量子化学论文范例6篇

前言:中文期刊网精心挑选了量子化学论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

量子化学论文

量子化学论文范文1

关键词 青蒿素;定量构效关系;多元线性回归

中图分类号 TQ463 文献标识码 A 文章编号 1673-9671-(2012)062-0214-02

近年来,随着计算机计算软件日益成熟,利用计算机绘图软件进行辅助药物设计,已经成为比较热门的研究方向,这种趋势在制药业尤其明显。计算机辅助药物设计这门新兴的边缘学科已经逐渐占领了药物开发的制高点,主要原因是利用其具有明显缩短研发人员开发药物的时程,降低成本,药性定向准确等多项优点,恰能解决以往开发新药所遭遇的缺失。

青蒿素发现以来,人们进行了大量的药理学研究。结果表明青蒿素对疟原虫红内期有直接的杀伤作用,而对组织期无效。药物化学工作者对青蒿素结构进行了大量的修饰合成,但是方向不是很清晰,目前在临床上应用的比较普遍衍生物包括蒿甲醚、青蒿琥脂、二氢青蒿素、蒿乙醚。另外部分青蒿素类似物虽然体外活性较高,但是由于毒性较高,暂时无法开发成临床药物。利用计算机软件服务平台,进行量子化学计算和QSAR研究将为开发利用度较高的青蒿素类似物或衍生物指引方向。

香港大学与拜尔公司合作开发研制得到一系列新的青蒿素衍生物,其结构及活性数据如下表所示。本文将用量子化学密度泛函理论结合QSAR方法对该系列青蒿素衍生物的量子化学结构性质进行计算分析,最终找到这一系列青蒿素衍生物的量化性质与其抗疟活性的关系。

1 计算方法

实验采用将9组化合物的构型先进行优化,首先采用Materials_Studio3.2软件中分子力学模块进行几何构型优化,然后将分子力学优化好的分子用Dmol3工具再进行几何构型的优化,最后用Dmol3对用Dmol3优化完成的分子进行量化参数计算。将绘制完成的分子结构用MS中的分子力学工具进行中等精度的几何优化。

2 计算结果(见表2、3、4)

3 实验结果

用活性体积、键长、HOMO的平方对PEC90进行多元线性回归分析,设定最小相关系数:0.90000000进行拟合。青蒿素类药物的抗疟活性与分子量化参数的QSAR关系式:

PEC90多元回归方程:Y = 152.419845316 * [(HOMO)2] - 6.671025217

PEC50多元回归方程:Y = 146.814332722 * [(HOMO)2] - 6.314422185

4 结论

1)10位取代和氮杂衍生物的活性比9位取代衍生物的抗疟活性高。

2)青蒿素类药物的抗疟活性和分子的HOMO本征值的平方成正比。

3)过氧键的给电子能力直接影响化合物的抗疟活性。可以用来通过计算一些新颖的青蒿素类化合物的量化参数(HOMO的本征值)来计算预测其抗疟活性。

参考文献

[1]张珉,张万年,宋云龙,盛春泉.全新药物设计方法的新进展[J].药学进展,2003,6(27):327-332.

[2]蒋华良,陈凯先,嵇汝运.计算机辅助药物设计正在走向成功[J].生命科学,1996,4(8).

[3]曾宪栋.青蒿素类抗疟药定量构效关系研究[J].2004硕士论文,华南师范大学.

量子化学论文范文2

英文名称:Journal of Molecular Catalysis

主管单位:中国科学院

主办单位:中国科学院兰州化学物理研究所

出版周期:双月刊

出版地址:甘肃省兰州市

种:中文

本:大16开

国际刊号:1001-3555

国内刊号:62-1039/O6

邮发代号:54-69

发行范围:国内外统一发行

创刊时间:1987

期刊收录:

CA 化学文摘(美)(2009)

CBST 科学技术文献速报(日)(2009)

Pж(AJ) 文摘杂志(俄)(2009)

中国科学引文数据库(CSCD―2008)

核心期刊:

中文核心期刊(2008)

中文核心期刊(2004)

中文核心期刊(2000)

中文核心期刊(1996)

期刊荣誉:

Caj-cd规范获奖期刊

联系方式

量子化学论文范文3

关键词:物理专业;研究生;创新能力

中图分类号:G643 文献标志码:A 文章编号:1674-9324(2016)19-0106-02

一个国家的国民创新能力决定了这个国家的未来命运,一个缺乏创新能力的民族无法在全球化的信息时代中屹立于世界民族之林。在经济与社会快速发展的今天,国民的创新意识与创新能力日益成为衡量一个国家国际竞争力的决定性因素。《国家中长期教育改革与发展纲要(2010-2020)》提出了对创新人才的培养要求:创新人才培养模式。适应国家和社会发展需要,遵循教育规律和人才成长规律,深化教育教学改革,创新教育教学方法,探索多种培养方式,形成各类人才辈出、拔尖创新人才不断涌现的局面。

