前言:中文期刊网精心挑选了数控系统论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
数控系统论文范文1
PLC以其可靠性高、逻辑控制功能强、体积小、适应性强和与计算机接口方便等优势在工业测控领域广泛运用,已大量替代由中间继电器和时间继电器等组成的传统电器控制系统。近年来,PLC技术发展迅猛,新产品层出不穷。高端PLC不仅擅长开关量检测和逻辑控制,而且能够处理模拟信号、进行位置控制和回路控制,还可以连接各种触摸屏人机界面并具有强大的网络功能。高端PLC配备适当的位置控制单元和触摸屏人机界面,并根据计算机集成制造系统(CIMS)或柔性制造系统(FMS)的具体要求,配置相应的网络模块或网络单元,即可实现网络互连,构成开放的数控系统。本文介绍一种基于OMRON高端PLC的磨削数控系统,这种数控系统装备的位置控制单元可以实现两轴联动,并可根据实际需要,任意扩展控制轴数;触摸屏人机界面可以根据操作需要灵活设计;还可通过DeviceNet、ControllerLink和TCP/IP协议单元进行多层次的网络互连。这种数控系统目前已在3MZ2120磨床数控技术改造中获得成功应用。
1.数控系统的开放特征与典型模式
开放式数控系统一般基于PC平台,具有模块化、标准化、平台无关性、可二次开发和适应联网工作等特征。基于PC平台的开放式数控系统目前有3种典型模式。第一种为衍生型(专用NC+PC),在传统CNC中插入专门开发的接口板,使传统的专用CNC带有PC的特点。此种模式是由于数控系统制造商不能在短期内放弃传统的专用CNC技术而产生的折中方案,尚未实现NC内核的开放,只具有初级开放性;第二种为嵌入型(PC+NC控制卡),将基于DSP的高速运动控制卡(NC控制卡)插在PC的标准扩展槽中,由PC机执行各种非实时任务,NC控制卡处理实时任务。是目前基于PC平台的开放式数控系统的主流;第三种为全软件数控系统,PC机不仅能够完成管理等非实时任务,也可以在实时操作系统的支持下,执行实时插补、伺服控制、机床电器控制等实时性任务。这种模式的数控系统实现了NC内核的开放和用户操作界面的开放,可以直接或通过网络运行各种应用软件,是真正意义上的开放式数控系统。与PC平台开放式数控系统相比,基于高端PLC的数控系统的开放性主要体现在网络层面和系统扩充层面。高端PLC采用类似于PC的总线结构和面向操作的梯形图语言编程,模拟量处理单元、位置控制单元、回路控制单元、网络模块或网络单元等高端部件都有专用控制语句,具有系统构建灵活、扩充能力强、应用软件设计便捷等优点。编程语言标准化和部件可互换性的不断增强,现场总线技术和工业以太网络标准的普遍采用,都使基于高端PLC的数控系统变得更加开放,将成为面向CIMS或FMS的设备层的重要组成部分。
2.基于高端PLC的磨削数控系统
2.1开关信号监测与逻辑控制
当前系统输入输出单元是PLC的基本组成部分,在磨削数控系统中承担所有开关信号的监测和全部逻辑控制功能。监测信号主要有:机械手进出、机械手上下、料盘正反转、修整器起落等动作的位置信号,磨削设备和辅助装置上的各种工作状态信号和异常报警信号。系统输出单元控制磨削设备上所有电磁阀和机床电器系统等,通过磨削设备上的液压系统,控制机械手、料盘、工件卡盘、砂轮轴、床身、修整器等基本部件和冷却、、过滤等辅助装置按照磨床动作和磨削工艺要求工作,实现磨削加工过程的自动化。
2.2工件与砂轮运转速度控制
保持工件与砂轮转动速度恒定,对提高磨削加工质量十分有利。为此系统配备了2台带RS-485串口变频器,分别驱动工件轴和砂轮轴。PLC采用联机随动控制保证两者之间速度的配合与稳定。操作人员依据磨削加工要求设定工件轴变频器速度参数,PLC接收该参数后,参照砂轮直径(设定或记忆值)和转动速度比例关系,计算并自动设定砂轮轴变频器的速度参数。在磨削加工过程中,PLC对砂轮在磨削及修整过程中的损耗给予速度自动补偿。PLC最多可以控制32台变频器,不同厂家的变频器可采用协议宏通信联接。PLC按照变频器地址(0-31)、指令代码和相关数据顺序向变频器传送命令,对变频器运行、停止、正转、反转等实施控制;PLC还可以监视变频器运行状态,当变频器发生过电流、过电压、变频器过载、硬件异常、电机过载、过力矩检测、电源异常、通信超时等情况,可将异常参数传输给PLC,由PLC作出相应处理。
2.3位置控制单元(PCU)与位置控
制高端PLC配备单轴位置控制单元,与步进电机或交流伺服电机驱动器配套使用,可以完成开环或半闭环位置控制及速度控制,配备两轴联动位置控制单元可以进行实时插补控制,实现直线和圆弧曲面等加工控制。目前全球各主要PLC制造商都已推出与高端PLC配套的PCU,具备高速和高精度的位置控制功能。OMRON公司的CJ1MCPU自带PCU的位置脉冲速度为1kBPS,高级PCU的速度可达到500kBPS,松下PP2或PP4系列的位置控制速度高达1MBPS。采用高端PLC设计数控系统,需根据控制精度、运行速度和运行轨迹要求选择适合的位置控制单元(PCU)。磨削数控系统控制精度要求较高(F1μm),一般选择数字交流伺服系统。OMRON高端PLC专用高级指令控制脉冲输出,可选择梯形、S形或三角形速度曲线运行,实现定程、点动、返回原点和原点搜索等运动控制。程序设计可选择相对坐标系或绝对坐标系,按照图2所示的梯形图编程运行,可实现各种磨削加工所应遵循的运行曲线。图3表示该数控系统准确实现铁路轴承内套挡边粗、精、光磨削加工和3MZ2120磨床快进、快退几个阶段的速度控制和位置控制的运动轨迹。
2.4触摸屏人机界面设计
