前言:中文期刊网精心挑选了电阻测量论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
电阻测量论文范文1
论文关键词:电表,反常规用法
电表的反常规用法是近几年高考的热点问题,相对学生来讲也恰恰是一个难点问题。电表的反常规用法一般有这么两种设计方案,其一就是用电流表来测电压,题目里往往把已知确定阻值的电流表当作电压表使用或把一个电流表和一个定值电阻改装为电压表适用;其二就是用电压表来测电流,解题时需要把确定阻值的电压表当作电流表使用。
例1、现有一块灵敏电流表 ,量程为200,内阻约为1000,要精确测出其内阻R1教育学论文教育论文,提供的器材有:
电流表 (量程为1mA,内阻R2=50);电压表(量程为3V,内阻RV约为3k);
滑动变阻器R(阻值范围为0~20);定值电阻R0(阻值R0=100);
电源E(电动势约为4.5V,内阻很小);单刀单掷开关S一个,导线若干。
(1)请将上述器材全部用上,设计出合理的便于多次测量的实验电路图,并保证各电表的示数超过其量程的1/3,将电路图画在图示的虚框内。
(2)在所测量的数据中选一组,用测量量和已知量来计算 表的内阻,表达式为R1=I2(R0+R2)/I1,表达式中各符号表示的意义是I1表示 表的示数,I2表示表的示数,R2表示 表的内阻,R0表示定值电阻的阻值毕业论文开题报告。
解析:此题目的本意是要考查学生对伏安法测电阻原理的掌握情况,但是该题目中所给出的电压表量程过大,只能用于保护电路使用。因此没有合适的电压表可以直接利用教育学论文教育论文,这时候我们必须依照伏安法测电阻的基本原理做出适当的改进,将电流表 和定值电阻R0改装成电压表,题目就迎刃而解了。
例2、从下面所给出的器材中选出适当的实验器材,设计一电路来测量电流表A1的内阻r1。要求方法简捷,有尽可能高的测量精度,并能测得多组数据。
电流表A1(量程100mA,内阻r1约40,待测)
电流表A2(量程50,内阻r2=750); 电压表V(量程10V,内阻r3=10k);
电阻R1(阻值约100,作保护电阻用); 滑动变阻器R2(总阻值约50)
电源E(电动势1.5V,内阻很小);电键S,导线若干
(1)在虚线方框中画出电路图,标明所用器材的代号。
(2)若选测量数据中的一组来计算r1,写出所用的表达式并注明式中各符号的意义。
r1=r2I2/ I1 其中I1和I2分别表示A1和 A2的电流。
解析:本题给出了电压表和电流表,若采用下图所示的电路进行测量时教育学论文教育论文,电压表的示数不到满量程的1/20,测量值不准确,因为电表的示数没有接近量程的一半或一半以上。
因此,用上图所示的电路不能较准确的测量A1的内阻。这时候我们可以把已知电阻的电流表A2当做电压表来使用,电流表A2两端的电压可以由其示数和内阻推算出来,A2两端的电压也就是A1两端的电压,这样就可以较准确的测量出A1的内阻了毕业论文开题报告。
例3、使用以下器材测量一待测电阻Rx的阻值(900-1000)。电源E,具有一定内阻,电动势约为9.0V;电压表V1,量程为1.5V,内阻r1=750;电压表V2,量程为5V,内阻r2=2500;滑动变阻器R,最大阻值约为100;单刀单掷开关K,导线若干。
(1)测量中要求电压表的读数不小于其量程的1/3,试画出测量电阻Rx的一种实验电路原理图。
或
(2)若电压表V1的读数用U1表示,电压表V2的读数用U2表示教育学论文教育论文,则由已知量和测得量表示Rx的公式为Rx= U1r1 r2/( U2 r1—U1 r2)或(U2—U1 )r1/U1
解析:该题目还是测未知电阻Rx的阻值的,显然本题目并没有给出电流表,我们不难发现本题里面已知两个电压表,而且电压表的内阻都是已知的,用电压表的读数除以本身的内阻就可得到通过自身的电流了,因此,我们完全可以把电压表当电流表来使用。
总而言之,类似的实验都是考查伏安法测电阻的基本原理,只要实验目的明确,充分利用题目所给出的器材,不难找出解题思路。
(作者信息:吴志民 1980.06 男 汉 甘肃 中学一级 理学学士 课堂教学及课堂互动研究)
电阻测量论文范文2
关键词:压力传感器,薄膜,敏感栅
随着社会的发展,信息处理技术、微处理器和计算机技术的快速发展和广泛应用,都需要在传感器的开发方面有相应的进展。现在非电物理量的测试与控制技术,已越来越广泛地应用于航天、航空、常规武器、船舶、交通运输、冶金、机械制造、化工、轻工、生物医学工程、自动检测与计量、称重等技术领域[1],而且也正在逐步引入人们的日常生活中。免费论文参考网。可以说测试技术与自动控制技术水平的高低,是衡量一个国家科学技术现代化程度的重要标志。传感器是信息采集系统的感应单元,所以,它是自动化系统和控制设备的关键部件,作为系统中的一个结构组成,在科技、生产自动化领域中的作用越来越重要[2]。
传感器亦称换能器,是将各种非电量(包括物理量,化学量,生物学量等)按一定的规律转换成便于处理和传输的另外一种物理量(一般为电量、磁量等)的装置[3],它能把某种形式的能量转换成另一种形式的能量。传感器一般由敏感元件、传感元件和测量电路3部分组成,有时还需加上辅助电源。免费论文参考网。其原理如图1所示。
