前言:中文期刊网精心挑选了技术研究论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
技术研究论文范文1
我国自解放以来一直用“科技”一词来涵盖科学与技术两个方面,包括在国务院下属部门中专管科学与技术的“科技部”以及许多单位中的“科技处”等等。毫无疑问,自然科学与技术有非常密切的关系;但是,也必须指出科学与技术虽然关系密切却又区别明显,在许多问题上还真不能混为一谈。几乎在所有情况下使用“科技”一词把科学和技术合二为一,也许是我国的创造。邹承鲁在1999年应《Science》编辑部邀请而写的“ScienceinChina”一文中,谈到了我国当前有把科学与技术混为一谈的倾向,而“科技”一词就是混同科学与技术所创造的专用术语。李醒民同志在“科学无”一文中(见《科学时报》2002年7月19日B3版)提到,这个词是有“中国特色”的。我们同意李醒民同志的意见,在我们多年国际科学活动中,也许除前苏联外,还很少见过别的国家有类似的提法。
科学与技术密切相关
科学仅指自然科学。科学和技术同样以自然界为对象,但严格的说,自然科学研究的目的是为了认识自然,包括认识自然界发生的各种现象,剖析自然界存在的所有物质,揭示主宰自然现象的内在规律和相互联系。大至宇宙中的日月星辰,小至组成一切物质的基本粒子,都是科学认识的对象。不仅要认识其宏观和外观,还要认识其内部各个层次上的精细结构,运动特点及运动规律。而技术侧重将我们对自然界的认识去利用自然,向自然索取,改造自然以适应人类越来越复杂、越来越高标准的生活的需要。李醒民同志指出:技术的发明和使用比科学的历史久远得多,某些技术即使在今天也完全可以脱离科学自主发展。但是时至今日,技术上的进步,总体来说基于科学的发展,科学上的每一个重大突破,不仅都将在一定时间内导致影响人类生活的新技术的出现,还必定极大地丰富我们进一步认识自然的技术手段;新技术的发展又促使我们认识自然的实验手段不断增加、不断提高,从而推动科学的进一步发展。
在20世纪最伟大的科学发现中,原子核结构和DNA结构的阐明无疑都是名列前茅的。19世纪末放射性元素的发现,表明元素是可变的。20世纪初,用重粒子轰击破碎原子核弄清了原子核是由质子和中子构成的。这些方面的突破,影响了整个物理科学的发展。生命科学领域也同样如此。生物学不仅研究自然界里所有的生物体,还要研究生命活动的各种表现形式,构成生物体的所有物质,以及这些物质在生命活动中所起的作用,揭示出生命活动的本质和规律。构成生物体的物质,最重要的是蛋白质和核酸。生命活动主要由蛋白质承担,而生物体的遗传则以核酸为基础,或者说遗传信息的世代相传是依靠DNA分子的自我复制。1953年DNA分子双股螺旋结构的发现和阐明从根本上说明了这个问题。由于构成DNA分子的四种核苷酸之间有严格的两两配对关系,根据双股螺旋DNA分子的一个单股为模板合成另一个单股必然形成另一个和原来的DNA分子完全相同的双股DNA分子,生物体的遗传就是这样实现的。这一发现改变了整个生物学的面貌,使生物学进入了崭新的分子生物学时代。
无论是原子核结构还是DNA分子的双股螺旋结构的阐明,都是科学家研究自然所得到的重大认识,属于科学研究的范畴。而且在一段历史时间内,并没有与技术有直接的关系。但是这两件在科学发展史上产生了划时代突破作用的发现,很快激发技术上的突飞猛进。正因为对于原子内部结构有了深入的科学认识,才有可能利用原子核分裂所释放的巨大能量为人类活动服务,发展成为今天的核能工业。而根据对DNA作为遗传物质基础的认识,在农牧业上培育和改良物种,在医学上有效地预防和治疗大量疑难疾病,在工业上建立全新的基因工程产业。以上这些在技术上的发展,已经对人类生活产生了巨大的影响。实际上我们今天所享用的改变了人类生活方式的所有重要技术成果,几乎无一例外,全部都来源于科学发展史上的重大突破。
如果把技术分为实验技术和生产技术两个方面,上面说的是科学发展对生产技术产生的巨大影响。在另一方面我们也不能不看到实验技术对科学发展的巨大推动作用。没有加速器的技术,就不能进行许多重要核物理研究的实验。没有X-射线衍射技术,就无法测得DNA的双股螺旋结构。这两项属于20世纪最伟大的科学突破,就无法实现。如果我们纵观一个世纪以来的诺贝尔奖的历史就可以看到,以实验技术上的成果而得奖的,特别是在物理奖和化学奖方面,占有相当大的比例。包括2002年得奖的在质谱和核磁共振方面的贡献。科学与技术的本质差异