基于高端PLC的磨削数控系统可选用触摸屏人机界面(ProgrammableTer2minal,PT),采用组态工具软件和图形库(开关、灯、棒图等)以及动画功能等,按照磨削工艺流程要求进行系统操作界面设计。下面以3MZ2120磨削数控系统操作界面为例介绍设计过程和效果。根据磨削数控操作和显示的需要,该系统主界面下设8个子画面(图4)。系统上电自动进入主界面,核对操作密码后弹出主菜单,在主界面上点击操作可转移相应的子界面。加工参数和修整参数设置界面提供设置数控磨削相关参数提示;手动操作和手动修整界面用于快前、快退、慢前、慢退、返回等手动位置控制和手动修整砂作,为设备调试提供便利;自动报警界面利用触摸屏人机界面本身具有的报警功能设计,对油雾、液压系统、机床电器系统、料槽状态、冷却系统和伺服电机等实施监测和自动报警,当发生故障时触摸屏立刻弹出报警信息(报警时间、故障代码及应对措施等);自动运行界面(图5)采用棒图显示当前磨削余量值;采用动画方式实时显示加工状态和加工位置等。还设有“紧急停车”等应急按钮。PT有RS232/422/485通讯口,能够兼容众多厂家的PLC。人机界面应用程序可脱机编制和调试,然后下载到PT上运行,PLC一般通过RS232接口与PT相连。许多PT还配备并行接口,可直接与打印机连接,实时打印数据或进行屏幕拷贝。
2.5网络结构与联网功能灵活的网络结构和强大的联网功能是高端PLC的重要特征。OMRON高端PLC配有标准RS232接口连接触摸屏人机界面、上位机或编程工作站。还可扩展DeviceNet通信单元,使各种符合DeviceNet通信协议的产品都可以连入系统中,以构成基于DeviceNet开放式现场总线的数控系统;系统与车间管理层计算机及车间其它高端PLC的连接可以采用ControllerLink方式,在PLC中扩展ControllerLink通信单元,车间管理层计算机装备ControllerLink支持卡即可实现互连,由底层DeviceNet设备、基于高端PLC的数控系统或其它测控设备和车间管理层计算机构成3层递阶结构的网络测控系统。高端PLC一般都可配置符合TCP/IP协议标准的以太网单元,全面支持远程监控等应用。
数控系统论文范文2
在数控系统中,有时采用多台电机联动虚拟为一个坐标轴,来驱动机床坐标的运动。最常用的多电机驱动为同步(Synchronous)运动的形式,比如,要求两台以相同的速度和位移运动的电机带动齿轮与齿条啮合作为一个坐标轴运动。这样的坐标轴被称为“同步轴”,如图1。同步技术被广泛应用在数控技术中,比如大跨距龙门机床的龙门直线移动、大型三坐标测量机的双柱直线移动,为保持运动的均匀,都需要两个电机同步驱动。曲轴车床、曲轴磨床的双头工件夹持架,为保持加工时不扭搓工件,在作旋转运动时也必需同步。
图1同步轴
除此之外,为保证正确地加工出螺距相同的螺纹,车床在车螺纹时的主轴和进给轴必需同步。滚齿机的工作台的分齿运动与滚刀的运动在滚齿时也必需同步、刚性攻丝的Z轴进给与主轴同步等,但这种同步是指多个电机的运动速度、位移之间成一定的关系,而不是相等的关系,对这种同步运动,本文不予讨论。
实现同步一般有两种方法。一是机械同步:同步系统由机械装置组成。这种同步方法容易实现,但机械传动链复杂,传动件加工精度要求高,所需的零件多,难以更换传动比,且占用的空间大。二是电伺服同步:同步系统由控制器、电子调节器、功率放大器、伺服电机和机械传动箱等组成。所需机械传动链简单、调试方便、精度高、容易改变电子齿轮比。FANUC数控系统的电伺服同步功能对不同生产机械的要求可提供不同的配置,实现其同步要求。
在某些情况下,一个伺服电机驱动机械坐标轴转矩不够用,但改用一个更大的伺服电机又嫌体积或惯量过大,於是以两个伺服电机取代一个伺服电机驱动机床的坐标轴,这种坐标轴被称为串联轴,如图2所示。这样由於两个伺服电机以一个恒定的转矩相互作用,或者通过预加负荷,在机床内部减少间隙。这就是所谓串联控制(TandemControl),是另一种多电机控制。
图2串联轴
同步控制的概念
在电伺服同步系统中,“同步”的概念是指系统中具有两个或两个以上由电子控制的伺服放大器和伺服电机组成的“控制对象”,其中一个为“主(Master)控制对象”,另外一个或多个为“从(Slave)控制对象”,控制量为机械的位移或速度(对旋转运动为转角或转速)。通过控制器使“从控制对象”和“主控制对象”的输出控制量保持一定的严格比例关系,这种运动系统称为同步系统。一般同步系统的输出控制量为位置和速度。前面所提到的“同步轴”,“主控制对象”与“从控制对象”的输出控制量相等。
为了简化讨论,同步系统中的控制装置可被简化为具有一个积分环节的位置系统,其框图如图3A所示。其中KV为简化後控制装置的位置控制器的开环增益,XC、XO为位置输入、输出;FC为速度指令,Δ为位置误差。KF为速度环增益,当KF》1时,可把速度环近似为1;於是该控制装置的开环增益变为KV/S,如图3B所示。
图3简化的控制装置框图
利用图3的控制装置可以组成两种同步系统:
自同步系统(ActiveSynchronousSystem):该控制系统具有两个相同参数的控制装置和驱动电机,分别驱动主、从轴。控制器送出指令同时给主控制装置和从控制装置,经测量同步误差反馈给从控制装置的输入,用来校正同步的误差,以保证主、从的输出保持严格的比例关系,如图4A所示。
图4两种同步系统
A)自同步系统B)他同步系统
其中XAMO为自同步系统主控制装置的输出,XASO为自同步系统从控制装置的输出,由於从控制装置是数字控制的伺服系统,其输出跟随输入变化;也即从控制装置的输出可以自动跟随主控制装置的输出变化,故称它具有自同步能力。用C表示自同步能力:C=¶ASO/¶XAMO(1)
他同步系统(PassiveSynchronousSystem):在同步系统中,由控制器发出指令提供给主控制装置,同时也提供给从控制装置,用同样的指令控制主从装置使这两种控制装置的输出同步,如图4B所示。其中XPMO为他同步系统的主控制装置的输出,XPSO为他同步系统从控制装置的输出。这种同步系统如果由於某种原因,比如负载发生变化,主控制装置输出XPMO发生变化,从控制装置的输出不受控制,所以不能跟随其变化,即
C=¶XPSO/¶XPMO=0(2)
因此该系统缺乏自同步能力,被称为他同步系统。
自同步系统主要采用在要求主、从两轴有自同步能力的机械中,并要求从控制装置严格跟随主控制装置运动。