其中:①敏感元件直接感受被测物理量,如在应变式传感器中为弹性元件;②传感元件将感受到的非电量直接转换成电量,是转换元件,如固态压阻式压力传感器;③测量电路是将传感元件输出的电信号转换为便于显示、控制和处理的有用电信号的电路,使用较多的是电桥电路。由于传感器元件输出的信号一般较小,大多数的测量电路还包括放大电路,有的还包括显示器,直接在传感器上显示出所测量的物理量;④辅助电源是供给传感元件和测量电路工作电压和电流的器件。
国际电工委员会IEC则将传感器定义为测量系统中的一种前置部件,它将输入变量转换成可供测量的信号[4]。传感器是传感器系统的一个组成部分,是被测量信号输入的第一道关口。对传感器在技术方面有一定的要求,而同时亦要考虑尽可能低的零点漂移、温度漂移及蠕变等[5]。近年来,传感器有向小型化、集成化、智能化、系列化 、标准化方向发展的趋势[6]。
电阻式传感器的工作原理是将被测的非电量转换成电阻值,通过测量此电阻值达到测量非电量的目的。这类传感器大致分为两类:电阻应变式和电位计式。利用电阻式传感器可以测量形变、压力、力、位移、加速度和温度等非电量参数。
压力传感器是将压力这个物理量转换成电信号的一种电阻应变式传感器。传统的电阻应变式压力传感器是一种由敏感栅和弹性敏感元件组合起来的传感器[7]。如图2所示,将应变片用粘合剂粘贴在弹性敏感元件上,当弹性敏感元件受到外施压力作用时,弹性敏感元件将产生应变,电阻应变片将它们转换成电阻变化,再通过电桥电路及补偿电路输出电信号。它是目前应用较多的压力传感器之一,因具有结构简单、使用方便、测量速度快等特点而广泛应用于航空、机械、电力、化工、建筑、医学等诸多领域。
传统的电阻应变式压力传感器的电阻敏感栅是刻录在一层绝缘脂薄膜上,而薄膜又通过粘结剂粘合到弹性基片上,由于弹性元件与粘结剂及绝缘脂膜之间的弹性模量不同,弹性元件的应变不能直接传递给敏感栅,而是要通过粘结剂、绝缘脂膜才能到达敏感栅,从而产生较大的蠕变和滞后,影响传感器的灵敏度、响应度、线性度等性能。另外,由于粘结剂不能在高温条件下使用,这也使它的应用范围受到限制。
为了消除绝缘薄膜层和粘结剂层对传感器性能的影响,可以尝试采用真空镀膜方法及光刻技术,在弹性元件上直接刻录敏感栅,弹性元件与敏感栅直接接触,以克服常规工艺导致的滞后和蠕变大的缺陷。另外,如果弹性材料和结构选择恰当,还可制成耐高温、耐腐蚀的全隔膜式薄膜压力传感器。
一、器件研制
采用真空镀膜技术在弹性基片上蒸镀一层约300nm金属栅材料的薄膜,用半导体光刻技术,在弹性基片上直接形成电阻敏感栅,最后利用耐高温、耐酸碱腐蚀的环氧树脂粘结剂,将制作好的芯片封装在工件中,组成压力传感器探头。经过热老化、电老化,待封装应力趋于稳定后,进行电性能测试。
在制作薄膜电阻应变式压力传感器中,采用的工艺流程如图3所示。
电阻测量论文范文3
关键词:单片机;交流阻抗特性;等效电路参数
中图分类号:TP216 文献标识码 A 本文由wWW. DyLw.NeT提供,第一 论 文 网专业写作教育教学论文和毕业论文以及服务,欢迎光临DyLW.neT
Design of Equivalent Circuit Parameter Analyzer for
Two Port Passive Circuit
TANG Zhengming1 , ZHANG Sanmei2 , Zeng Jing1
(1 School of Electronic Information and Engineering, China West Normal University, Nanchong Sichuan 637009,China;
2 Experiment Center, China West Normal University, Nanchong Sichuan 637009, China)
Abstract: Equivalent circuit parameter is very important for the process of circuit analysis and design. Based on the refined numerical algorithm of AC impedance, a digital equivalent circuit parameter analyzer is designed. In this system, MCU is used to control frequency synthesizer to generate excitation signal. By adjusting the capacitance and current trends , the load impedance characteristic is determined. Finally, the AC impedance and equivalent circuit parameter are displayed, which can be obtained under different operating frequency.