在全面推进建设创新型国家的中国,培养具有创新能力的高级人才业已成为高等教育面临的紧迫任务。高等院校作为培养创新型人才的摇篮,在培养适应社会发展需要的高素质人才过程中起着不可替代的作用。研究生历来是推动国家经济发展和知识创新的中坚力量,是高等院校中创新意识非常活跃的生力军,研究生创新能力的优劣直接影响着国家整体的自主创新能力,也是建设创新型国家成败的关键所在。

在高等教育扩招的背景下,近年来的研究生招生数量快速增长。研究生招生规模的扩大导致了研究生培养质量的下滑,突出的表现就是研究生创新意识和创新能力的不足。如何培养研究生的创新能力成为研究生教育的重点和难点。《国家中长期教育改革与发展纲要(2010-2020)》对于研究生的培养指出:“大力推进研究生培养机制改革。建立以科学与工程技术研究为主导的导师责任制和导师项目资助制,推行产学研联合培养研究生的‘双导师制’。实施‘研究生教育创新计划’。加强管理,不断提高研究生特别是博士生培养质量”。众所周知,物理学作为自然科学的基础之一,是人类在认识自然和生产实践中形成的学科。物理学主要是研究物质的组成、物质之间的相互作用以及物质运动规律的科学。物理学规律具有普遍性,已经应用到其他自然科学领域,不仅丰富了人们对客观规律的深刻认识,而且促进了工程技术学科的进步。因此,在国家创新体系下探索出一个适合物理专业研究生创新能力培养的方案,不仅在研究生培养的理论和实践方面都有着重要性,而且对于促进我国研究生培养质量方面有着示范性和借鉴意义。笔者认为,培养物理专业研究生的创新品质和创新精神应该着重从以下五个方面入手。

一、以培养研究生创新能力为宗旨的课程设置

研究生创新能力培养的构成要素首先是研究生所学课程的合理设置。物理专业研究生必须学习本专业的基础课程,最大程度地理解和掌握基本理论,这为进一步培养创新能力奠定了坚实的基础。如果只是一味强调如何培养创新能力,而缺乏对物理学知识的理解和掌握,创新能力的培养就成为无本之末和空中楼阁。这就要求在研究生的课程设置必须兼顾基本知识掌握和创新能力培养并重的原则,每门课程必须包含基础知识和涉及该课程科学发展前沿两个部分的内容,使学生不仅掌握本门课程的基础知识,而且理解基本原理与当代科技发展前沿的内在联系,这对培养物理专业研究生的创新能力是非常有帮助的。《高等量子力学》是物理专业研究生的一门必须课,以往的教学内容只注重基本量子知识的传授,割裂了基本原理与科技前沿的联系,所以,应该把基础知识与现代量子物理的最新研究成果(例如量子计算、量子通讯、量子材料等)结合起来讲解,使学生深刻体会量子物理的巨大应用潜力。同时,改变过去单纯的只注重传授知识的教学模式,加强研讨式教学,鼓励学生在教学活动中积极参与课堂教学,使学生成为创新活动的主体,不断培养学生的创新意识。

二、注重导师在研究生创新培养过程中的角色

在培养物理专业研究生的创新能力方面,必须重视导师的学术水平、创新意识、责任意识所起的至关重要的作用。研究生的教学活动与本科教学有着很大不同,导师的“教”与研究生的“学”几乎是一对一的,这就要求导师必须能够熟谙物理学科的基本知识,掌握本专业的发展前沿,只有这样才能在教学活动中做到理论与实践相结合,引导学生走到学科发展的最前沿。导师具有较高学术造诣的同时,也必须具有较强的创新意识。优秀的导师必须是一个具有较强创新意识的出色的研究者,在指导学生的科研过程中把学生引入到学科领域和科研前沿,以教师的创新意识和责任意识指导学生进行科研选题、收集资料、寻找问题的突破口,在科研过程中帮助学生逐步具备创新品质和创新精神。

三、在科研项目研究中培养学生的创新能力

《国家中长期教育改革与发展纲要(2010―2020)》提出了对研究生的创新能力培养的要求:“促进科研与教学互动、与创新人才培养相结合。充分发挥研究生在科学研究中的作用。”完成科研项目是科学研究活动中的重要方面。科研项目支撑着研究生的创新教育,让研究生积极参与导师的科研项目,引导研究生利用所学的物理理论和物理思维方法解决科研项目中的一些问题,培养研究生发现问题、分析问题以及解决问题的能力,激发研究生的学习和创新热情,不断培养其创新意识、创新思维和创新能力。例如,自从2010年石墨烯的发现获得诺贝尔物理学奖以来,很多研究生导师都在从事二维量子材料的基础和应用研究。在研究生学习完《固体物理》的相关知识后,导师可以引导学生解决一些二维量子材料课题研究所遇到的问题,在科研项目中培养研究生善于发现问题、独立思考、理论与实践相结合的创新实践能力。