他同步系统主要应用在要求主、从控制装置的输出的位置和速度基本相同并且具有较小的误差的机械。比如大型龙门式双轴同步的驱动系统。除了上面提出的自、他同步系统外,还可以由这两种系统混合组成的混合系统。
FANUC数控系统具有两类不同的同步功能:
简易同步控制(SimpleSynchronousControl):控制器发出坐标轴移动信号送给主、从控制装置和两伺服放大器,以控制伺服电机运动。系统不进行同步误差补偿,一般情况下不对同步误差发出警报信号。把主、从伺服电机看做一个坐标轴的运动。但在手动回零时,主、从伺服电机一起运动一直到减速开始动作,然後分别检测栅格,分别进行螺距补偿和间隙补偿。这种简易同步控制见图4B,是他同步控制系统,由於系统不进行同步误差补偿,根据式(2)可知,系统缺乏自同步能力,说明这种控制比较适合於主动轴与从动轴负载条件不太相同,或者主、从两轴对同步误差没有特别要求,而又要求同步运动工作的情况。简易同步控制简单,容易实现;用软件也很方便实现,在数控系统中得到了广泛的应用。
同步控制(SynchronousControl):控制器发出主动轴移动的信号同时送给从动轴,於是,主、从具有相同的路径。同时移动过程中不断检测同步误差,并向从动侧输出补偿指令。如图4A所说明,这种控制是一种自同步控制系统,由於系统不断向从动侧输出补偿指令,设主、从控制器的增益为k1、k2,且k1=k2;那么根据式(1)可以推出,C=¶XSAO/¶XAMO=1,因此系统具有较好的同步能力。比较适合主动轴与从动轴间的转矩干涉较少的机械,但主动轴与从动轴间刚性较低。
对於长行程的同步轴,由於测量尺的绝对精度(误差)和热膨胀可能发生扭搓,在这样的情况下,同步轴的主、辅电机互相拉,由此如果电机流过大电流,电机可能过热,这主要是测量的位置误差所致。螺距补偿可以补偿测量尺的误差,但不能补偿因温度变化而产生的热膨胀误差。在此情况下,FANUC数控系统采用同步轴的自动补偿法进行补偿,该功能检测主、从轴的转矩差值并把这差值用来校正从动轴的位置以减少转矩误差。如图5所示。
图5同步轴自动补偿
串联控制的概念
串联控制的概念与电机的串联工作相似,以直流伺服电机为例,假定图6为两个相同参数的伺服电机串联在一起,电源电压为U,如果两个伺服电机所承受的负载一样,那麽,两个电机的反电势相等。如果M1电机承受较大的负载,电机的电流就会加大,流过电机M2的电流增大,M2的输出转矩也会加大,电机也加速。如果M1电机承受较大的负载而使电机速度有降低的趋势,那麽,由於M1速度降低,M2将施加较大的电压,因而也使M2反电势加大,其速度有增大的趋势,抵消M1的速度降落,使两个电机转矩相等,速度相等达到平衡。这类串联控制在机床驱动领域很早就得到了应用,如龙门刨床的刨台运动。对於大型机械的控制,在一个伺服电机的转矩不足以移动工作台时,往往采用两个电机。FANUC数控系统串联控制的两个电机,分别称为主(Main)电机和辅(Sub)电机;以区别於同步控制中的主(Master)电机和从(Slave)电机。以上利用两个电机说明了对串联控制的原理。
图6串联工作的电机
实际FANUC数控系统串联控制功能工作原理见图7。它是由数字伺服控制来实现。对於大型工作台的负荷,如果一个电机的转矩带不动,或者一个电机的惯量太大,那麽可以用两个电机代替,由软件控制给主和辅电机相同的转矩指令。於是可以把它当作一个“串联轴”进行处理,这就构成了串联控制。一般速度反馈从主电机反馈,如果机械具有较大的间隙,并且辅电机的移动在间隙之内,速度控制就进行不了,且机械会发生大的冲击。为了防止这种现象发生,把主、辅电机速度的平均值作为速度反馈值比较合理。
应该注意,同步控制是以同样的位置指令同时送给主轴和从轴;而串联控制是以同样的转矩指令同时送给主轴和辅轴。
图7串联控制原理
预加负荷与间隙的消除
一般来说,具有大齿轮降速比的机械,总存在机械间隙量。为了减少主、辅轴间的间隙,经常采用预加负荷的方法减少间隙。FANUC数控系统在串联控制时,可以加一个固定的预负荷到主、辅电机的转矩指令上。那麽相反方向的转矩可以一直维持主、辅电机的张力。在串联控制时,预加负荷可以很容易去除齿轮、齿条这样的机构主轴与辅轴间的间隙。不过这种预负荷并不能降低滚珠丝杆和工作台间的间隙。如图8所示,当预加负荷的机械在加速、减速时,主、辅电机产生相同方向的转矩,串联控制系统工作在负荷均分的工作方式,像图8的2和3;
图8预负荷的功能
当它在常速运行的情况,系统的工作取决於摩擦力与预负荷的情况,工作在负荷均分或者反间隙的工作方式。在预负荷大於摩擦力时,工作在反间隙的状态;在摩擦力大於预负荷时,工作在负荷均分的状态;当系统的进给停止时,这时预负荷在主、辅轴间产生张力,系统工作在反间隙的工作方式。根据上面的分析,可以合理选择预负荷的特性而保证在传动过程中消除间隙。
应用
上文已说明,多电机可采用同步轴和串联轴虚拟为一个数控坐标轴;那么什么情况下采用同步轴?什麽情况采用串联轴呢?串联控制主要用在下列场合:
一个驱动电机转矩不够,可用两个较小的驱动电机代替;
数控系统论文范文3
工作的开展都离不开对数控机床的控制原理的应用,数控机床是一种高度自由化的机床,相对于普通的机床其加工表面形式及方法是协调的。最根本的不同就是在自动化控制原理及方法的应用上。数控机床需要进行数字化信息的控制应用,这涉及到与加工零件相关的信息。也就是工件及刀具的相对运动轨迹的尺寸参数的应用。这些工作的开展,都离不开切削加工工艺参数的应用,其主要涉及到主运动及进给运动速度的协调,通过各种辅的操作,保证各种加工信息的协调,实现了规定文字、数字、符合等代码的应用,按照一定的格式需要进行程序的编写,这就需要进行加工程序的应用,进行控制介质的输入,保证数控装置的良好应用。这些工作的开展,都要进行数控装置的分析及处理,进行相关加工程序信号及指令,从而实现数控机床的加工。这就需要遵循相关的数控机床控制原理,进行数控机床的系统的协调,保证其功能的实现。
2数控机床组成及其优化设计方案