虽然科学和技术如此密切相关,但二者毕竟有所不同,而且有本质的差异。科学以认识自然、探索未知为目的。虽然自然科学的发展有其内在的规律,但是却有它的不可预见性。具体的发展途径,哪一项突破在什么时间在哪个实验室出现,一般来说是不可预见的。科学发展史上的许多重大突破,以百年来的诺贝尔奖获得者为例,相当大的一部分是获奖者从本人的兴趣出发而进行工作的,有的甚至是工作中偶然的发现,是原先完全没有预料的事情。而按照预定的计划,组织安排而最终获得突破的反而只是极少数。好像还没有哪一位诺贝尔奖获得者是通过有目的的预先组织,精心安排、刻意培养而产生的。而技术是以对自然界的认识为根据,利用得到的认识来改造自然为人类服务。由于它有了科学的根据,就可以树立目标,因此总体来说是可预见的,也是可以根据人们的需要和现实的可能,包括人力、资金和技术条件进行规划的。
建国初期所进行的“科学规划”(实际上是否应该说是“技术规划”)得到了巨大的成功。原子弹爆炸了,火箭上天了,半导体工业建立起来了。但是这些技术成就,毕竟都是国际上已经实现了的,因此也是可以规划的,可以指日实现的。然而当时在科学方面的学科规划呢,由于不像技术方面那样有硬指标可供检查,就有些说不清楚了。当然我国的科学在解放以后取得了巨大的进展,但是国际上的科学家也不是在原地踏步,与建国初期相比,我们现在和国际上科学先进国家的差距是缩小了,还是扩大了,这可能是一个见仁见智的问题了。
这一事实至少从一个方面说明了科学是难以进行规划的。20世纪50年代的学科规划只不过是规划了应该在哪些方面进行工作。回想半个世纪以来科学发展的现实,有许多重要发展是当时没有预见到的,例如这几十年来出现了许多新兴的分支学科。如果我们不注意这些新发展而完全按照当时的学科规划进行工作,我们就会蒙受很大的损失,就不会有今天的局面。1978年DNA双螺旋结构建立25周年之际,英国《自然》杂志记者采访克里克教授,要他预测到20世纪末生物学可能取得的成就。克里克回答说科学发展是不可预测的,过去的预言家大多是以失败而告终。他只是说,“我们现在见到的生物学问题,到20世纪末都可以解决,但是那时又会有新的问题出现。”现在看来他的预言也没有完全实现,例如癌症问题,当时在美国还是属于有一定程度组织安排并限期解决的问题,到现在仍然没有解决。克里克教授也是一位失败的预言家。
技术上的发展在一定程度上是可以预见的,也完全是可以规划的。特别是国际上已经实现的技术,我们做一个具体的规划,安排一定的力量,经过努力在一定时间内完成是可以做到的。我国在20世纪50年代所制定的科学规划中有关技术部分,都属于这种情况。80年代在四位院士倡议下制定的发展高技术规划,也属于同样性质,在总体上也同样顺利实现了。但是要实现国际上还从未实现过的技术,特别是那些包含科学上尚未解决的问题的技术,就很难预见何时可以实现了,例如核聚变能量利用问题。虽然时见全世界媒体的炒作,迄今也无法断言何时可以实现。
在这个意义上说,科学发展难以预见,因此也难以规划。我们可以做的也无非是和半个世纪以前一样,勾划出各个学科中的主攻方向而已。但是如前所说,科学发展有一定的不可预见性,我们现在看见的主攻方向是根据当前的科学发展态势所认定的重要方向,若干年后整个科学发生变化,重要方向也会随之变化。如果我们硬性规定什么可以做什么不可以做,就必然失去机会。我们认定的主攻方向也必须随时修正以适应形势的变化。试想20世纪90年代初,人类基因组全序列的测定还没有提上日程时,我们如果在当时制定规划,在生物学领域内我们能够预见到蛋白质组学,能够预见到生物信息学吗?
以认识自然为目标的科学研究特别是基础研究由于探索性强,结果一般难以事先预见,原创性强的技术研究也是如此。因此除可以明确总体研究方向外,常常难以事先设定具体的研究目标,难以事先规定进度,或强求完成的日期。毋庸置疑,自然科学史中众多重大突破都是自由探索的结果。从物理学上牛顿力学的建立,电的发现和电学基本定律的建立;化学上门捷列夫周期律的建立;生物学上细胞的发现,孟得尔遗传定律的建立等,都是自由探索的结果,这些都已经在实际应用中产生了众所周知的巨大影响。类似的例子实在是举不胜举。在20世纪内所有诺贝尔奖获奖人中绝大部分都是由于在基础研究领域中的自由探索而获奖的。20世纪一百项重大事件中名列前茅的,像青霉素、半导体和DNA双螺旋结构的发现,曾分别获1945年、1956年和1962年诺贝尔奖,这些也都是少数科学家自由探索的结果。而它们在实际应用上的巨大影响已经深入到我们每个人的生活中。近年来获诺贝尔奖的基础研究成果,如超导现象和新高温超导体的发现,胆固醇代谢调节,癌基因的发现等,仍然是少数科学家自由探索的结果,这些发现必将对21世纪人类文明产生巨大影响。
科学与技术的不可预见性
我们不是完全否定规划的重要性,而只是指出科学和部分含有原始性创新的技术都有相当程度的不可预见性。我们在制定规划时务必充分认识这一特征,规划可以一方面指出方向,而在另一方面也必须同时鼓励自由探索,不要在科学上设立,并且在规划中留有充分的余地,以便在形势发展时可以随时修订。