Keywords: MCU; AC Impedance Characteristics; Equivalent Circuit Parameters
0引 言
电路交流阻抗随信号源的频率变化,其具体表现为一定电阻R、电容C和电感L的串联、并联或混联在给定信号频率下所得到的等效阻抗。频率相对较高时,电路还可能产生相对较大的寄生电容、电感,从而出现寄生阻抗。如何快捷准确地获取电路在不同工作频率下的等效电路参数,对电路的分析与设计来说有着特殊重要的现实意义[1]。
已有的交流参数测试仪,其测量对象主要锁定在对交流电路频率、有效值、功率,或者单个元件阻值、电感量、电容量的测试,而对交流阻抗的智能化测量的探讨研究仍旧较少,且未曾涉及到负载为黑盒子电路(其可能为RLC元件,某用电器或电路模块,以下统称为负载电路)的等效参数测量[2-6]。本设计所实现的电路交流等效电参数分析仪的核心即为交流阻抗特性分析,通过采用单片机产生激励信号,能分析出给定工作频率下负载电路的交流阻抗特性,并进一步得到其等效电路参数。
1硬件电路
系统原理框图如图1所示。主要电路模块包括单片机(MCU)、放大电路、整流滤波电路、含双可调电容的RC振荡器等[7-8]。
图1 等效电参数分析仪原理图
Fig.1 Schematic diagram of equivalent circuit parameter analyzer
MCU的型号为MSP430F169。放大电路用于将采集到的弱信号放大,再送入整流滤波电路,便于单片机(MCU)接收识别,放大电路型号为AD620。整流滤波电路,用于将采样信号转化为单向脉动波并滤除附带产生的杂波信号,使有用信号免受干扰,易于下一级电路的操作处理。可变电容C结合555定时电路模块构成RC振荡器,所产生的信号频率送入单片机识别,进而确定出接入电路的电容值。其中,可调电容C与电路的连接通过开关控制,该可调电容C为特制的双可调电容(构成RC振荡器的电容与接入测量电路的电容相同,并由同一旋钮控制调节),这样,可在隔离电路影响的情况下,获得接入电路电容的精确值。 为定值电阻,主要起限流作用,如当电路串联谐振时,使电路电流不至于过大,损坏仪器。 为采样电阻,为小阻值锰铜电阻,用于将负载电流转换为电压信号,再送入放大电路。 为负载电路。
2算法设计
根据有效值、功率因素的计算结果[9],可得到电路总阻抗
(1)
其中, 、 、 分别表示电路电压有效值、电流有效值、功率因素。 的正负与负载的特性有关,若负载为非电容性;则 ,若负载为非电感性则 。令 ,则有
(2)
系统采用调节可变电容C并结合单片机采集到的电流大小变化情况的方法,确定(2)中的正负符号,即实现负载阻抗特性的判定。由于可调电容与被测负载并联,设被测负载的电导和电纳分别为 和 , 可调电容电纳为 ,其等效电路如图2所示。
图2 阻抗特性的判断原理图
Fig.2 Schematic diagram for the judgement of impedance characteristic当端电压有效值恒定时,电流有效值
(3)
即: (4)
可见,当 与 同号,即被测负载为电容性时,电容增大,电流 单调上升;而当 与 异号,即被测负载为电感性负载时,电容增大,电流 将先减小而后增大。因此,单片机可根据电容调节过程中采集到电流变化情况,判断出负载的阻抗特性。在此基础上,设负载 的等效阻抗为 ,由于测量电路为可调电容C与负载 并联,然后再与定值电阻 串联,根据电路串并联关系,则有:
(5)
联立(1)-(2)和(5),在已判断得到负载的特性的情况下,便可以解出 中的电阻R和电抗X。结合频率值即可得
(6)
(7)
因此,对于给定负载(如某单元电路),该测试仪能够获得给定工作频率下的交流等效电路参数,便于电路的分析与设计。
3 系统测试
系统设计完成后,通过键盘设定激励信号幅值和频率,调节电容旋钮,即可读出负载的等效电路参数。首先测试并选取了三个R、L、C电路元件,其参数值分别为10,10mH,1uF。再将电路元件安插在万用板上,借助万用板连接线使其形成简单的串联电路和并联电路,并同时具有典型的二端口结构,然后分别测试了信号频率为1KHz时,负载的等效电路参数。用 Idealization(I)和Test (T)分别表示理论值和测量值,结果如表1所示。
表1 测试结果
Tab.1 Test results
电阻() 电感(mH) 电容(uF) 串联(;uF) 并联(,mH)
I T I T I T I T I T
10 10.02 10 10.33 1 0.97 10 ; 1.65 9.97;1.59 9.91;0.15 10.04;0.23
测量 结果表明,在1KHz频率下,所搭建的串联电路具有阻容特性,而并联电路具有阻感特性。等效电路参数测量结果与理论值存在一定差异的可能原因主要在于:除工艺等因素外,导线等所引入的分布阻抗。
4 结束语
本文设计了一种电路交流等效电参数分析仪,可用于完成无源二端口电路的等效电参数测量。在测量交流等效参数时(特别在用作RLC测试仪的情况下),若测量频率较高,分布参数影响将较为显著,对低标称值元件的测量尤为不利。如何减小分布参数对测量结果的影响,还有待进一步研究。
参考文献:
[1]陈鹏,李固,边雁,等.采用RLC激励的EMAT圆柱探头设计参数分析[J].传感器与微系统2012,31(2):77-80. 本文由wWW. DyLw.NeT提供,第一 论 文 网专业写作教育教学论文和毕业论文以及服务,欢迎光临DyLW.neT
[2]王秀霞 电阻电容电感测试仪的设计与制作[J].电子技术,2012,30(2):47-49.