为了提升工程的效益,进行数控机床体系的健全是必要的,这需要针对数控机床应用过程中的各种问题进行分析,比如进行数控机床构成、程序编制等的分析,进行程序载体等的分析,保证数控机床自动加工零件的良好应用。这离不开良好的加工零件的工艺分析,保证零件坐标的基础坐标体系的相对位置优化。通过对机床及其零件的安装位置的协调,更有利于提升刀具及零件的效益,保证其满足尺寸参数的应用需要。这就需要实现机床安装位置及零件的协调,保证刀具及零件的良好协调性,满足尺寸参数的应用需要,这离不开零件加工工艺体系的健全,实现其加工顺序的协调性,实现切削加工工艺参数的健全,保证辅助装置的良好工作。在数控机床的应用过程中,为提升工作效益,进行数控代码体系的健全是必要的,这涉及到电脉冲信号模式的应用,将其进行数控装置的有效应用,做好数控装置及强电控制装置的协调工作,这是数控机床良好工作的核心,从而进行输出位置的脉冲信号的回馈。当然,这也需要进行数控装置系统软件的应用,做好逻辑电路的编译工作。进行相关机床部分的控制,需要做好规定运算及其相关的逻辑处理,进行有关信号及其动作的协调。这离不开驱动系统及位置检测装置环节的应用,保证伺服驱动系统体系的健全,实现驱动装置的良好设置,从而满足数控机床的进给系统分析。在这个环节中,机床的机械部分也扮演着重要的地位,数控机床的应用部分是非常多的,比如主运动部件、进给运动执行部件,比较常见的应用方式是工作台、拖板及传动部件,这些都是实现支撑性工作的关键,为了提升工作效益,进行相关工作步骤的冷却是必要的,需要保证辅助装置的协调。在数控系统的优化方案中,做好硬件部分的控制是必要的。数控铣床系统需要进行铣床专用数控器的应用,满足半闭环数数控系统的工作要求,在基本结构优化过程中,进行机床本体、铣床专用数据器等的协调是必要的。在其系统硬件的应用过程中,需要做好铣床专用数控器的应用,做好信号板的控制工作,进行交流伺服驱动器如交流伺服电机的应用,从而实现无刷直流电机及无刷直流电机驱动器的应用,以满足实际工作的要求,其中也涉及到很多的工作步骤要求。
在数控系统操作过程中,做好软件设计的工作是必要的,从而落实好铣床专用数控器的应用方案,保证数控铣床的系统效益的提升,这里我们也要进行铣床专用数控器参数的设置,针对其应用程序,做好编辑输入工作,满足程序设计的诸多要求,按照其具体指令完成规定工作。在参数设置过程中,需要应用到相关的参数设置方法,保证参数修改模式的更新应用,做好参数修改效益的应用工作。需要进行分辨率情况的分析,认真的做好分析,更有利于进行机械轴向转动装置的应用,实现伺服电机回授脉波数的正常应用。这离不开工作台的良好设计,保证不同工厂的设置优化,保证伺服马达的良好安装,从而满足工作台的工作需要,实现参数的良好设定,进行工作台方向的修正。进行数控铣床的实际情况的不同轴电机旋转方向的控制,满足当下马达旋转方向的设定要求。在这个阶段中,需要实现不同轴的最高进给速度的控制,针对数控铣床的应用趋势,保证不同轴的行距的控制,进行过高速度的控制,从而有效应对其冲击情况,保证电机工作的良好开展。这些工作的协调,离不开各轴的最高进给速度的控制,满足不同轴向的进给速度控制需要。在这些工作的优化过程中,进行程序的选择是必要的,这里可以进行H4C-M铣床专用数控器的应用,在这些程序工作过程中,可以进行相关程序编辑及执行工作。在其程序选择过程中,可以进行编辑及程序选择,进入程序选择模式,通过对输入键及选取键的选择,以满足当下工作的开展。在实际操作中,进行程序的画面选择也是必要的,从而满足旧程序的应用需要,在旧程序的修改及应用中,需要针对不同情况,进行工作方式的协调,进行指令的增加或者修改,保证程序语句区的良好操作,保证其所增加指令的单节的移动。在数据输入区进行相关指令字数的添加或修改。在程序语句区,需要将光标移动到所删除指令中,在数据输入区,需要进行相关指令所需字母的输入。在程序语句区,可以进行单节的插入,将其光标进行所需单节程序的插入。在数据输入区,可以进行插入单节的第一个指令的字母或者是数字,再进行输入键的按下。从而保证单节的删除。在程序语句区,需要将光标移动到需要删除的单节处,再进行删除键的按下。在数控系统的应用过程中,进行机械部分的分析是必要的,从而进行机床本身误差及其所需要加工零件精度的分析,更好地落实好机床的误差补偿控制。在数控铣床的工作应用中,进行数控技术、电子技术等的协调是必要的,这需要满足机床设计的诸多理论,保证数控机床的加工工作,从而满足机械设计制造的工作要求。为了实际工作的要求,需要协调好机械设计及自动化应用方向。
3结束语
数控系统论文范文4
关键词地铁喷雾冷却冷水机组喷雾间接蒸发冷却冷凝器
0引言
近年来,我国大力发展城市轨道交通,尤其鼓励地铁的发展,继北京、上海、广州、深圳多条地铁线开通运营后,很多大型城市正在或即将修建地铁,由于地铁站空调系统需要对冷却水进行降温,因此,在地铁建设中不可避免会涉及冷却塔的设置问题。由于地铁线路所经过的区域多是城市繁华地带,地面上设置冷却塔的空间有限或根本没有,将冷却塔安装在地面上不仅影响城市景观和规划,而且给周围环境带来噪声污染和卫生隐患。因此,研究地铁专用的冷却器替代目前设置在地面的冷却塔,对解决地铁冷却塔设置的问题具有现实意义。
目前地铁空调冷却水系统中所采用的冷却塔是针对设置在室外进行设计制造的,分为横流式和逆流式两种,冷却塔体积巨大,塑料填料间距很小,安装于地铁排风通道中必然影响地铁排风;为避免冷却水被外界空气污染,冷却水不宜与外界空气接触,因此,普通开式冷却塔不宜用于地铁空调系统,而封闭式冷却塔和蒸发式冷凝器由于换热效率等问题而不适合在地铁站中使用,本文提出新型闭式喷雾冷却器和新型喷雾冷凝器两种方案,并对其进行简要分析。
1喷雾冷却技术研究成果