当前在我国科学界流行的追赶国际科学发展热点,体现在对设定项目的高强度支持,这对我国科学努力追踪和赶上世界发展潮流是重要的。但同时也必须看到,设定热点项目的多数已经是全世界科学家辛勤工作了多年,有的项目年数已在万篇以上,超过我国全年发表全部SCI论文总数,要在这些国际上已经充分开放的领域中有所突破的可能性就微乎其微了。当然这决不是说我们不应该进入热点领域,热点领域的研究往往对科学发展有重要作用,进入热点领域,在热点领域内进行工作以积蓄力量,对发展我国科学还是有重要作用的,我只是想强调在热点领域内取得突破的艰巨性可能更大一些。我还想强调的是我们必须看到自然科学的发展有一定的不可预见性,因此既要重视热点领域,又要鼓励在那些目前虽还不是热点却有广阔发展前景的基础研究领域中去进行自由探索,对自由探索中已经取得有意义进展的项目,不仅不能予以限制,还要给以鼓励和支持。二者的关键都在于有自己创新的学术思想,这样才能在根本上有所创新和取得重大突破。没有自己原创性的学术思想,不仅进行自由探索寸步难行,进入热点领域也只能永远模仿或重复前人的工作,最多也不过为前人成果锦上添花而已。
科学和原创性技术的发展需要长期积累。自然科学的发展经常是波浪式前进的。在一段平稳发展的时期之后,会出现一件重大突破性贡献而给有关领域带来一个飞速发展的时期,引起大量在有关领域工作者的密切关注,并涌入这一领域工作,造成一哄而起的局面,形成科学中的热点,这在国际上也是常有的事。当然我们应该看到,一些热点领域对于科学长远发展有其内在的重要性。因此,对于一个国家的科学发展而言,从全面布局考虑,安排适当力量去追踪热点是必要的。但是我们又必须认识到,在一件突破性贡献发表之后,一些较为重要的后继性工作,往往已经在同一研究集体,或有密切关系的研究集体中酝酿已久或者已经在积极进行,并且在一个不太长的时期内就会陆续发表。外来者,即使急起紧跟,也已经落后了一个位相,在多数情况下,只能拾取一些残羹剩饭而已。
在另一方面,我们也必须看到,突破性进展常常不是一个偶然事件,而是经过长期艰苦努力,大量工作积累的结果。不用说佩鲁兹和肯特鲁关于蛋白质晶体结构分析的工作是经过长期努力才开花结果的,就是沃森和克里克关于DNA双螺旋结构的重大突破,看似突然,实际上如果没有剑桥关于X-射线衍射研究几十年的积累和威尔金森等人长期关于DNA衍射数据的收集,这一突破也不可能从天而降。
技术研究论文范文2
0引言
激光熔覆技术是20世纪70年代随着大功率激光器的发展而兴起的一种新的表面改性技术,是指激光表面熔敷技术是在激光束作用下将合金粉末或陶瓷粉末与基体表面迅速加热并熔化,光束移开后自激冷却形成稀释率极低,与基体材料呈冶金结合的表面涂层,从而显著改善基体表面耐磨、耐蚀、耐热、抗氧化及电气特性等的一种表面强化方法[1~3]。如对60#钢进行碳钨激光熔覆后,硬度最高达2200HV以上,耐磨损性能为基体60#钢的20倍左右。在Q235钢表面激光熔覆CoCrSiB合金后,将其耐磨性与火焰喷涂的耐蚀性进行了对比,发现前者的耐蚀性明显高于后者[4]。
激光熔覆技术是一种经济效益很高的新技术,它可以在廉价金属基材上制备出高性能的合金表面而不影响基体的性质,降低成本,节约贵重稀有金属材料,因此,世界上各工业先进国家对激光熔覆技术的研究及应用都非常重视[1-2、5-7]。
1激光熔覆技术的设备及工艺特点
目前应用于激光熔覆的激光器主要有输出功率为1~10kW的CO2激光器和500W左右的YAG激光器。对于连续CO2激光熔覆,国内外学者已做了大量研究[1]。近年来高功率YAG激光器的研制发展迅速,主要用于有色合金表面改性。据文献报道,采用CO2激光进行铝合金激光熔覆,铝合金基体在CO2激光辐照条件下容易变形,甚至塌陷[1]。YAG激光器输出波长为1.06μm,较CO2激光波长小1个数量级,因而更适合此类金属的激光熔覆。
同步注粉式激光表面熔覆处理示意图[8]
激光熔覆按送粉工艺的不同可分为两类:粉末预置法和同步送粉法。两种方法效果相似,同步送粉法具有易实现自动化控制,激光能量吸收率高,无内部气孔,尤其熔覆金属陶瓷,可以显著提高熔覆层的抗开裂性能,使硬质陶瓷相可以在熔覆层内均匀分布等优点。
激光熔覆具有以下特点[2、9]:
(1)冷却速度快(高达106K/s),属于快速凝固过程,容易得到细晶组织或产生平衡态所无法得到的新相,如非稳相、非晶态等。
(2)涂层稀释率低(一般小于5%),与基体呈牢固的冶金结合或界面扩散结合,通过对激光工艺参数的调整,可以获得低稀释率的良好涂层,并且涂层成分和稀释度可控;
(3)热输入和畸变较小,尤其是采用高功率密度快速熔覆时,变形可降低到零件的装配公差内。
(4)粉末选择几乎没有任何限制,特别是在低熔点金属表面熔敷高熔点合金;
(5)熔覆层的厚度范围大,单道送粉一次涂覆厚度在0.2~2.0mm,
(6)能进行选区熔敷,材料消耗少,具有卓越的性能价格比;