四、注重物理学与其他学科交叉优势对培养研究生创新能力的作用

当今世界的科技发展日新月异,新发现、新技术和新产品层出不穷,这些新成果几乎都与物理学的发展紧密相关。物理学的思考方法和研究方式几乎渗透到了自然科学和工程技术的每一个领域。物理学与其他学科的融合形成很多交叉学科,例如:量子化学、量子信息学、生物物理、物理化学等。学科交叉往往成为科学发现的增长点并且能够产生新的前沿,一些重大的科学突破往往在交叉学科中产生。例如,2014年诺贝尔化学奖的三位获奖者的获奖原因是“发展了超高分辨率荧光显微镜”。光学显微镜的研究本属于物理学研究范畴,但其在化学和生物学的研究中已被广泛应用。如何突破光学中阿贝成像原理,把光学显微镜的分辨率推进到纳米尺度是化学和生物学领域研究中的难题。三位科学家利用荧光分子,机智地解决了这一难题,带来了光学成像技术的革命。这一获奖成果是物理、化学和生物学的高度交叉所产生的重大科学突破的典型范例。因此,在研究生课程的设置中适当设置一些与物理学交叉的课程,鼓励学生跨学科选学一些适当课程,同时参加一些跨学科的学术活动,这有助于完善研究生的知识结构,形成良性的创新思维和创新品格,激发研究生的创新热情,拓展新的研究领域,不断培养研究生的创新能力和创新精神。

五、建立完善的研究生创新能力评价体系

研究生经过了阶段性的基础知识学习和创新能力训练后,其结果如何,必须给予适当的评价。完善的评价体系不仅对研究生个人起着引导作用,而且对研究生教育有着导向作用,甚至影响培养研究生创新能力方案的制定。对于物理专业的研究生而言,须对研究生基本物理知识的理解和掌握、阅读文献、文献综述、论文选题、开题报告、论文撰写、论文答辩等培养环节制定详细的评价细则,具有合理性、可行性和创新性的评价体系能够从制度上引导研究生树立创新意识、培养创新思维和创新精神、开展创新研究工作。

总之,研究生创新能力的培养是一个系统工程,取决于多方面因素的有效结合,营造良好的创新环境和制定合理的培养方案,是培养具有创新品质研究生的有力保证。

参考文献:

[1]廖和平,高文华,王克喜.高校研究生创新能力培养的审视与思考[J].学位与研究生教育,2011,(9):33-37.

[2]王得忠,胡荣.研究生创新能力培养的环境因素分析[J].学位与研究生教育,2007,(6):22-24.

[3]雷彩虹,王晟,王P.硕士研究生创新能力培养中存在的问题与对策[J].浙江理工大学学报,2014,(5):433-440.

[4]赵灿.从交叉学科角度论研究生创新能力培养[J].当代教育理论与实践,2011,(4):68-70.

[5]王伯平,王晓慧,武关先,袁文旭.教改与研究生创新能力培养相结合的探索[J].机械管理开发,2012,(6):159-160.

[6]李忠.研究生创新能力培养面临的五重障碍[J].学位与研究生教育,2010,(10):47-52.

[7]王向宇,贾振安,郭,高红,樊伟.我国研究生创新能力培养研究[J].教育探索,2013,(35):104-105.

[8]张义顺,廖建国.研究生创新能力培养探讨[J].大学教育,2013,(7):11-12.

[9]嵇英华,刘咏梅研究生培养中导师团队的建设与思考[J].中国电力教育,2013,(26):14-17.

量子化学论文范文4

古希腊人把所有对自然界的观察和思考,笼统地包含在一门学问里,那就是自然哲学.科学分化为天文学、力学、物理学、化学、生物学、地质学等,只是最近几百年的事.在牛顿的时代里,科学和哲学还没有完全分家.牛顿划时代的著作名为“自然哲学的数学原理”,就是一个明证.物理学最直接地关心自然界最基本规律,所以牛顿把当时的物理学叫做自然哲学.17世纪牛顿在伽利略、开普勒工作的基础上,建立了完整的经典力学理论,这是现代意义下的物理学的开端.从18世纪到19世纪,在大量实验的基础上,卡诺、焦耳、开尔文、克劳修斯等建立了宏观的热力学理论;克劳修斯、麦克斯韦、玻耳兹曼等建立了说明热现象的气体分子动理论;库仑、奥斯特、安培、法拉第、麦克斯韦等建立了电磁学理论.至此,经典物理学理论体系的大厦巍然耸立.然而,正当大功甫成之际,一系列与经典物理的预言极不相容的实验事实相继出现,人们发现大厦的基础动摇了.