自Maclaine-cross和Banks建立间接蒸发冷却计算模型以来,国内外专家学者以此为基础对喷雾间接蒸发冷却技术进行了大量的研究。杨强生等人基于Merkel方程,实验研究了喷雾空气冷却器的传热传质过程,通过回归的方法得到容积散质系数的关联式[1]。梅国晖等人研究了高温表面喷雾冷却传热系数、气水雾化喷嘴最佳气水比和喷射方向对喷雾冷却换热的影响,研究表明,喷雾冷却过程存在最佳气水比,但最佳气水比不是固定不变的,它随着水压的增加而减小;在低水流密度下,喷射角90°处喷雾传热系数最大,其他喷射角度的传热系数大致以喷射角90°处对称,在高水流密度下,随喷射角度增加而显著增加[2-4]。刘振华通过数值计算方法讨论了液滴与空气速度比和喷雾条件之间的相互关系,认为在自由射流情况下,速度比的变化使流体形成在喷嘴附近的非稳定区和下游的稳定区,在均一流情况下则不存在非稳定区,在稳定区内速度比与模型类别、喷雾距离和初始速度无关;在喷雾距离大于0.5m后,可认为速度比进入稳定区,其大小取决于液滴直径和空气冲击速度,空气冲击速度越大,速度比越接近1,液滴直径越小;液滴直径小于100μm,可认为速度比等于1,对工程计算没有影响[5]。JunghoKim详尽研究了喷雾冷却的传热机理和目前喷雾冷却模型的优缺点,研究了物体表面形状、喷雾倾斜角度和重力对喷雾冷却的影响[6]。最近,美国国家航空航天局的EricA.Silk等人研究了3种强化表面的喷雾冷却效果和喷射倾斜角度(喷射轴向与物体表面法向夹角)对喷雾冷却的影响,在喷雾温度为20.5℃时,分析了冷却水管采用3种不同肋片表面对冷却效果的影响,研究表明,相对于平表面而言,直肋片表面热流密度最大,且喷射倾斜角度为30°时,热流密度可提高75%[7]。
2喷雾冷却与淋水冷却的比较
2.1能耗比较
开式喷雾通风冷却塔由于采用喷雾装置,改变了机械通风冷却塔的工艺结构,不需要淋水填料,所需的风机功率很小甚至不需要风机,因此,节省设备的初投资和运行维护费用,表1是一种喷雾冷却塔与机械通风冷却塔能耗比较[8]。
2喷雾冷却与淋水冷却的比较
2.1能耗比较
开式喷雾通风冷却塔由于采用喷雾装置,改变了机械通风冷却塔的工艺结构,不需要淋水填料,所需的风机功率很小甚至不需要风机,因此,节省设备的初投资和运行维护费用,表1是一种喷雾冷却塔与机械通风冷却塔能耗比较[8]。
从表1可以看出,当冷却水量从75m3/h增加到700m3/h时,在没有考虑普通冷却塔配套设施能耗和运行费用的基础上,喷雾冷却塔与相应规格的机械通风冷却塔相比,综合节能效率在30%~50%之间,喷雾冷却效益显著。
喷雾冷却器设置在地铁排风通道内,水雾与冷却器表面的换热量最终必须由通道内排风带走,因此,空气的温湿度决定了冷却器的换热效果,而通道内空气的温湿度与室外空气温湿度差别很大,因此,实现相同排热量所需冷却器的体积相对会大一些,相应设备功率会增大,这样,不可避免地要增加部分能耗和初投资及运行费用。
由于冷却塔设置在地铁排风通道内,必然会造成通道的排风断面减小,排风阻力增大,由局部阻力计算公式可知,局部阻力与通道的局部阻力系数和速度的二次幂的乘积成正比,当通道排风断面减小一半时,则局部阻力将为原来的4倍,因此,要实现相同排风量,排风机的功率可能会增大。
2.2费用比较
假定某地铁制冷站冷却塔选用横流式冷却塔,型号为DBHZ2—600,9.6万元/台,设计进、出口水温分别为37℃/32℃,湿球温度为28℃,占地面积43m2,高度为3.61m,风机功率为12kW,风量为351m3/h,A声级噪声为56.6dB;循环水泵选用1台轴流泵,流量为400m3/h,功率为7.5kW,凝结水泵选用1台轴流泵,流量为750m3/h,功率为3kW,水泵费用为0.75万元;循环水泵运行费用为5.58万元/a,凝结水泵运行费用为2.23万元/a(电费为0.85元/(kWh),水费为2.8元/t,水、电价来自于重庆市自来水公司和重庆市电力公司;冷却塔和水泵信息来自阿里巴巴网2007-3-15报价)。
冷却塔的运行费用包括水泵的运行费用和补给水的费用,要维持冷却系统正常运转,需定期补给循环水,年补给水量ΔL为[9]
式中Q为冷却水的循环量,t/h;K为系数,取0.14;h为冷却塔全年运行时间,h;m为冷却倍率,取60。
假定系统全天运行24h,一年按365d计算,求得年补给水量应为66225.6t,年补水费为18.54万元,冷却塔风机年运行费用为8.94万元,则冷却塔年运行费用为35.29万元。假设采用喷雾冷却的设备费用与采用机械通风冷却塔的设备费用相同,但由于喷雾所需水量为机械通风的补水量的5%,因此,在不考虑冷却塔运行费用的基础上,仅系统补水水费一项就可节约17万元左右。
2.3耗水量比较
如上所述,假定某地铁制冷站采用机械通风冷却塔时需要冷却水量为600m3/h,配套冷却塔进、出口水温为37℃/32℃。假定喷雾温度为34℃,含湿量为34.94g/kg,蒸发率为0.6~0.8,那么喷雾速率1.8~2.4kg/s就可实现冷却水降温,全年所需水量为1763~2645t。若采用机械通风冷却塔,如上述计算可知,年补水量为66225.6t,同样,采用喷淋水冷却时,按相关规范,最小喷淋水量为100kg/(m3·h),远远大于喷雾冷却所需水量[10],因此,单从耗水量而言,冷却方式宜采取喷雾冷却。
3喷雾间接蒸发冷却器与喷雾间接蒸发冷却冷凝器
3.1喷雾间接蒸发冷却器
喷雾冷却塔与普通机械通风冷却塔不同之处在于喷雾装置的应用,喷雾装置是一种射流元件,是喷雾冷却塔的核心部件,它取代了传统冷却塔的填料和风机,通过喷嘴产生的内旋流作用,有效地保证了低压状态的雾化度,利用低压液流通过旋流雾化喷头形成雾化,喷雾流的反作用力推动它作反向旋转,产生由下部吹向雾流的风力,雾化水滴与进塔空气在雾化状态条件下进行换热,达到预期的降温效果[8]。
喷雾冷却塔结构简单,质量轻,噪声低,耐腐蚀,不易堵塞,使用寿命长,除了省却风机、填料,降低成本费用外,还降低了塔体的自重,减少由填料阻塞引起的冷却塔维修,冷却效果稳定,但是由于它和普通开式冷却塔一样与外界空气直接接触,不能保证冷却水水质,而且冷却效果易受空气参数影响。
封闭式冷却塔由于冷却水在处理过程中不与外界空气接触,冷却水质不会受到外界的污染,但地铁空调系统中如果采用喷淋水来冷却封闭式冷却塔内的冷却水,不仅冷却效果劣于普通开式冷却塔,冷却塔的体积非常大,而且由于存在大量的飘逸损失,喷淋水用水量大,与将冷却塔设置在地面相比得不偿失,因此,综合喷雾冷却塔和封闭式冷却塔的优点,本文提出了一种新型的封闭式喷雾冷却器。