(7)光束瞄准可以使难以接近的区域熔敷;
(8)工艺过程易于实现自动化。
很适合油田常见易损件的磨损修复。
2激光熔覆技术的发展现状
激光熔覆技术是—种涉及光、机、电、计算机、材料、物理、化学等多门学科的跨学科高新技术。它由上个世纪60年代提出,并于1976年诞生了第一项论述高能激光熔覆的专利。进入80年代,激光熔覆技术得到了迅速的发展,近年来结合CAD技术兴起的快速原型加工技术,为激光熔覆技术又添了新的活力。
目前已成功开展了在不锈钢、模具钢、可锻铸铁、灰口铸铁、铜合金、钛合金、铝合金及特殊合金表面钴基、镍基、铁基等自熔合金粉末及陶瓷相的激光熔覆。激光熔覆铁基合金粉末适用于要求局部耐磨而且容易变形的零件。镍基合金粉末适用于要求局部耐磨、耐热腐蚀及抗热疲劳的构件。钴基合金粉末适用于要求耐磨、耐蚀及抗热疲劳的零件。陶瓷涂层在高温下有较高的强度,热稳定性好,化学稳定性高,适用于要求耐磨、耐蚀、耐高温和抗氧化性的零件。在滑动磨损、冲击磨损和磨粒磨损严重的条件下,纯的镍基、钴基和铁基合金粉末已经满足不了使用工况的要求,因此在合金表面激光熔覆金属陶瓷复合涂层已经成为国内外学者研究的热点,目前已经进行了钢、钛合金及铝合金表面激光熔覆多种陶瓷或金属陶瓷涂层的研究[1、10]。
3激光熔覆存在的问题
评价激光熔覆层质量的优劣,主要从两个方面来考虑。一是宏观上,考察熔覆道形状、表面不平度、裂纹、气孔及稀释率等;二是微观上,考察是否形成良好的组织,能否提供所要求的性能。此外,还应测定表面熔覆层化学元素的种类和分布,注意分析过渡层的情况是否为冶金结合,必要时要进行质量寿命检测。
目前研究工作的重点是熔覆设备的研制与开发、熔池动力学、合金成分的设计、裂纹的形成、扩展和控制方法、以及熔覆层与基体之间的结合力等。
目前激光熔敷技术进一步应用面临的主要问题是:
①激光熔覆技术在国内尚未完全实现产业化的主要原因是熔覆层质量的不稳定性。激光熔覆过程中,加热和冷却的速度极快,最高速度可达1012℃/s。由于熔覆层和基体材料的温度梯度和热膨胀系数的差异,可能在熔覆层中产生多种缺陷,主要包括气孔、裂纹、变形和表面不平度[1]。
②光熔敷过程的检测和实施自动化控制。
③激光熔覆层的开裂敏感性,仍然是困扰国内外研究者的一个难题,也是工程应用及产业化的障碍[1、11]。目前,虽然已经对裂纹的形成扩进行了研究[1],但控制方法方面还不成熟。
4激光熔覆技术的应用和发展前景展望
进入20世纪80年代以来,激光熔敷技术得到了迅速的发展,目前已成为国内外激光表面改性研究的热点。激光熔敷技术具有很大的技术经济效益,广泛应用于机械制造与维修、汽车制造、纺织机械、航海[12]与航天和石油化工等领域。
目前激光熔覆技术已经取得一定的成果,正处于逐步走向工业化应用的起步阶段。今后的发展前景主要有以下几个方面:
(1)激光熔覆的基础理论研究。
(2)熔覆材料的设计与开发。
(3)激光熔覆设备的改进与研制。
(4)理论模型的建立。
技术研究论文范文3
关键词:化肥;深施;增产;优点;技术
近年来生产实践已经证明,深施化肥是提高肥效、降低成本、增加产量的技术措施。笔者阐述了化肥深施的概念、主要形式、优点及其技术要点。
1化肥深施技术的主要形式
1.1深施底肥用施肥整地机或在铧式犁和水田耕整机上附加肥箱及排肥装置,使其在翻地的同时将化肥深施到土层中。
1.2播种同时深施肥利用配有施肥装置的机引播种机,同步完成施肥、播种、覆盖、镇压等作业,将化肥施在种子下方或侧下方,肥与种子之间有3~5cm厚度的土壤隔离层,避免化肥烧伤种子。
1.3深施追肥在农作物生长中期,使用机械、半机械化中耕施肥机或手工工具,把化肥深施到土壤中。
2化肥深施技术的优点
2.1提高化肥利用率化肥深施可减少化肥的损失和浪费,据中国农业科学院土壤肥料研究所同位素跟踪试验证明,碳酸氢铵、尿素深施地表以下6~10cm的土层中,比表面撒施氮的利用率可分别由27%和37%提高到58%和50%,深施比表施其利用率相对提高115%和35%。大面积应用化肥深施机械化技术后,氮素化肥平均利用率可由30%提高到40%以上。磷钾等肥深施还可以减少风蚀的损失,促进作物吸收和延长肥效,提高化肥利用率。
2.2增加作物产量化肥深施可促使根系发育,增强作物吸收养分、水分和抗旱能力,有利于植株生长,从而提高作物产量。对比试验结果表明,在相同条件下,深施比地表撒施的小麦、玉米能增产225~675kg/hm2,棉花(皮棉)可增产75~120kg/hm2,大豆可增产225~375kg/hm2,平均增产幅度在5%~15%。
3化肥深施技术的实施要点
3.1底肥深施