在这些新实验事实的基础上,20世纪初,爱因斯坦独自创立了相对论,先后在普朗克、爱因斯坦、玻尔、德布罗意、海森伯、薛定愕、玻恩等多人的努力下,创立了量子论和量子力学,奠定了近代物理学的理论基础.本世纪随着科学的发展,从物理学中不断地分化出诸如粒子物理、原子核物理、原子分子物理、凝聚态物理、激光物理、电子物理、等离子体物理等名目繁多的新分支,以及从物理学和其它学科的杂交中生长出来的,诸如天体物理、地球物理、化学物理、生物物理等众多交又学科.什么是物理学?试用一句话来概括,可以说:物理学是探讨物质结构和运动基本规律的学科.尽管这个相当广泛的定义仍难以刻画出当代物理学极其丰富的内涵,不过有一点是肯定的,即一与其它科学相比,物理学更着重于物质世界普遍而基本的规律的追求.物理学和天文学由来已久的血缘关系,是有目共睹的.当今物理学的研究领域里有两个尖端,一个是高能或粒子物理,另一个是天体物理.前者在最小的尺度上探索物质更深层次的结构,后者在最大的尺度上追寻宇宙的演化和起源.可是近几十年的进展表明,这两个极端竟奇妙地衔接在一起,成为一对密不可分的姊妹学科.物理学和化学从来就是并肩前进的.

如果说物理化学还是它们在较为唯象的层次上的结合,则量子化学已深人到化学现象的微观机理.物理学和生物学的关系怎么样?对于如何解释生命现象的问题,历史卜有吁两种极端相反的看法:一是“生机沦”,认为生命现象是由某种“活力”主宰着,水远不能在物理和化学的基础上得到解释;另一是“还原论认为一切生命现象都可归结(或者说,还原)为物理和化学过程.1824年沃勒成功地在实验室内用无机物合成了’尿素之后,生机论动摇了.但是、能否用物理学和化学的原理与定律解释生命呢?回答这个问题为时尚早.不过,生命科学有自己独特的思维方式和研究手段,积累了大量知识,确立了许多定律,说把生物学“还原”为物理学和化学,是没有意义的.可是物理学研究的是物质世界普遍而基本的规律,这些规律对有机界和无机界同样适用.物理学构成所有自然科学的理论基础,其中包括生物学在内.物理学和生物学相互渗透,前途是不可估量的.近四、五十年在两学科的交叉点上产生的一系列重大成就,如D、、双螺旋结构的确定、耗散结构理论的建立等,充分证明了这一点.现在人们常说,21世纪是生命科学的世纪,这话有一定道理.不过,生命科学的长足发展,必定是在与物理学科更加密切的结合中达到的.

2物理学与技术

社会上习惯于把科学和技术联在一起,统称“科技”,实际上二者既有密切联系,又有重要区别.科学解决理论问题,技术解决实际问题.科学要解决的问题,是发现自然界中确凿的事实和现象之间的关系,并建立理论把这些事实和关系联系起来;技术的任务则是把科学的成果应用到实际问题中去.科学主要是和未知的领域打交道,其进展,尤其是重大的突破,是难以预料的;技术是在相对成熟的领域内工作,可以作比较准确的规划.历史上,物理学和技术的关系有两种模式.回顾以解决动力机械为主导的第一次工业革命,热机的发明和使用提供了第一种模式.17世纪末叶发明了巴本锅和蒸汽泵;18世纪末技术工人瓦特给蒸汽机增添了冷凝器、发明了活塞阀、飞轮、离心节速器等,完善了蒸汽机,使之真正成为动力.其后,蒸汽机被应用于纺织、轮船、火车;那时的热机效率只有5一8%.1824年工程师卡诺提出他的著名定理,为提高热机效率提供了理论依据.

到20世纪蒸汽机效率达到15%,内燃机效率达到40%,燃气涡轮机效率达到50%.19世纪中叶科学家迈耶、亥姆霍兹、焦耳确立了能量守恒定律,物理学家开尔文、克劳修斯建立了热力学第一、第二定律.这种模式是技术向物理提出了问题,促使物理发展了理论,反过来提高了技术,即技术~物理~技术.电气化的进程提供了第二朽模式.从1785年建立库仑定律,中间经过伏打、奥斯特、安培等人的努力,直到1831年法拉第发现电磁感应定律,基本上是物理上的探索,没有应用的研究.此后半个多世纪,各种交、直流发电机、电动机和电报机的研究应运而生,蓬勃地发展起来.有了1862年麦克斯韦电磁理沦的建立和1888年赫兹的电磁波实验,才导致了马可尼和波波夫无线电的发明.当然,电气化反过来大大促进了物理学的发展.这种模式是物理~技术~物理.本世纪以来,在物理和技术的关系中,上述两种模式并存,相互交叉.但几乎所有重大的新技术领域(如电子学、原子能、激光和信息技术)的创立,事前都在物理学中经过了长期的酝酿,在理论和实验上积累了大量知识,才突然迸发出来的.没有1909年卢瑟福的。