喷雾间接蒸发冷却器利用气水雾化喷嘴将经过处理的少量水雾化,喷到冷却器表面,形成一层均匀水膜,通过水膜蒸发实现冷却器内部冷却水降温。它既能保证冷却水不受污染,又能达到冷却效果,而且由于喷雾所用的水经过适当的处理,不会堵塞喷雾装置,能缓解冷却盘表面结垢问题。喷雾间接蒸发冷却器研究的核心问题是雾化效果和水膜的完整性、均匀性和厚度。
3.2喷雾间接蒸发冷却冷凝器
蒸发式冷凝器是目前制冷系统中常用的一种间接蒸发冷却设备,主要特点是耗水量少,节电和结构紧凑,占地面积小,热效率高。一般水冷式冷凝器每kg冷却水能带走4~6kJ的热量,而蒸发式冷凝器每kg水蒸发能带走约580kJ的热量,所以蒸发式冷凝器的理论耗水量只有一般水冷式冷凝器的1%。考虑冷却水的飞溅以及蒸发、溢水等损失,实际耗水量约为一般水冷式冷凝器循环水量的5%~10%。
由于喷雾冷却能在冷却器表面形成相对完整均匀的水膜,冷却效率更高,所需水量少,目前喷雾冷却多用于高温物体表面的冷却降温,因此,研发一种耗水量少的新型喷雾间接蒸发冷却冷凝器,可以解决地铁空调系统设置冷却塔的问题。
该方案的最大优势在于不用设置冷却塔,节省冷却塔及配套设施的初投资和运行产生的环境问题,采用喷雾冷却的方法,由于所需的水量很少,喷雾水源问题就很容易解决,可以对喷雾所用的水进行软化处理,防止堵塞喷雾装置和缓解冷凝器表面结垢。
喷雾间接蒸发冷却冷凝器实质上是本文所述喷雾间接蒸发冷却器的一个改进方案,要开发它,除了要解决闭式喷雾冷却器的雾化效果,水膜均匀性、完整性和厚度等问题以外,还必须与厂商协商设置冷凝器与冷水机组设备接口,对管道进行保温,研究冷凝器与机组距离对系统其他设备性能的影响,确定机组性能随二者间距变化的曲线,这其中涉及系统压力损失、制冷剂压力与机组压力匹配等问题。
4结论
本文的两种方案可实现地铁空调系统冷却塔不设在城市地面上的设想,能节省目前冷却水系统中部分辅助设备的初投资和运行费用,机组制冷量越大,节水效益越明显,特别是在缺水地区,该项技术的效益更为明显,但是,还有以下问题需要解决:
1)保证喷雾压力的相对稳定,维持运行压力在适当范围内,使冷却效果不受流量变动等的影响。
2)研发一套喷雾装置,使换热器表面水膜完整、均匀,且厚度很小,通过该装置实现间歇喷雾冷却,建立喷雾评价指标体系。
3)研发换热效率高、空气侧阻力小的新型换热器。
4)建立喷雾间接蒸发冷却器性能评价指标体系。
5)喷雾水软化处理,缓解冷却器表面结垢。
6)解决喷雾冷却冷凝器与机组的集成问题及建立相应的评价指标体系。
参考文献:
[1]杨强生,铙钦阳,范云良.喷雾强化空气冷却器的实验研究[J].上海交通大学学报,1999,33(3):313-317
[2]梅国晖,武荣阳,孟红记,等.气水雾化喷嘴最佳气水比的确定[J].钢铁钒钛,2004,25(2):49-51
[3]梅国晖,孟红记,谢植.喷射方向对喷雾冷却换热的影响[J].东北大学学报:自然科学版,2004,25(4):374-377
[4]梅国晖,武荣阳,孟红记,等.高温表面喷雾冷却传热系数的理论分析[J].冶金能源,2004,23(6):18-22
[5]刘振华.微细喷雾时喷雾气流中液滴和空气速度比的研究[J].上海交通大学学报,1996,30(3):97-102
[6]KimJungho.Spraycoolingheattransfer:thestateoftheart[J].InternationalJournalofHeatandFluidFlow,2007,28(4),753-767
[7]SilkEA,KimJungho,KigerK.Spraycoolingofenhancedsurfaces:impactofstructuredsurfacegeometr
yandsprayaxisinclination[J].InternationalJournalofHeatandMassTransfer,2006,49(25):4910-4920
[8]胡国林,李丽萍.一种新型喷雾通风冷却塔[J].给水排水,2001,27(4):90-91
数控系统论文范文5
随着计算机技术的高速发展,传统的制造业开始了根本性变革,各工业发达国家投入巨资,对现代制造技术进行研究开发,提出了全新的制造模式。在现代制造系统中,数控技术是关键技术,它集微电子、计算机、信息处理、自动检测、自动控制等高新技术于一体,具有高精度、高效率、柔性自动化等特点,对制造业实现柔性自动化、集成化、智能化起着举足轻重的作用。目前,数控技术正在发生根本性变革,由专用型封闭式开环控制模式向通用型开放式实时动态全闭环控制模式发展。在集成化基础上,数控系统实现了超薄型、超小型化;在智能化基础上,综合了计算机、多媒体、模糊控制、神经网络等多学科技术,数控系统实现了高速、高精、高效控制,加工过程中可以自动修正、调节与补偿各项参数,实现了在线诊断和智能化故障处理;在网络化基础上,CAD/CAM与数控系统集成为一体,机床联网,实现了中央集中控制的群控加工。
长期以来,我国的数控系统为传统的封闭式体系结构,CNC只能作为非智能的机床运动控制器。加工过程变量根据经验以固定参数形式事先设定,加工程序在实际加工前用手工方式或通过CAD/CAM及自动编程系统进行编制。CAD/CAM和CNC之间没有反馈控制环节,整个制造过程中CNC只是一个封闭式的开环执行机构。在复杂环境以及多变条件下,加工过程中的刀具组合、工件材料、主轴转速、进给速率、刀具轨迹、切削深度、步长、加工余量等加工参数,无法在现场环境下根据外部干扰和随机因素实时动态调整,更无法通过反馈控制环节随机修正CAD/CAM中的设定量,因而影响CNC的工作效率和产品加工质量。由此可见,传统CNC系统的这种固定程序控制模式和封闭式体系结构,限制了CNC向多变量智能化控制发展,已不适应日益复杂的制造过程,因此,对数控技术实行变革势在必行。
2数控技术发展趋势
2.1性能发展方向
(1)高速高精高效化速度、精度和效率是机械制造技术的关键性能指标。由于采用了高速CPU芯片、RISC芯片、多CPU控制系统以及带高分辨率绝对式检测元件的交流数字伺服系统,同时采取了改善机床动态、静态特性等有效措施,机床的高速高精高效化已大大提高。