[3]任斌, 余成, 陈卫等.基于频率法和 MCU 的智能 RLC测量仪研制[J].微计算机信息,2007,23(10):129-130.
[4]陈小桥,黄恩民,张雪滨,等.基于单片机与 AD9851 的信号发生器[J].实验室研究与探索2011,30(8):98-102.
电阻测量论文范文4
论文关键词:实验,教学,评估
《物理课程标准》大力倡导探究性教学,因此新课改教材中安排了许多探究实验。笔者发现在实际的探究过程中,相当一部分教师只重视实验过程和实验结论的得出,而忽视了“评估”环节。致使实验不够完善且严重束缚了学生的批判性思维和创新思维的发展。其实评估就是对探究行为和获取信息的可靠性、科学性从更严密的角度反思的过程,是不可缺少的探究要素。下面以“探究实验”为例谈一下实验教学中“评估”的作用:
一、评估实验设计,优化实验方案
在设计实验的过程中,为了达到实验目的,可有不同的实验方案。由于实验仪器精确度不同或实验方法不同导致实验误差也不同。为了使实验结果更精确,在实验过程中应引导学生评估实验方案,比较每一种方案的优劣,使实验方案达到最优化。例如:在探究“用天平和量筒测盐水密度”的实验中,学生设计了多种实验方案,典型的有如下三种:
方案一:①用天平称出空烧杯的质量m1;②将盐水倒入烧杯中,用天平测出烧杯和盐水的总质量m2;③将烧杯中的盐水全部倒入量筒中,测出盐水的体积V;④求出盐水的密度ρ=(m2-m1)/V。
方案二:①用天平称出空烧杯的质量m1;②将适量盐水倒入量筒中,测出盐水的V;③将量筒中的盐水全部倒入烧杯中,用天平测出烧杯和盐水的总质量m2;④求出盐水的密度ρ=(m2-m1)/V。
方案三:①将盐水倒入烧杯中,用天平测出烧杯和盐水的总质量m1;②将部分盐水倒入量筒中,用天平测出烧杯和剩余盐水的总质量m2,同时测出倒出盐水的体积V;③求出盐水的密度ρ=(m1-m2)/V。
上述三个实验方案测量结果的精确度是不同的,方案一中向量筒中倒盐水不可能将盐水全部倒尽,烧杯内壁要残留一些盐水,使测量的盐水体积偏小,密度偏大;方案二中向烧杯中倒盐水不可能将盐水全部倒尽初中物理论文,量筒内壁要残留一些盐水,使测量的盐水质量偏小,密度偏小;方案三则不存在前两种方案的弊端,测量结果更接近真实值。
二、评估操作细节,改进操作方法
在进行探究实验的过程中,学生的操作过程并不是那么顺利,有的小组由于操作方法不当,而有的小组由于实验操作技能差,不能成功的完成实验。通过对实验操作细节进行评估,可提高学生实验操作技能,确保实验成功。
例如:在探究“摩擦力大小与哪些因素有关”的实验中,在分析数据时发现各小组实验数据差异较大。此时积极引导学生评估并改进实验操作:实验时弹簧测力计不易保持匀速,运动中的弹簧测力计也不易读数。进一步引导学生改进:把弹簧测力计用手拉的那端固定在一固定处,人的拉力作用在木块下端的木板上,当拉动下端的木板运动时,上端的木块相对下端的木板发生相对运动,木块受到木板施加的滑动摩擦力。而木块所受到的滑动摩擦力的大小与木板的运动速度并没有关系,只要木块相对木板有发生相对运动,木块所受的即为滑动摩擦力。根据二力平衡可知,弹簧测力计的示数等于木块所受的滑动摩擦力的大小论文服务。实验中弹簧测力计是静止的也容易读数,实验误差小。
三、评估实验现象(数据),规范操作习惯
在探究实验时可能有一些意外的实验现象(数据)被学生观察到,教师应及时引导学生评估实验现象(数据),加深学生对实验规范的认识,甚至获取意外的收获,使实验得到深化。例如:在“用电流表测电流”的实验中,某同学按电路图接好电路,闭合开关后,发现电流表A1的示数比电流表A2的示数要大一些。于是他认为:当电流通过灯泡时,由于灯泡要消耗电能,所以电流在流动过程中将逐渐变小。 实际上,电流表的示数不同,可能有多种原因,如电流表使用了不同量程、电流表在接入电路之前没有调零等情况有关。这就需要我们根据实验现象,及时的审视我们的操作规范和操作习惯,得到真正有效的数据。
四、评估实验结论,提高归纳能力
由于学生自身学业水平的不足和对实验方法的掌握不熟练,学生通过对记录表中数据的计算、分析、比较后得到的结论, 往往具有片面性甚至是错误的,这就需要我们对实验结论进行评估,以得到具有普遍性的规律和结论,并逐步提高学生的归纳能力。