粒子散射实验,就不可能有40年代以后核能的利用;只有1917年爱因斯坦提出受激发射理论,才可能有1960年第一台激光器的诞生.当今对科学、技术,乃至社会生活各个方面都产生了巨大冲击的高技术,莫过于电子计算机,由之而引发的信息革命被誉为第二次工业革命.整个信息技术的发生、发展,其硬件部分都是以物理学的成果为基础的.大学都知道,1947年贝尔实验室的巴丁、布拉顿和肖克莱发明了晶体管,标志着信息时代的开始,1962年发明了集成电路.70年代后期出现了大规模集成电路.殊不知,在此之前至少还有20年的“史前期”,在物理学中为孕育它的诞生作了大量的理沦和实验_L的准备:1925一1926年建立了量子力学;1926年建立了费米一狄拉克统计法,得知固体中电子服从泡利不相容原理;1927年建立了布洛赫波的理论,得知在理想晶格中电子不发生散射;1928年索末菲提出能带的猜想;1929年派尔斯提出禁带、空穴的概念,解释了正霍耳系数的存在;同年贝特提出了费米面的概念,直至1957年才由皮帕得测量了第一个费米面,尔后剑桥学派编制了费米面一览表.总之,当前的第二次工业革命主要是按物理一,技术,物理的模式进行的.

3物理学的方法和科学态度

现代的物理学是一门理论和实验高度结合的精确科学.物理学中有一套获得知识、组织知识和运用知识的有效步骤和方法,其要点可概括为:1)提出命题命题一般是从新的观测事实或实验事实中提炼出来的,也可能是从已有原理中推演出来的.2)推测答案答案可以有不同的层次:建立唯象的物理模型;用已知原理和推测对现象作定性的解释;根据现有理论进行逻辑推理和数学演算,以便对现象作出定量的解释;当新事实与旧理论不符时,提出新的假说和原理去说明它,等等.3)理论预言作为一个科一学的论断,新的理论必须提出能够为实验所证伪的预言.这是真、伪科学的分野.为什么说.‘证伪”而不说“证实”?因为多少个正面的事例也不能保证今后不出现反例,但一个反例就足以否定它,所以理论是不能完全被证实的.为什么要求能用实验来证伪?假如有人宣称:在我们中间存在着一种不可探知的外来生灵.你怎么驳倒他?对这种论断,你既不能说它正确,又不能说它错误.我们只能说,因为它不能用实验来证伪,所以不是科学的论断.4)实验检验物理学是实验的科学,一切理论最终都要以观测或实验的事实为准则.

理论不是唯一的,一布、理论包含的假设愈少、愈简洁,同时与之符合的事实愈多、愈普遍,它就愈是一个好的理论.5)修改理论当一个理论与新的实验事实不符合,或不完全符合时,它就面临着修改或被.不过,那些经过大量事实检验的理论是不大会被的,只是部分地被修改,或确定其成立范围.以上步骤循环往复,构成物理学发展模式化的进程.但是物理学中的许多重大突破和发现,并不都是按照这个模式进行的,预感、直觉和顿悟往往起很大作用.此外,且探且进的摸索、大胆的猜测、偏离初衷的遭遇或巧合,也导致了不少的发现.顿悟是经验和思考的升华,而机遇偏爱有心人,平时思想上有准备,就比较容易抓住稍纵即逝的机遇.所以科学上重大的发现不会是纯粹的侥幸.科学实验的结果,远非尽如人愿.不管你喜欢不喜欢,实事求是的作风、老老实实的科学态度是绝对必要的.在科学研究中,一相情愿的如意算盘是行不通的,弄虚作假迟一早会暴露.

失误任何人都难以避免,一旦发现,最聪明的办法是勇于承认.1922年年轻的苏联数学家弗里德曼发表了动态宇宙模型的论文,遭到爱因斯坦的批评.次年,爱因斯坦在读了弗里德曼诚恳的申辩信之后,公开声明自己被说服了.据伽莫夫回忆,爱因斯坦说,这是他一生中最大的疏忽.伟大科学家这种坦荡的襟怀,是所有人的楷模.基础科学研究的信息资源是共享的,这里没有秘不可及的玄机和诀要.根据公开发表的文献,人人可以自己判断,独立思考.所以,在科学的王国里,直理面前人人平等.这里最少对偶像的迷信和对权威的屈从.“实践是检验真理的唯一标准”这一信条,在自然科学的领域里贯彻得最坚决.实践不是个别的实验结果,因为那会有假象,重大的实验事实必须经多人重复印证才被确认.自然科学的主要任务是探索未知的领域,很多事情是难以预料的.实验的结果验证了理论,固然可喜;与理论不符合可能预示着重大的突破,更加令人兴奋,世界上建造了许多加速器,每个加速器都是针对某类现象而设计的.40多年的历史表明,除了反核子和中间玻色子外,粒子物理中的所有重大发现都不是当初建造那个加速器的理由.高能物理学界把这看作正常现象.1984年在实验室中发现了弱电统一理论所预言的中间玻色子后,曾一度较少发现出乎理论预料的实验结果.人们反而说:现在最令人惊讶的,是没有出现令人惊讶的事.这便是物理学界极富进取精神的得失观.因为在自然科学中物理学最直接触及自然界的基本规律,物理学家对事物是最好穷本极源的.他们在研究的过程中不断地思考着,凡事总喜欢问个“为什么”.理论物理学家不能仅仅埋首于公式的推演,应该询问其物理实质,从中构想出鲜明的物理图象来;实验物理学家不应满足于现象和数据的记录,或某种先进的指标,而要追究其中的物理机理.因为在自然科学中物理学研究的是自然界最普遍的规律,物理学家不应总把自己的目光和兴趣局限于狭窄的本门学科,而要放眼于更广阔的天地.人们公认,当今最有生命力的是不同学科间杂交的领域,有志的年轻物理学工作者在那里是大有作为的.