3.1.1先撒肥后耕翻的深施方法。要尽可能缩短化肥暴露在地表的时间,尤其对碳酸氢铵等在空气中易挥发的化肥,要做到随撒肥随耕翻深埋入土,此种施肥方法可在犁前加装撒肥装置,也可使用专用撒肥机,肥带宽基本同后边犁耕幅相当即可。先撒肥后耕翻的作业要求:化肥撒施均匀,施量符合作物栽培的农艺要求,耕翻后化肥埋入土壤深度大于6cm,地表无可见的颗粒。
3.1.2边耕翻边施肥的方法。基本上可以做到耕翻施肥作业同步,避免化肥露天造成的挥发损失,一般可对现有耕翻犁进行改造,增加排肥装置,通常将排肥导管安装在犁铧后面,随着犁铧翻垡将化肥施于垡面上或犁沟底(根据当地农艺要求的底肥深浅调整),然后犁铧翻垡覆盖,达到深施肥的目的,许多地方习惯称此法为犁沟施肥。边耕翻边施底肥作业要求:施肥深度大于6cm,肥带宽度3~5cm,排肥均匀连续,无明显断条,施肥量满足作物栽培的农艺要求。
3.2种肥深施种肥须在播种的同时深施,可通过在播种机上安装肥箱和排肥装置来完成。对机具的要求是不仅能较严格地按农艺要求保证肥、种的播量、深度、株距和行距等,而且在种、肥间能形成一定厚度(一般在3cm以上)的土壤隔离层,既满足作物苗期生长对营养成分的需求,又避免肥种混合出现的烧种、烧苗现象。应用该项技术对田块土壤处理要求较高,应保证土壤耕深一致,无漏耕,做到土碎田平,土壤虚实得当。按施肥和种子的位置,有侧位深施和正位深施(俗称肥、种分层)两种形式。其技术要求如下:
3.2.1侧位深施种肥。肥施于种子的侧下方,小麦种肥一般在种子的侧、下方各2.5~4cm,玉米种肥施深一般在5.5cm,肥带宽度宜在3cm以上,肥条均匀连续,无明显断条和漏施。
3.2.2正位深施种肥。种肥施于种床正下方,肥层同种子之间土壤隔离层在3cm以上,并要种、肥深浅一致,肥条均匀连续,肥带宽度略大于播种宽度。要注意,在播种的同时将化肥一次施入土壤中,要根据肥料品种、施用量等,决定种与肥的距离;防止种、肥过近造成烧种烧苗。3.3追肥深施按农艺要求的追肥施量、深度和部位等使用追肥作业机具,一机完成开沟、排肥、覆土和镇压等多道工序的追肥作业,相对人工地表撒施和手工工具深追施,可显著地提高化肥的利用率和作业效率,追肥机具要有良好的行间通过性能,对作物后期生长无明显不利影响(如伤根、伤苗和倒伏等)。追肥深度(以作物植株同地面交点为基准)应为6~10cm。追肥部位应在作物株行两侧的10~20cm之间(视作物品种定),肥带宽度大于3cm,无明显断条,施肥后覆盖严密。
参考文献
[1]何立德,马汉平,郑文江.稻田化肥深施对产量的影响[J].北方水稻,2007(1):39-40.
[2]王平.玉米深施化肥的增产效应[J].农技服务,2007,24(7):48.
[3]陕建伟.化肥深施节肥增益[J].山西农业:致富科技版,2007(8):32-33.
技术研究论文范文4
关键词菊芋;生态适应性;栽培技术
菊芋(Helianthustubeuosus),别名洋姜、鬼子姜,原产北美,是菊科向日葵属多年生草本植物。菊芋地下形成块茎,其根系特别发达,抗旱、耐寒、适应性广,几乎没有虫害、抗病性强,非常适宜在干旱半干旱地区推广种植,是保持水土和防风固沙的优良作物。菊芋是生产绿色食品的优质原料,可加工成菊粉、低聚果糖和超高果糖浆等,是当今保健食品和全新多功能食品的优质配料,还可生食、炒食、煮食或切片油炸,腌制成酱菜或制成菊芋脯。菊糖发酵后能制成酒精,被称为绿色石油。菊芋的地下块茎和地上茎叶可制作饲料,因而菊芋种植还可与发展养殖业相结合。菊芋在全国各地均有栽培,一般产量37.5~75.0t/hm2。甘肃省定西市菊芋年种植面积已达0.13万公顷以上,并已建成了年生产量2000t的菊粉加工生产线,初步形成了产业化生产格局。
1菊芋的生态适应性
1.1适应性广
菊芋耐寒、耐旱能力特别强,块茎只要不露出地面,在-40℃可安全过冬,第2年春可正常发芽。菊芋有惊人的抗旱能力,适宜在北方旱作农业区种植,在缺水干旱的荒漠中亦能正常生长。
1.2繁殖能力强
菊芋一次播种可多年生长,并且每年以20倍的速度扩繁。但菊芋的块茎应每年进行采收,以提高产量。
1.3生产管理简单
由于菊芋自身的特性,若不追求产量,一次播种就可以多年生长,治理荒漠时可采取此办法。要大幅度提高菊芋产量,应多施有机肥和钾肥。
1.4能保持水土
菊芋的根系特别发达,每株有上百根长达0.5~2.0m的根系,可深深地扎在土中,能保持地表层的水土,有效防止地表水土流失;同时,菊芋的茎叶茂密,能防止雨水对地表的直接冲刷,是保持水土的优良作物。
1.5抗风沙能力强
荒漠地区风沙大、干燥,沙土流动性强,而菊芋能从很深的沙土中顶出地面,只要覆盖沙土不超过50cm,就可以正常发芽。菊芋茎杆较高,枝叶可形成防护林,加上其根系发达,固定沙土效果十分显著。
2栽培技术
2.1茬口选择
菊芋的前茬以小麦、豆类、玉米、蔬菜茬为好,虽可连种连收,但重茬种植的必须施用大量有机肥,才能保证产量。据大面积栽培经验,连栽2~3年后,会因土壤中某些营养元素缺乏而影响产量。