例如某小组探究“杠杆的平衡条件”所记录的数据,发现动力与动力臂的和等于阻力与阻力臂的和,由此他得出杠杆的平衡条件是:动力+动力臂=阻力+阻力臂, 实验数据本身没有问题,结论的数学关系也成立。但是物理意义不成立,两个不同的物理量不能够直接相加。造成学生误解的原因是利用特殊的数据得出了特殊的数学关系,实验数据应该充分考虑到特殊性和一般性初中物理论文,试验的时候,要尽量利用一般的数据进行测量,以便得到正确的实验结论,特殊的实验数据有助于对问题的理解,但不能对于特殊数据依赖。
五、评估实验功能,拓展思维空间
为了达到某一实验目的,我们都设计相应的实验来进行。如果我们用逆向思维来思考,是不是同一实验可以达到多个实验目的,使实验潜能得到最大限度的发挥,同时也拓展了学生的思维空间。例如:探究“用电压表和电流表测小灯泡电阻”的实验,实验中需测出小灯泡两端的电压和通过小灯泡的电流,然后利用公式R=U/I求出电阻,最后取多次测量的平均值。但根据公式P=UI,上述实验测出来的物理量也可测小灯泡的电功率,只不过应调节变阻器使小灯泡两端电压低于额定电压、等于额定电压、高于额定电压,测量结果不取多次测量的平均值。细心的同学不知是否还发现,每次求出的小灯泡的电阻值是不同的,且小灯泡越亮电阻值越大。这说明小灯泡电阻与温度有关,温度越高,电阻越大,可见此实验还可研究电阻与温度的关系,真可谓一举三得。
综上所述,在实验教学中积极引导学生评估,能极大地提高学生的探究能力,对于深化实验、完善实验、拓展实验有着重要作用。今后我们将更加努力地创新实验教学,为物理教学改革贡献自己的一份微薄之力。
电阻测量论文范文5
关键词:电流检测、罗氏线圈、通断试验
中图分类号:TM152文献标识码: A
研究现状
近年来,我国低压电器行业出现了巨大的变化,低压电器的检测技术也随之被推向了快速发展的阶段。这就对试验检测设备的试验和测量速度、精度都提出了更高的要求。传统的试验方式中,电流检测装置主要采用带有铁心的电磁式电流互感器,其体积大、频带窄、防爆绝缘困难,且在大电流下铁心磁路易饱和,对测量结果产生较大的误差[1]。而近年来,随着电气技术和计算机技术的普遍应用,国内外普遍采用了精度更高、更为可靠的数据测量,其中优势比较明显的就是运用罗柯夫斯基线圈(Rogowski线圈,以下简称罗氏线圈)技术的测量方式[2]。
罗氏线圈作为电流传感元件,具有测试频带宽、无磁饱和、结构简单等一系列优点,成为测量脉冲电流的理想元件[3]。本文首先阐述了罗氏线圈结构特点,通过感应电势、电磁等参数推导,得出罗氏线圈等效电路计算方法,从而得出罗氏线圈的基本设计流程,设计出满足低压电通断试器验要求的罗氏线圈。
1 罗氏线圈的结构特点
罗氏线圈的骨架芯由非磁性材料制成,截面均匀并具有环形结构,在制作罗氏线圈时,线圈沿骨架芯均匀紧密缠绕足够匝数后,再在线圈的末端接上终端电阻,用Rs表示。罗氏线圈的另一特点即“回绕”结构,也就是当线圈沿着闭合曲面环绕到终点后,需要回绕至起点。
如果用于测量大电流,罗氏线圈通常选用空心骨架芯,而如果测量一个小的稳态电流时,则骨架芯通常会选择铁磁材料,目的是使感应信号的强度增强。这种“回绕”的结构是罗氏线圈的关键特征,在实际使用中,我们应根据罗氏线圈所要测量的目标和工作场所来确定骨架芯选用何种材料[4]。
2罗氏线圈的参数
2.1 罗氏线圈的感应电势
设罗氏线圈一次被测主电路电流为,匝数为,线圈直径为,线圈二次侧测量电路电流为,匝数为,缠绕的小线匝直径为,可推导罗氏线圈感应电动势为[5]:
=-=-=-M(1)
式中为一次回路和二次回路的互感为:
(2)
其中:其中为真空磁导率;
S为小线匝截面: S=
=
由此可知,罗氏线圈的感应电势与被测电流的变率成正比,被测电流导体和罗氏线圈之间的互感就是其比例系数,由此可见,当采用罗氏线圈进行测量以期望获得被测电流的物理量时,必须先将罗氏线圈二次回路通过后续积分电路进行还原处理。
2.2罗氏线圈结构和电磁参数
设b是罗氏线圈骨架芯外径,a是内径,为骨架中心半径。与线圈的互感系数和自感系数有关。推算的方法有取算术平均值、几何平均值和取加权几何平均值几种方法,其中取加权几何平均值是最复杂的,但也是精度最高的,公式为[6]:
= (3)
罗氏线圈骨架芯截面形状分为矩形和圆形两种,下面以矩形线圈的结构参数和电磁参数为例进行分析,以了解它们之间的影响以及它们罗氏线圈的动态特性之间的关系。
当骨架芯为矩形截面时,c和h分别表示罗氏线圈的轴向高度和径向厚度,D是直径。则一匝磁通可表示为[7]:
(4)
可推得线圈的互感系数为:
= (5)
其中为矩形横截面积:
(6)
把互感系数为理论值,则矩形截面时线圈的互感系数与自感系数的相对误差即可得出:
(7)
(8)
由以上推论可以看出,对于矩形截面骨架芯的罗氏线圈来说,与互感系数和自感系数的相对误差有关的参数是线圈的参数径向厚度h和中心半径,而和轴向高度c没有关系。
综上所述,对于矩形截面骨架芯的罗氏线圈,在互感系数的相对误差符合要求并且别的尺寸参数不变时,可以改变轴向高度c,以提高磁通量从而可以显著增加感应信号的强度。
2.3 罗氏线圈等效电路计算
以矩形截面骨架芯为例,推导下罗氏线圈结构参数和线圈内阻之间的关系,设(a、b分别为截面内外径),综合推导[8]推出线圈内阻表达式:
(9)
其中是线圈所缠绕导线的直径,是导线的电阻率。
如果线圈小线匝采用紧密缠绕方式时,此时可以认为:
(10)
带入(9)式可得:
(11)
以表示线圈的自感系数、为内阻、代表分布电容,为线圈终端电阻。和分别表示被测电流和线圈感应电流,的端电压用表示。可推导出如下各式:
(12)
(13)
(14)
将(12) 、(13) 、(14)联立化简可得:
(15)
综合参考罗氏线圈稳态误差[10],可得出最佳取值:
(16)
2.4 罗氏线圈分布电容的分析计算
由罗氏线圈最佳终端电阻公式可以看出,线圈的分布电容对于分析罗氏线圈的动态特性具有重要意义,对的预先简单的估算可以有效缩短罗氏线圈的设计周期,降低设计成本。
在此以矩形截面圆柱体形状的罗氏线圈为例,在实际的罗氏线圈中,其骨架芯的内径a和外径b的差值是很小的,也就是说h值比较小。罗氏线圈可以看做一个圆柱形电容器,因为其外层屏蔽层和线圈的一端连接并接地,所以罗氏线圈组成的电容器两极就是线圈本身导电电路和屏蔽层。
如果不考虑边缘效应,可以把介质里的每点的电场看做均匀分布,方向与半径方向一致。如果不计电场的切向分量,按照对称的关系,各处电场的方向与导线方向垂直。
罗氏线圈的分布电容表达式为[11]:
(17)
其中是罗氏线圈导线的直径,为真空介电常数,表示绝缘层介质相对介电常数。
3 罗氏线圈的设计
通过以上对罗氏线圈各参数的分析计算,我们可以理出设计罗氏线圈的一个基本思路,主要流程具体步骤如下:
1、综合分析被测对象特点,如频率、幅值大小等特性;
2、分析选择线圈骨架芯,确定适合截面;
3、优选罗氏线圈结构参数;
4、推算线圈匝数n和线圈芯线的直径;
5、推算线圈的自感系数、互感系数
6、推导线圈内阻;
7、推导罗氏线圈分布电容;
8、优选罗氏线圈的终端电阻;
9、结合上述结论,以试验系统的需求为标准,通过不断的实践考核,不断改进设计,完善细节。
4 总结
本章主要是通过对罗氏线圈的参数分析,并结合相关参考资料的分析,系统总结出罗氏线圈的构造特性,从而归纳出罗氏线圈的基本设计流程,据此设计出满足低压电器通断试验要求的罗氏线圈。
【参考文献】
[1] 方鸿发. 低压电器及其测试技术[M]. 机械工业出版社,1982
[2] 张郁. 一种基于低频补偿的脉冲大电流测试方法研究[D].南京理工大学硕士论文. 2014
[3] 丁正平. 低压大容量试验和测试技术水平综述[J]. 低压电器,1994(1):3-11
[4] 罗苏南, 田朝勃, 赵希才. 空芯线圈电流互感器性能的分析[J]. 中国电机工程学报. 2004, 24(3):107~113
[5] 王其生. 用罗柯夫斯基线圈组成电流互感器[C]. 第四届全国智能电器研讨会论文集, 2000:59~64
[6] 张红岭. Rogowski 线圈的研究与设计[D]. 河北: 燕山大学硕士论文. 2006.4~5
[7] 邹积岩, 段雄英, 张铁. 罗柯夫斯基线圈测量电流的仿真计算及实验研究[J].
电工技术学报. 2001, 16(1):81~84