4怎样教导学生学好物理学?

量子化学论文范文5

量子力学是当代科学发展中最成功、也是最神秘的理论之一。其成功之处在于,它以独特的形式体系与特有的算法规则,对原子物理学、化学、固体物理学等学科中的许多物理效应和物理现象作出了说明与预言,已经成为科学家认识与描述微观现象的一种普遍有效的概念与语言工具,同时也是日新月异的信息技术革命的理论基础;其神秘之处在于,与其形式体系的这种普遍应用的有效性恰好相反,量子物理学家在表述、传播和交流他们对量子理论的基本概念的意义的理解时,至今仍未达成共识。量子物理学家在理解和解释量子力学的基本概念的过程中所存在的分歧,不是关于原子世界是否具有本体论地位的分歧,而是能否仍然像经典物理学理论那样,把量子理论理解成是对客观存在的原子世界的正确描述之间的分歧。

在量子力学诞生的早期岁月里,这些分歧的产生主要源于对量子理论中的波函数的统计性质的理解。因为量子力学的创始人把量子力学理解成是一种完备的理论,把量子统计理解成是不同于经典统计的观点,在根本意义上,带来了量子力学描述中的统计决定性特征。而理论描述的统计决定性与物理学家长期信奉的因果决定论的实在论研究传统相冲突。在当时的背景下,对于那些在经典物理学的熏陶下成长起来的许多传统物理学家而言,对量子力学的这种理解是难以容忍的。这些物理学家仍然坚持以经典实在观为前提,希望重建对原子对象的因果决定论的描述。这种观点认为,现有的量子力学只是临时的现象学的理论,是不完备的,将来总会被一个拥有确定值的能够解决量子悖论的新理论所取代。量子哲学家普遍地把这种实在论称之为定域实在论,或者称为非语境论的实在论。从EPR悖论到贝尔定理的提出正是沿着这一思路发展的。这种观点把量子论中的统计决定论与经典实在论之间的矛盾,理解成是量子论与传统实在论之间的矛盾。

但是,自从1982年阿斯佩克特等到人完成的一系列实验,没有支持定域隐变量理论的预言,而是给出了与量子力学的预言相一致的实验结果以来,量子论与传统实在论之间的矛盾焦点,由对量子理论中的统计决定性特征的质疑,转向了对更加基本的量子测量过程中的“波包塌缩”现象的理解。因为量子测量问题是量子理论中最深层次的概念问题。冯诺意曼在本体论意义上引入量子态的概念来表征量子实在的作法,直接导致了至今难以解决的量子测量难题。到目前为止,所有的量子测量理论都是试图站在传统实在论的立场上,对量子测量过程作出新的解释。玻姆的本体论解释在承认量子力学的统计性特征,把量子世界看成是由客观的不确定性、随机性和量子纠缠所支配的世界的前提下,通过假设非定域的隐变量的存在,寻找对量子测量过程的因果性解释。量子哲学家把这种实在论称为非定域的实在论。[1] 多世界解释在承认现有的量子力学的形式体系和基本特征是完全正确的前提下,通过多元本体论的假设来对具有整体性特征的量子测量过程作出整体论的解释。量子哲学家把这种实在论称为非分离的实在论。[1]

量子测量现象的非定域性和非分离性所反映的是量子测量过程的整体性特征。问题是,相对于科学哲学研究而言,如果把量子测量系统理解成是一个包括观察者在内的整体,我们将永远不可能在观察者与被观察系统之间作出任何形式的分割。而观察者与被观察系统之间的分界线的消失,将会使我们在不考虑观察者的情况下,对物理实在进行客观描述的梦想彻底地破灭。这是因为,一方面,如果我们认为量子力学的形式体系是正确而完备的理论,那么,就能够用量子力学的术语描述包括观察者在内的整个测量过程。这时,观察者成为整个测量系统中的一个组成部分参与了测量中的相互作用;另一方面,如果我们仍然渴望像以可分离性假设为基础的经典测量那样,在以整体性假设为基础的量子测量系统中,也能够得到确定而纯客观的测量结果,那么,他们必须要在观察者与被观察的量子系统之间作出某种分割,观察者才有可能站在整个测量系统之外进行观察。然而,在量子测量的具体实践中,这个重要的“阿基米德点”是永远不可能得到的。因为对量子测量系统进行的任何一种形式的分割,都必然会导致像“薛定谔猫”那样的悖论。这样,关于量子论与实在论之间的矛盾事实上转化为,在承认量子力学的统计性特征的前提下,如何解决量子测量的整体性与传统实在论之间的矛盾。