2.2土壤处理
菊芋播种前应结合施基肥深翻土壤,施有机肥45~75t/hm2,配合使用生物有机肥,并按N∶P2O5∶K2O=1∶0.75∶0.75的比例施入化肥,深翻入土。
2.3种薯选择
菊芋用块茎进行无性繁殖。因块茎表皮无栓皮组织,在空气中易失水而降低发芽率,并易感染腐烂。因此,要选用新鲜块茎。应选用30~50g左右的整薯播种,用种量约900kg/hm2左右。
2.4播种时间
秋播应在10月下旬至11月上旬进行。菊芋秋播比春播出苗早,结薯提早15d左右,且薯块大,产量能提高12%。春季播种在3月下旬至4月上旬为宜。
2.5播种密度
菊芋的播种密度为行距60cm,株距37~40cm左右,保苗4.2~4.5万株/hm2。粘土播种深度宜浅,为5~8cm;沙土宜深,约8~10cm。
2.6查苗补苗
菊芋出苗后,要及时补苗,结合补苗进行1次除草。
2.7中耕除草
一般播后30~40d中耕松土,深度6cm左右,结合中耕进行除草。第2次中耕在现蕾以前,结合除草进行,为块茎生长发育创造良好条件。
2.8水肥管理
技术研究论文范文5
本文在引言部分阐述了流媒体技术的基础:流媒体的一般概念及相关的概念。在正文部分介绍了流媒体技术的原理以及媒体服务器的硬件平台。最后主要的介绍了流媒体技术了两种教育应用:校园网视频系统的解决方案和远程多媒体教学方案。
关键字:流媒体流式传输媒体服务器校园网视频系统远程多媒体教学系统
一、引言
在网络上传输音/视频等多媒体信息目前主要有下载和流式传输两种方案。A/V文件一般都较大,所以需要的存储容量也较大;同时由于网络带宽的限制,下载常常要花数分钟甚至数小时,所以这种处理方法延迟也很大。流式传输时,声音、影像或动画等时基媒体由音视频服务器向用户计算机的连续、实时传送,用户不必等到整个文件全部下载完毕,而只需经过几秒或十数秒的启动延时即可进行观看。当声音等时基媒体在客户机上播放时,文件的剩余部分将在后台从服务器内继续下载。流式不仅使启动延时成十倍、百倍地缩短,而且不需要太大的缓存容量。流式传输避免了用户必须等待整个文件全部从Internet上下载才能观看的缺点。
流媒体指在Internet/Intranet中使用流式传输技术的连续时基媒体,如:音频、视频或多媒体文件。流式媒体在播放前并不下载整个文件,只将开始部分内容存入内存,流式媒体的数据流随时传送随时播放,只是在开始时有一些延迟。
在这篇文章中,主要是讨论流媒体的技术基础,以及流媒体技术在教育中的应用。
二、流媒体技术基础
1、流媒体技术的原理
流式传输的实现需要缓存。因为Internet以包传输为基础进行断续的异步传输,对一个实时A/V源或存储的A/V文件,在传输中它们要被分解为许多包,由于网络是动态变化的,各个包选择的路由可能不尽相同,故到达客户端的时间延迟也就不等,甚至先发的数据包还有可能后到。为此,使用缓存系统来弥补延迟和抖动的影响,并保证数据包的顺序正确,从而使媒体数据能连续输出,而不会因为网络暂时拥塞使播放出现停顿。通常高速缓存所需容量并不大,因为高速缓存使用环形链表结构来存储数据:通过丢弃已经播放的内容,流可以重新利用空出的高速缓存空间来缓存后续尚未播放的内容。
流式传输的过程一般是这样的:用户选择某一流媒体服务后,Web浏览器与Web服务器之间使用HTTP/TCP交换控制信息,以便把需要传输的实时数据从原始信息中检索出来;然后客户机上的Web浏览器启动A/VHelper程序,使用HTTP从Web服务器检索相关参数对Helper程序初始化。这些参数可能包括目录信息、A/V数据的编码类型或与A/V检索相关的服务器地址。
A/VHelper程序及A/V服务器运行实时流控制协议(RTSP),以交换A/V传输所需的控制信息。与CD播放机或VCRs所提供的功能相似,RTSP提供了操纵播放、快进、快倒、暂停及录制等命令的方法。A/V服务器使用RTP/UDP协议将A/V数据传输给A/V客户程序(一般可认为客户程序等同于Helper程序),一旦A/V数据抵达客户端,A/V客户程序即可播放输出。
需要说明的是,在流式传输中,使用RTP/UDP和RTSP/TCP两种不同的通信协议与A/V服务器建立联系,是为了能够把服务器的输出重定向到一个不同于运行A/VHelper程序所在客户机的目的地址。实现流式传输一般都需要专用服务器和播放器,其基本原理如图1所示。
图1.流式传输的基本原理
2、媒体服务器硬件平台
视频服务器把存储在存储系统中的视频信息以视频流的形式通过网络接口发送给相应的客户,响应客户的交互请求,保证视频流的连续输出。视频信息具有同步性要求,一方面必须以恒定的速率播放,否则引起画面的抖动,如MPEG-1视频标准要求以1.5Mb/s左右的速度播放视频流。另一方面,在视频流中包含的多种信号必须保持同步,如画面的配音必须和口型相一致。另外,视频具有数据量大的特点,一个经MPEG-1压缩的90min的电影,长度约为1GB,它在存储系统上的存放方式,直接影响视频服务器提供的交互服务,如快进和快倒等功能的实现。视频服务器必须解决视频流特性提出的要求。