[8] 黄浩, 陆继明, 毛承雄, 利瓦伊波. Rogowski 线圈结构参数仿真研究[J].Proceedings of the EPSA. 2004,
[9] 邱红辉. 电子式互感器的关键技术及其相关理论研究[D]. 大连: 大连理工大学硕士论文. 2008:5~6
电阻测量论文范文6
【关键词】 扩展卡尔曼滤波观测器 异步电机转子转速检测 鲁棒性
交流异步电动机具有结构坚固,造价低廉,工作可靠等突出优点。为了解决电机断电情况下再启动时产生的极大力矩损害电机的问题,高性能电机驱动系统通常采用矢量控制等驱动控制策略,这些控制策略需要了解转子的速度以实现磁场定向。为了克服机械式传感器给系统带来的缺陷,转子转速检测技术应运而生。
作为转子转速检测技术的一种,扩展卡尔曼滤波器(EKF)由R.E.Kalman在1960年提出[1],之后在各个领域获得了广泛的应用。扩展卡尔曼滤波器实际上是一个全阶状态观测器,通过使用含有噪声的信号对非线性系统进行实时递推获得最优状态估计。由于其可实现性强、方法简单、收敛迅速等优点,逐渐成为非线性系统状态估计中应用广泛的算法。EKF法避免了微分运算,采用一种迭代形式进行非线性估计,通过调节误差协方差阵来调节状态估计的收敛速度[2-3]。 此外,与其它转速估计算法相比,扩展卡尔曼滤波器法有非常强的抗干扰能力。由于EKF是建立在系统的随机过程模型上,因此针对交流异步电机模型的非线性性和不确定性,EKF估计性能优越,表现出较好的鲁棒性和抗噪能力,成为目前异步电机转速估计问题研究的热点[4-5]。
文献[6]利用扩展卡尔曼滤波器,将转子转速看成一个状态量,通过测量电机定子侧的端电压和电流在线估计电机转子速度,文章研究了采样周期、滤波器参数和电机参数对转速在线估计性能指标的影响,通过仿真实验对比分析证明该方法进一步优化了用扩展卡尔曼滤波器对电动机转速的辨识。
由于电机是一个非线性、多变量、强耦合的系统,电机参数也会受到温度及磁场的影响,因此如何获得准确的电机参数,建立较为精确的数学模型,在异步电机的高动态性能控制系统中显得尤为重要。许多学者也进行了参数变化对矢量控制影响的分析,文献[7]中 C.Attaianese等对参数变化产生的无速度传感器转速估计的影响进行了研究,通过推导异步电机的转速表达式,把转速表示成电机参数的因变量,进而分析电机各参数变化对转速估计的影响。
本论文的主要工作就是设计实现EKF观测器对转子转速的检测,对EKF对于电机参数变化之鲁棒性进行分析及改进。
1 EKF观测器的设计与实现
EKF观测器方程建立,EKF原理是基于非线性系统,利用估计误差实时修正观测器的增益矩阵(K),以得到优化的状态估计向量。EKF观测器在建立方程的过程中引入了噪声量,以下系统状态方程的表达[8]:
上式中w(t)与v(t)为方差为Q(t)和R(t)、零均值的高斯白噪声。我们将其表达为:
,
观测器的建立分为三步:
初始化:,
预测:
更新:
定义状态方程如下:
,
,
式中F(t)与H(t)为函数f的雅克比矩阵:
,
EKF观测器Simulink建模下图为异步电机与EKF观测器Simulink模型。
2 加入电机参数估算器的EKF原理
加入定子电阻估算器的EKF原理,为了优化EKF对于定子电阻值变化的鲁棒性,我们向系统中添加定子电阻估算器,即将电机定子电阻添加到电机状态向量中。
我们设定:
我们注意到在中只有变量中存在电机定子电阻Rs量。同时加入定子电阻、电感估算器的EKF原理为了完善EKF观测系统,在这一节中我们将要建立一个同时对异步电机定子电感值实时检测的系统。这个系统与前面加入定子电阻估算器的EKF观测器合二为一。在上两节方程的基础上我们设定:
因此:
3 仿真和实验结果