以玻尔为代表的传统量子物理学家在创立了量子力学的形式体系之后,并不追求从量子测量现象到量子本体论的超越中提供一种本体论的理解。而是在认识论和现象学的意义上做文章。玻尔认为,观察的“客观性”概念的含义,在原子物理学的领域内已经发生了语义上的变化。在这里,客观性不再是指对客体在观察之前的内在特性的揭示,而是具有了“在主体间性的意义上是有效的”这一新的含义。这种把“客观性”理解成是“主体间性”的观点,在认识论意义上,所隐藏的直接后果是,使“客观性”概念失去了与“主观性”概念相对立的基本含义,从而使量子力学成为支持科学的反实在论解释的一个重要的立论依据。与此相反,近几十年发展起来的多世界解释,试图以多元本体论的假设为前提,恢复对客观性概念的传统理解;玻姆的本体论解释则是以粒子轨道与真实波的二元论假设为代价,把测量过程中的整体性特征归结为是量子势的性质。这两种解释虽然在理解量子测量现象时坚持了传统实在论的立场。但是,这些立场的坚持是以在量子力学中增加某些额外的假设为代价的。这正是为什么近几十年来,反思与研究量子力学与量子测量的概念基础问题,成为不计其数的论著和论文所讨论的中心论题的主要原因所在。

到目前为止,在量子物理学家的心目中,微观客体的非定域性特征和量子测量的非分离性特征已经成为不争的事实。如果我们站在科学哲学的立场上,像当初接受量子统计性一样,也接受量子力学描述的微观系统的这种整体性特征。那么,量子测量过程中被测量的系统与测量仪器(包括观察者在内)之间的整体性关系将会意味着,在微观领域内,我们所得到的知识,事实上,总是与观察者密切相关的知识。这个结论显然与长期以来我们所坚持的真理符合论的客观标准不相容。因此,接受量子力学的整体性特征,就意味着放弃真理符合论的标准,需要对传统实在论的核心概念——理论和真理的性质与意义——进行重新理解。这样,现在的问题就变成是,能否在接受量子力学的统计性和整体性特征的前提下,阐述一种新的实在论观点呢?如果答案是否定的,那么,科学实在论将永远不可能得到辩护;如果答案是肯定的,那么,与理论的整体性特征相协调的实在论是一种什么样的实在论呢?这正是本文所关注的主要问题所在。

2.认识论教益:隐喻思考与模型化方法的突现

自近代自然科学产生以来,公认的传统实在论的观点是建立在宏观科学知识基础之上的一种镜像实在论。在宏观科学的研究领域内,观察者总是能够站在整个测量系统之外,客观地获得测量信息。在有效的测量过程中,测量仪器对测量结果的干扰通常可以忽略不计。测量结果为理论命题的真假提供了直接的评判标准,使命题和概念拥有字面表达的意义(literal meaning)或非隐喻的意义和指称。因此,镜像实在论是以观察命题的真理符合论为前提的。

真理符合论的最实质性的内容是,坚持命题与概念同实际的事实相符合。长期以来,科学家一直把这种观点视为是科学研究活动的价值基础。

维特根斯坦在其著名的《逻辑哲学导论》一书中,把真理的这种符合论观点表述为:就像唱片是声音的画像并具有声音的某些结构一样,命题所描述是事实的画像,并具有与事实一致的结构。因为用语言来思考和说话,就是用语言来对事实作逻辑的模写,它类似于画家用线条、色彩、图案来描绘世界上的事物。所以,用语言描述的图象与世界的实际图象之间具有同构性。1933年,塔尔斯基对这种真理观进行了定义。在当前科学哲学的文献中,人们习惯于用“雪是白的”这一命题为例,把塔尔斯基对真理的定义形象地表述为:“雪是白的”是真的,当且仅当,雪是白的。

普特南把塔尔斯基对真理的这种定义概括为“去掉引号的真理论”。塔尔斯基认为,要想使“‘雪是白的’是真的”,这个句子本身成真,当且仅当,“雪是白的”这个事实是真实的,即我们能够得到“雪是白的”这一经验事实。这个看似简单的句子隐含着两层与常识相一致的符合关系:第一层的相符合关系是,语言表达的命题与实际事实相符合;第二层的相符合关系是,观察得到的事实与真实世界相符合。在日常生活中,像“雪是白的”这样的经验事实是非常直观的,只要是一个正常的人,都有可能看到“雪确实是白色的”这个实际存在的事实。因此,人们对它的客观性不会产生任何怀疑,能够作为“‘雪是白的’是真的”这个句子的成真条件。