视频服务器的工作模式是当服务器响应客户的视频流后,从存储系统读入一部分视频数据到对应于这个视频流的特定的缓存中,然后此缓存中的内容送入网络接口发送到客户。当一个新的客户请求视频服务时,服务器根据系统资源的使用情况,决定是否响应此请求。系统的资源包括存储I/O的带宽、网络带宽、内存大小和CPU的使用率。
三、流媒体技术的应用
互联网的迅猛发展和普及为流媒体业务发展提供了强大的市场动力,流媒体业务正变得日益流行。流媒体技术广泛用于多媒体新闻、在线直播、网络广告、电子商务、视频点播、远程教育、远程医疗、网络电台、实时视频会议等互联网信息服务的方方面面。流媒体技术的应用将为网络信息交流带来革命性的变化,对人们的工作和生活将产生深远的影响。
一个完整的流媒体解决方案应是相关软硬件的完美集成,它大致包括下面几个方面的内容:内容采集、视音频捕获和压缩编码、内容编辑、内容存储和播放、应用服务器内容管理及用户管理等。
下面就介绍流媒体技术在教育上的两个具体的应用方案。
1、校园网视频系统
校园网的建设随着教育产业的兴起和发展也逐渐呈现出蓬勃向上的态势。随着多媒体技术的不断发展,特别是多媒体传输技术的突破,使网络多媒体教学得以实现。现在已经有许多的成熟的产品可以用来组建网络多媒体教学的解决方案。
一般一个校园网视频系统的要求有:
(1)通过校园网实现音、视频实况转播、视频预订,制作并存储节目。
(2)在校园网上实现VOD教学。
图2.校园网系统方案
每个教室安装相应的软件及视频卡,摄像头,麦克风,可以把教室实时的声音和图象通过校园网传到监控中心。在存储服务器安装SERVER软件,可以存贮传输过来的实时图象。在点播服务器安装SERVER软件,存储视频节目。
虽然现在校园网络硬件水平和质量现在都非常高,但是,困惑也随之而来,具体表现为以下几个方面:
A、校园网投入大,但没有用在教育主业上。
B、网络仅用在办公自动化中,投资效益低。
C、无法实现充分共享。即享受好的教育资源的学生很有限;同样的课程需要年复一年的教授;同样的问题需要一次次重复回答;材质差异明显的学生按同一模式接受教育,做不到因材施教。
计算机网络技术在教育产业中的应用现状和由此产生的问题引起了教育界和计算机界对于计算机网络条件下教学模式的思考。教学模式在网络条件下最终会变化成什么样子?目前和将来一段时间内网络技术发展到底能导致产生哪些更富成效的教育手段,逐步推动教学模式的改变?
2、远程多媒体教学系统
知识经济的时代需要人们不断的学习新的知识、技能,才能跟上时代的步伐。学习必须转变成一个伴随每个人一生的过程。网上教育突破了传统"面授"教学的局限,为求知者提供了时间分散、资源共享、地域广阔、交互式的教学新方式,因而广受人们观注。
从远程教育的定义可以看出它有下列三方面的内涵:学生与教师的分离,学生与学生的分离,利用传播媒体和传输系统组织教学。从技术上讲,远程教育系统是建立在现代传媒技术基础上的多媒体应用系统,它通过现代的通信网络将教师的图象、声音和电子教案传送给学生,也可以根据需要将学生的图象、声音回送给教师,从而模拟出学校教育的授课方式;同时还可以利用现有的网络条件建立虚拟的班级,加强学生之间的交流。
鉴于远程教育的深远意义,我们的远程多媒体教学系统所要实现的功能有:实现教学课件的点播(VOD),教学直播,网络课堂等等。
在IP网上开展远程教学活动,需要解决两个基本问题:音频、视频流信息的传送以及它们与数据之间的同步。由于音频、视频信息的带宽比较宽,不可能让学生将所有的节目下载到本地计算机上后再播放,必须要采用先进网络播放技术来实现边发送边播放。此外,由于在教学过程中教师会经常使用电子教案来辅助教学,比如用PowerPoint,而电子教案的展示与音频、视频流之间有严格的时间同步关系,这就要求在传输过程中我们仍然要保持它们之间的同步关系。
图3.远程教育网络结构
系统的工作过程如下:输入的视频和音频信号将送给MPEG4的编码器进行编码,编码器输出的节目流既可以存入存储设备也可以直接送给MediaServer,MediaServer的主要功能是完成节目流的播出。MediaServer播出的节目有三个来源,它可能是保存在存储设备中的ASF文件,也可以是编码器实时传送来的节目,它播出的节目还可以从其它的MediaServer上获取。普通的用户可以通过LAN或通过无线网络接入到该系统之中。
参考文献
[1]曹功靖,王晖,吴玲达Real流媒体技术及其在远程教学中的应用计算机应用研究2001.
