化氢、臭氧等,含氯氧化剂的缺点在于反应过程中可能产生毒性较高的氯代有机副产物,臭氧氧化由于其投资和运行成本较高,尚未广泛用于处理含氰废水。因此,通常采用过氧化氢氧化比较合适。氰化物在碱性条件下被过氧化氢氧化为氰酸盐CNO-,然后氰酸盐继续水解成碳酸铵或碳酸氢铵。化学反应方程式如下:由于过氧化氢与氰化物反应速率较慢,因此会添加金属离子催化剂,如常见的铜离子加快化学反应速率。同时,对于pH的控制问题,在酸性条件下,CN-会以HCN的形式挥发,对操作人员安全构成威胁。综合考虑氧化速率和金属离子催化剂的沉淀问题,经过反复多次的实验,选择在pH=9的条件下进行反应。在本研究的化学合成制药案例中,含氰废水主要来自于(S)-2-氨基丁酰胺盐酸盐生产的过滤洗涤段和含氰废气的水吸收过程。废水的CN-浓度分别为922mg/L和508mg/L,废水产生量分别是1.2m3/d和3m3/d,计算混合后CN-浓度为626mg/L。预处理方法是在车间内设置5m3的反应釜,采用双氧水在pH=9的条件下,在破氰釜内升温至80℃进行破氰处理,Cu2+投加浓度控制40mg/L,反应时间60min。尽管按照化学反应方程式(1),理论CN-与H2O2反应的摩尔比为1:1,但在实际操作过程中,考虑到废水中除了CN-外,还有其他COD消耗双氧水,同时在碱性和高温条件下,双氧水自身存在分解,因此,研究案例双氧水的投加量按摩尔比3:1进行过量投加,实际处理破氰完毕后的废水中氰化物的含量小于1mg/L。含氰废水经过处理后,冷却降温,排放至综合废水调节池再进行生化处理。
2含抗生素废水
抗生素废水的成分十分复杂,含有多种难降解的有机物和无机物,处理起来十分困难[5]。抗生素通常是杀菌物质,对微生物有较强的破坏作用,废水中的抗生素需破坏后方可进入生化系统。通常处理采用高级氧化对抗生素的分子结构进行破坏。笔者结合原料与生产工艺研究发现,本企业产生的抗生素主要为β-内酰胺类抗生素。该类抗生素是一类杀菌性抗生素,不仅可以治疗人类疾病,在农业上还可以预防牲畜感染,在日常生活中应用十分广泛。对其如何进行处理,提出采用水解破坏分子结构的方法。水解反应发生在物质与水之间,是很重要的化学反应,许多抗生素容易发生水解。水解反应在酸性条件下、中性条件下及碱性条件下均可能发生,不过水解速率有所区别,水解反应可产生一个或多个产物,由母体化合物结构决定。抗生素的水解的主要环境因子是pH和温度。因此,根据实际产生水量5m3/d,新建30m3地下水池,采用封闭结构,便于保温,同时新增1000L液碱计量罐,用于存放补加液碱使用。通过试运行,发现在pH=9,水解温度35℃,水解时间120小时的条件下,β-内酰胺类抗生素的水解率达到82%,可极大降低对微生物的抑制和毒性作用。
3高浓度氨氮废水预处理