(2)柔性化包含两方面:数控系统本身的柔性,数控系统采用模块化设计,功能覆盖面大,可裁剪性强,便于满足不同用户的需求;群控系统的柔性,同一群控系统能依据不同生产流程的要求,使物料流和信息流自动进行动态调整,从而最大限度地发挥群控系统的效能。
(3)工艺复合性和多轴化以减少工序、辅助时间为主要目的的复合加工,正朝着多轴、多系列控制功能方向发展。数控机床的工艺复合化是指工件在一台机床上一次装夹后,通过自动换刀、旋转主轴头或转台等各种措施,完成多工序、多表面的复合加工。数控技术轴,西门子880系统控制轴数可达24轴。
(4)实时智能化早期的实时系统通常针对相对简单的理想环境,其作用是如何调度任务,以确保任务在规定期限内完成。而人工智能则试图用计算模型实现人类的各种智能行为。科学技术发展到今天,实时系统和人工智能相互结合,人工智能正向着具有实时响应的、更现实的领域发展,而实时系统也朝着具有智能行为的、更加复杂的应用发展,由此产生了实时智能控制这一新的领域。在数控技术领域,实时智能控制的研究和应用正沿着几个主要分支发展:自适应控制、模糊控制、神经网络控制、专家控制、学习控制、前馈控制等。例如在数控系统中配备编程专家系统、故障诊断专家系统、参数自动设定和刀具自动管理及补偿等自适应调节系统,在高速加工时的综合运动控制中引入提前预测和预算功能、动态前馈功能,在压力、温度、位置、速度控制等方面采用模糊控制,使数控系统的控制性能大大提高,从而达到最佳控制的目的。
2.2功能发展方向
(1)用户界面图形化用户界面是数控系统与使用者之间的对话接口。由于不同用户对界面的要求不同,因而开发用户界面的工作量极大,用户界面成为计算机软件研制中最困难的部分之一。当前INTERNET、虚拟现实、科学计算可视化及多媒体等技术也对用户界面提出了更高要求。图形用户界面极大地方便了非专业用户的使用,人们可以通过窗口和菜单进行操作,便于蓝图编程和快速编程、三维彩色立体动态图形显示、图形模拟、图形动态跟踪和仿真、不同方向的视图和局部显示比例缩放功能的实现。
(2)科学计算可视化科学计算可视化可用于高效处理数据和解释数据,使信息交流不再局限于用文字和语言表达,而可以直接使用图形、图像、动画等可视信息。可视化技术与虚拟环境技术相结合,进一步拓宽了应用领域,如无图纸设计、虚拟样机技术等,这对缩短产品设计周期、提高产品质量、降低产品成本具有重要意义。在数控技术领域,可视化技术可用于CAD/CAM,如自动编程设计、参数自动设定、刀具补偿和刀具管理数据的动态处理和显示以及加工过程的可视化仿真演示等。
(3)插补和补偿方式多样化多种插补方式如直线插补、圆弧插补、圆柱插补、空间椭圆曲面插补、螺纹插补、极坐标插补、2D+2螺旋插补、NANO插补、NURBS插补(非均匀有理B样条插补)、样条插补(A、B、C样条)、多项式插补等。多种补偿功能如间隙补偿、垂直度补偿、象限误差补偿、螺距和测量系统误差补偿、与速度相关的前馈补偿、温度补偿、带平滑接近和退出以及相反点计算的刀具半径补偿等。
(4)内装高性能PLC数控系统内装高性能PLC控制模块,可直接用梯形图或高级语言编程,具有直观的在线调试和在线帮助功能。编程工具中包含用于车床铣床的标准PLC用户程序实例,用户可在标准PLC用户程序基础上进行编辑修改,从而方便地建立自己的应用程序。
(5)多媒体技术应用多媒体技术集计算机、声像和通信技术于一体,使计算机具有综合处理声音、文字、图像和视频信息的能力。在数控技术领域,应用多媒体技术可以做到信息处理综合化、智能化,在实时监控系统和生产现场设备的故障诊断、生产过程参数监测等方面有着重大的应用价值。
2.3体系结构的发展
(1)集成化采用高度集成化CPU、RISC芯片和大规模可编程集成电路FPGA、EPLD、CPLD以及专用集成电路ASIC芯片,可提高数控系统的集成度和软硬件运行速度。应用FPD平板显示技术,可提高显示器性能。平板显示器具有科技含量高、重量轻、体积小、功耗低、便于携带等优点,可实现超大尺寸显示,成为和CRT抗衡的新兴显示技术,是21世纪显示技术的主流。应用先进封装和互连技术,将半导体和表面安装技术融为一体。通过提高集成电路密度、减少互连长度和数量来降低产品价格,改进性能,减小组件尺寸,提高系统的可靠性。
(2)模块化硬件模块化易于实现数控系统的集成化和标准化。根据不同的功能需求,将基本模块,如CPU、存储器、位置伺服、PLC、输入输出接口、通讯等模块,作成标准的系列化产品,通过积木方式进行功能裁剪和模块数量的增减,构成不同档次的数控系统。
(3)网络化机床联网可进行远程控制和无人化操作。通过机床联网,可在任何一台机床上对其它机床进行编程、设定、操作、运行,不同机床的画面可同时显示在每一台机床的屏幕上。
(4)通用型开放式闭环控制模式采用通用计算机组成总线式、模块化、开放式、嵌入式体系结构,便于裁剪、扩展和升级,可组成不同档次、不同类型、不同集成程度的数控系统。闭环控制模式是针对传统的数控系统仅有的专用型单机封闭式开环控制模式提出的。由于制造过程是一个具有多变量控制和加工工艺综合作用的复杂过程,包含诸如加工尺寸、形状、振动、噪声、温度和热变形等各种变化因素,因此,要实现加工过程的多目标优化,必须采用多变量的闭环控制,在实时加工过程中动态调整加工过程变量。加工过程中采用开放式通用型实时动态全闭环控制模式,易于将计算机实时智能技术、网络技术、多媒体技术、CAD/CAM、伺服控制、自适应控制、动态数据管理及动态刀具补偿、动态仿真等高新技术融于一体,构成严密的制造过程闭环控制体系,从而实现集成化、智能化、网络化。
3智能化新一代PCNC数控系统
数控系统论文范文6
【关键词】温度控制;热计量供热系统;节能技术对策
供暖体制改革越来越多地受到重视,与供热收费改革密切相关、互为充分的必要条件就是温度控制与热量计量的发展问题,这是节能与环保事业发展的必然要求。在这样的背景下,计量与温控技术得到了快速发展。本文针对温控计量节能技术相关问题及对策进行阐述。
1.应用先进的温度控制与热计量技术,实现供热节能