异步电机参数如下:定子电阻Rs=26.9mΩ,定子电感Ls= 6.67mH,转子电阻Rr=6mΩ,转子电感Lr=6.67mH,互感M= 6.5mH,电机转动惯量J=20kg.m2,摩擦系数fv=0.1N.m.s,电机极数p=2。在EKF观测器的设计中,虽然是基于电机确定性的方程,但存在定子电流和定子电压的测量误差,这些不确定性和测量误差都纳入协方差矩阵Q和R中。本论文中对EKF观测器实现的仿真中: Q(t)=diag(1,1,1,1,5000),R(t)=diag(0.52,0.52)。误差协方差预报阵的初始值P0=diag(0,0,0,0,24649)。在加入Rs估算器为改进EKF观测器鲁棒性的仿真实验中:Q(t)=diag(1,1,1,1,106,10(0)6),R(t)=diag(0.52,0.52),P0=diag(0,0,0,0,10000,100)。在加入Rs与Ls估算器为改进EKF观测器鲁棒性的仿真实验中:QRs(t)=diag(1,1,1,1,107,105),QLs(t)=diag(1,1,1,1,100),R(t)=diag(0.52,0.52), P0Rs=diag(0,0,0,0,10000,0),P0Ls=diag(diag(0,0,0,0,1)。在电机断电的过程中定子电阻会随时间的推移而发生变化,本论文在验证EKF观测器对电机参数变化之鲁棒性的试验中设定定子电阻为实际值的1.2倍,在通过加入Rs估算器对EKF观测器进行改进的的仿真实验中定子电阻设定为由1.3Rs至Rs的线性变化。
图1为EKF观测器在无电机参数变化的情况下对转子转速信息检测的实验结果,验证了EKF观测器的可行性。
4 结语
本文研究了基于EKF观测器的异步电机转子转速检测方法对于电机参数变化之鲁棒性并提出了优化方案。在EKF观测器系统中添加电机参数估算器,实时对对应变量进行更新以优化观测器增益矩阵能够很好的解决该参数对观测器效率的影响。仿真结果显示,在观测器系统中添加定子电阻及定子电感估算器之后EKF观测器可精确估计转子转速及相对应的电机参数,但观测速度有所下降,因此在实际应用中应该考虑电机参数估算器与EKF观测器系统相关参数耦合的影响,以达到提升EKF观测效率提升的目的。
参考文献:
[1]R. E. Kalman,A new approach to linear filtering and prediction problems.Taransaction of the ASME-Journal of Basic Engineering[J],1960:35-45.
[2]Barut Murat,Bogosyan O.Seta, Gokasan Metin.An EKF-based estimator for the speed sensorless vector control of induction motors[J].Electric Power Components and Systems,2005,33(7):727-744.
[3]Fea-Jeng Lin.Application of EKF and RLS estimators in induction motor drive[C].PESC'96 Record,27th Annual IEEE,1996,1:713-718.
[4]张猛,肖曦,李永东.基于扩展卡尔曼滤波器的永磁同步电机转速和磁链观测器[J].中国电机工程学报,2007(36):36-40.
[5]Barut Murat,Bogosyan O.seta,Gokasan Metin.EKF based estimation for direct vector control of induction motors[C].IECON Proceedings,2002,2:1710-1715.
[6]Young-Seok Kim,Sang-Uk Kim,Lee-Woo Yang.Implementation of a speed-sensorless control of induction motor by reduced-order extended Kalman filter[C].APEC'95,Conference proceedings, 1995,1(10):197-203.
[7]C.Attaianese,G.Fusco,I.Maronfiu.and A.Perfetto.Parameter sensitivity of speed estimation in speed sensorless induction motor drives[C].Advanced Motion Control.AMC'96-MIE.Proceedings,1996,1:162-167.