技术研究论文范文6
论文摘要从深翻改土、灌水与排涝、中耕除草、覆盖、施肥、搭架及整形修剪、病虫害防治等方面介绍无公害黑莓生长期管理技术,从而为无公害黑莓的生产提供技术依据。
1深翻改土
黑莓园活土层要求达到40cm左右,通气状况良好,根系主要分布层(10~30cm)的土壤有机质含量在1%以上。根据不同质地的土壤,在黑莓建园时,应采用不同的措施。瘠薄山地、丘陵应在秋冬按黑莓种植的行距开沟冻土,并在沟中填充有机质,如稻麦秸秆、树叶、枯草等。已建成的黑莓园,深翻要在晚秋修剪上架后至早春发芽前进行,离根近的地方应浅翻,以防损伤根系,离根远的地方可深翻,保证黑莓园土壤疏松,并含有丰富的有机质。
2灌水与排涝
一般情况下,发芽前后至萌枝发生期(3~4月份)、花后至幼果膨大期(5~6月份)和果实采收后(8月份)遇干旱分别灌水1次,果实成熟期(7月份),如连续干旱,每7~10d应灌水1次,灌水量要以浸透根分布层(15~30cm)为准,达到田间最大持水量的60%~70%,灌水方法除采用地面灌溉外,尽量采用滴灌、穴灌等节水灌溉措施。地势低洼或地下水位较高的黑莓园,雨水过多时,会发生渍害(黑莓不耐涝),应及时排水。
3中耕除草
定植建园的第1、第2年此项工作较为重要,1年内需中耕除草6~8次,3年后黑莓已成园,1年只需中耕除草3~4次。及时中耕松土,可使土壤调温保墒,并消灭杂草,从而保证黑莓的良好生长。
4覆盖
黑莓园覆盖应在春季施肥、灌水后进行,利用稻草、麦秸等覆盖于畦面上,覆草厚度为5~8cm,连覆3~4年后浅翻1次。
5施肥
施肥的原则是以优质有机肥料为主,化学肥料为辅,以保持和增加土壤肥力,改善土壤结构及生物活性,同时要避免肥料中的有害物质进入土壤,从而达到控制污染、保护环境的目的。
5.1基肥
施基肥一般在晚秋进行,要以经高温发酵或沤制过的有机肥为主,配少量的化学肥料。有机肥施肥用量按每生产1kg黑莓施1.5~2.0kg计算,施有机肥45~60t/hm2,加磷酸二铵450~525kg/hm2(或尿素300kg/hm2,过磷酸钙600kg/hm2),硫酸钾450~600kg/hm2。高产稳产的黑莓园施有机肥可增加到75t/hm2以上,肥料缺乏的地方也应达到1kg果1kg肥的标准。施肥方法有条沟施肥法和全园施肥法。
5.2追肥
追肥应看苗施肥,旺长田,追肥要以磷钾肥为主,长势差的田块,应以氮肥为主。肥料以速效肥为主,一般每年进行3次。第1次施肥在萌芽后萌枝发生时,肥料以氮肥为主,以满足花期所需养分,促进萌枝生长;第2次在坐果后果实膨大期,应以氮磷肥或复合肥为主,以利于果实发育,同时促进一年生分枝生长;第3次在果实成熟以后(最好结果枝蔓已剪除并清理出园),以复合肥为主,施尿素150kg/hm2,磷酸二铵300kg/hm2,硫酸钾450~600kg/hm2,以增加树体养分积累,使枝蔓充实,提高越冬抗寒能力,为来年丰产打下基础。施肥方法为沟施或穴施,肥料施入后要盖土,若土壤墒情差,追肥要结合浇水进行。
6搭架及整形修剪
6.1立支架
目前多采用篱壁形支架。在定植当年,沿种植行每隔5~6m立一支柱,支柱长2.5m左右,埋入地下60~70cm,地上1.8~1.9m。在支柱上绑2~3道铁丝。
6.2修剪
包括夏季摘心、果后去除枯死枝蔓和冬季整形修剪与绑蔓上架三方面。夏季摘心一般在初夏萌枝发生并快速生长的时期,当萌枝高度达到1.0~1.5m时摘心,以促进侧枝生长。果后去除枯死枝蔓一般在7~8月份(不同品种有差异),从根部去除上一年萌枝,并小心剪除该萌枝上的侧枝,尽量减少对当年生枝蔓的损伤。枯死枝剪除后应清除出黑莓园。
7病虫害防治
全面贯彻“预防为主,综合防治”的植保方针,要以改善黑莓园生态环境、加强栽培管理为基础,优先选用农业和生态调控措施,注意保护利用天敌,充分发挥天敌的自然控制作用。具体进行防治时,应选用高效生物制剂和低毒化学农药,并注意轮换用药,改进施药技术,最大限度地降低农药用量,以减少污染和残留,将病虫害控制在经济阈值以下,保证黑莓质量符合无公害标准。
危害黑莓的病虫很多,但对黑莓造成较大影响的病虫害不是太多,目前主要有地老虎、赤毛虫、金龟子(成虫)、刺蛾等虫害,严重的病害还较少。地老虎掌握其发生规律,可用毒饵诱杀。有些年份,在黑莓产区金龟子成虫会对黑莓产生极大的危害。利用其趋光性进行诱杀,可以取得较好的效果。其他害虫,如毛虫、刺蛾等,可用一些高效低毒农药进行化学防治。总之,掌握各害虫发生规律,用最小的药量,最佳防治方法,将害虫防治在发生初期,就能达到最佳的防治效果。
农药按其毒性来分,有高毒、中毒、低毒之别,无公害果品对农药要求是优先采用低毒农药,有限度地使用中毒农药,严禁使用高毒、高残留农药和“三致”(致癌、致畸、致突变)农药。为了减少农药的污染,除了注意选用农药品种外,还要严格控制农药的施用量,应在有效浓度范围内,尽量用低浓度进行防治,喷药次数要根据药剂的残效期和病虫害发生程度来定。不要随意提高用药剂量、浓度和次数,应从改进施药方法和喷药质量方面来提高药剂的防治效果。另外,在采果前20d应停止喷洒农药,以保证果品中无残留或虽有少量残留但不超标。
参考文献
[1]王忠军,侯国才,杜传宝.黑莓无公害栽培技术[J].现代农业科技,2006(8):80-81.
[2]吴文龙,陈岳,闾连飞,等.黑莓栽培技术[J].江苏林业科技,2004,31(4):37-39.
[3]祁明利,许详凯.黑莓栽培技术[J].现代农业科技,2007(11):28.
[4]王焕兴.黑莓栽培管理技术[J].山西果树,2007(3):25-27.