以我国供暖现状,采暖能耗指标是同类气候条件下发达国家的3-5倍,而且供暖效果也远远不如,能耗大量浪费的原因中固然有百姓用户节能意识淡薄、收费体制不能刺激节能,但主要的原因还是因为我们设计、施工与运行管理的落后。笔者认为正确的做法是温控与热量并重,相辅相成,甚至温控更加重要。供热单位先提高自身水平,提高室内热舒适度,也就是提高服务质量,再合理地向用户收费,促节能事业发展。
2.户内系统和户外系统相结合,减少能耗
目前有一种趋势:认为讲温控就是要在室内安装温度控制阀,讲计量就是在户内安装热量表,至于户外控制就可以不被重视了。温控与计量是不是只要针对户内系统,户外就可以忽视呢?对于一个户内控制设备完善的系统(安装了温控阀和热量表),如果没有相应的户外控制,很难保证户内设备正常地工作。如果户外水力失调严重,温控阀不能工作在正常工况下,压头大就会频繁地开关甚至产生噪音,压头太小会始终常开而室内温度不足;热量表也可能工作在额定之外的流量下,测量不准确。如果外网不能根据户内工况变化相应调节,如:水泵不能变频、压差不能稳定的情况下,水泵、锅炉或换热器的效率也不能保证。如果户内采取了节能手段,而户外没有配合措施,一方面会引起管网水力热力工况的失调,另一方面室内节省的能量不能体现在热源的节能上,节能这一根本目的就没有实现。所以我们认为好的户内控制一定要与户外控制相结合。
随着先进计量、控制设备不断应用于系统中,分户计量供热系统逐步在我国发展起来。从用能的角度看分户计量供热的技术能够有效利用自由热,提倡用户的行为调节,以减少能耗;另一方面,从用户出发它能够提高室内热环境的舒适性。在散热器上安装温控阀为实现这些目标提供了有效手段。当温控阀被设定在某一值时,它可以通过感温包测量室内温度,实时调节散热器流量以符合设定值。如果热网的运行工况可以最大限度的满足各个用户的需求,那么温控阀控制的散热器供暖房间温度就不会出现过冷过热的情形。但是舒适度因人因时而异,提高用户的舒适程度不仅要求在设计温度18℃时保持室温仅有微小的波动,而且应该尽可能的满足用户希望提高室内温度的要求。
3.温控计量与集中供热系统相适应,提高节能效率
我们采取“拿来主义”来消化学习国外的温控计量技术,包括消化和应用国外的产品,但是外来的产品并不适应我国的现有系统,除了水质问题和管理问题外,还有许技术问题。如:系统末端压差、系统规模大小、设备工作环境等都存在很大的不同,不做任何改变就应用在一起很难得到正常的效果。如有的示范工程,产品应用效果不好,出现一些问题,厂家就提出要彻底地改变中国的供热系统,殊不知,对中国这一巨大规模的供热体系,改变是一个渐进的过程,需要一定的时间,不可能一蹴而就。谁应该去适应谁并不存在一个分明的界限,但是合理的寻求结合点,花最小的投入去获得最大的回报,这个工作非常重要。
4.热计量方法
目前,按户计量热量使用的方法基本有以下3 种:
一是直接测定用户从供暖系统中用热量。该方法需对入户系统的流量及供回水温度进行测量,采用的仪表为热量表。该方法的特点是:原理准确,但价格较贵,安装复杂,并且在小流量时,计量误差较大。目前在法国、瑞典等国应用较多。
二是通过测定用户散热设备的散热量来确定用热量。该方法是利用散热器平均温度与室内温度差值的函数关系来确定散热器的散热量。该方法采用的仪表为热量分配表,常用的有蒸发式和电子式2 种。蒸发式热分配表的特点是价格较低,安装方便,但计量准确性较差;电子式热量分配表的特点是计量较准确、方便,价格比蒸发式热分配表高,并且可在户外读值。
三是通过测定用户的热负荷来确定用热量。该方法是测定室内外温度并对供暖季内的室内外温差累积求和,然后乘以房间常数(如体积热指标等)来确定收费。该方法采用的仪表为测温仪表,但有时将记忆散热器温控阀的设定温度作典型室内温度,而将某一基准温度作室外温度。该方法的特点是:安装容易,价格较低。但由于遵循相同舒适度缴纳相同热费的原则,用户的热费只与设定的或测得的室温有关,而与实际用热量无关,因此,开窗等浪费能源的现象无法约束,不利于节能。目前美国和法国有所使用。
5.实施换热站监控系统应用
换热站监控中心(MCC)是整个监控系统的中枢神经,具有整体协调、远程控制和调度功能。它将采集现场过程的数据,通过通讯网络(WAN)这条连接各换热站与监控中心的桥梁和纽带,对数据进行传输。换热站监控中心(MMC)实现对换热站的监测、控制、管网分析、故障诊断、报警、报表、打印、历史数据处理、趋势显示等功能,并且对各个换热站的设备参数进行远程下载与控制,以确保热网高效经济运行。其中控制中心还具有数据库检索与分析功能,调度中心把各换热站采集来的数据存入历史数据库,数据库除供历史报表打印、数据终端检索外,还要定期或不定期进行数据分析。
我公司换热站监控系统现场采集和显示的数据有:室外温度、换热机组一、二次侧供回水温度、压力,补水流量、软化水箱及污水池的水位,地面液位信号、循环泵、补水泵的运行状态、调节阀开度、温度报警等,以上信号在监控中心都可以实时监视,并且可以对循环泵、补水泵、排污泵、电动调节阀等运行状态进行实时控制。
换热站监控中心可采集现场数据、实现对换热站的监测和控制,管网分析、故障诊断、巡检人员的考勤情况、打印报表、历史数据处理、趋势显示、实时参数、历史数据在网上给授权用户等功能,以及对各换热站设备参数进行远传下载与控制,热网监控中心可实现循环泵、补水泵、排污泵的启停等控制,以确保高效经济运行。
实施换热站监控系统有两个主要特点:一是实施热网监控避免了热量在输送环节中的浪费;二是实施热网监控室温容易控制,控制手段有自动恒温控主动调节控制,避免了温度失调、利用了自由热、实现了经济运行,而传统的集中供热就难以实现这些控制。新型的集中供暖系统采用了温控与热计量技术,就可以提高效率、减少浪费、增加控手段,就可以与新型采暖方式同等竞争,夺回价格优势,争取市场份额。 [科]
【参考文献】
[1]沈秀环.供热管网量调节的节能探讨与应用[J].节能,2009,(07):6-9.
[2]邓雪荣.浅议集中供热的调节[J].现代商贸工业,2007,(06):198-199.