然而,量子力学揭示出的微观测量系统中的整体性特征,既限制了我们对这种理想知识的追求,也向传统的客观真理标准的价值观提出了挑战。这是因为,在量子测量的过程中,对命题的这种理想的描述方式和对对象的如此单纯的观察活动,已经不再可能。以玻尔为代表的许多物理学家虽然在量子力学诞生的早期就已经意识到这一点。但是,在科学哲学的意义上,他们在抛弃了真理符合论之后,却走向了认识论的反实在论;冯诺意曼的测量理论以真理符合论为基础,要求在观察者与测量仪器之间进行分割的做法,直接导致了量子测量中的“观察者悖论”;现存的非分离与非定域的实在论解释,也是以真理符合论为基础,在量子力学的形式体系中增加了某些难以令人接受的额外假设,来解决量子测量难题。从哲学意义上看,这种借助于额外假设来使量子力学与实在论相一致的作法并没有唯一性。它不过是借助于各种哲学的想象力来解决量子测量难题而已。

由此可见,量子测量难题的产生,实际上是以真理符合论为基础的传统实在论的观点,来理解量子测量过程的整体性特征所导致的。现在,如果我们像放弃经典的绝对时空观,接受相对论一样,也放弃真理符合论的实在论,接受现有的量子力学。那么,在当代科学哲学的研究中,我们需要以成功的量子力学带给我们的认识论教益为出发点,对理论、概念和真理的性质与意义作出新的阐述。量子力学所揭示的微观世界与宏观世界之间的最大差异在于,我们对微观世界的内在结构的认知,不可能像对宏观世界的认知那样,使观察者能够站在整个测量语境的外面来进行。

这就像盲人摸象的故事一样,不同的盲人从大象的不同部位开始摸起,最初,他们所得到的对大象的认识是不相同的,因为每个人根据自己的触摸活动都只能说出大象的某一个部分。只有当他们摸完了整个大象时,他们才有可能对大象的形状作出客观的描述。然而,虽然他们对大象的描述始终是从自己的视角为起点的,并建立在个人理解的基础之上。但是,不可否认的是,他们的触摸活动总是以真实的大象为本体的。在微观领域内,量子世界如同是一头大象,物理学家如同是一群盲人,有所区别的是,物理学家对微观世界的认识不可能是直接的触摸活动,而只能借助于自己设计的测量仪器与对象进行相互作用来进行。在这个相互作用的过程中,包括观察者在内的测量语境成为联系微观世界与理论描述之间的一个不可分割的纽带。

如果把这种量子力学的这种整体性思想延伸外推到一般的科学哲学研究中,那么,可以认为,科学家所阐述的理论事实上是一个产生信念的系统。科学家借助于模型化的理论,把他们对世界的认知模拟出来。理论模型所描述出的世界与真实世界之间的关系是一种内在的、整体性的相似关系。这种相似分为两个不同的层次:其一,在特定的语境中,模型与被模拟的世界在现象学意义上的初级相似。这种相似是指,在这个层次上,我们只是能够通过某些关系把现象描述出来,但是,对现象之所以发生的原因给不出明确的说明;其二,在特定的语境中,模型与被模拟的世界在认识论意义上的高级相似。这种相似是指,理论模型达到了与真实世界的内在结构与关系之间的相似。所以,现象学意义上的相似最后会被成熟理论所描述的认识论意义上的结构相似所包容或修正。

这两个层次之间的相似关系是建立在经验基础之上的,而不是建立在逻辑或先验的基础之上。这样,虽然科学家在建构理论模型的过程中,总是不可避免地存在着许多非理性的因素。但是,在根本的意义上,他们的建构活动是以最终达到使理论描述的可能世界与真实世界之间的结构与关系相似为目的的。因此,测量语境的存在成为科学家建构活动的一个最基本的制约前提。建构理论模型的活动是一种对世界的认知活动。建构活动中的虚构性将会在与公认的实验事实的比较中不断地得到矫正,直至达到与真实世界完全一致为止。或者说,在一定的语境中,当从理论模型作出的预言在经验意义上不断地得到了证实的时候,类比的相似性程度将随之不断地得以提高;当科学共同体能够依据理论模型所描述的可能世界的结构来理解真实世界时,相似性关系将逐渐地趋向模型与世界之间的一致性关系。

在这种理解方式中,真理是物理模型与真实世界之间的相似关系的一种极限,是在一定的语境中完善与发展理论的一个最终结果。这样,在科学研究中,真理成为科学研究追求的一个最终目标,而不是科学研究的逻辑起点。或者说,把真理理解成是在科学的探索过程中,成熟的物理模型与世界结构之间达成的一致性关系。对真理的这种理解,使过去追求的客观真理变成了与语境密切相关的一个概念。超出理论成真的语境范围,真理也就失去了存在的前提和价值。这样,与玻尔把理论的客观性理解成是主体间性的观点所不同,本文是通过改变对真理意义的理解方式,挽救了理论的客观性。

如果把科学活动理解成是对世界的模拟活动,那么,在理论的建构活动中,科学理论的概念与术语所描述出的可能世界,只在一定的语境中与真实世界具有相似性。所以,相对于不可能被观察到的真实世界而言,科学的话语(scientific discourses)将不再具有按字面所理解的意义,而是只具有隐喻的意义。只有当理论与世界之间的关系趋向于一致性关系时,对某些概念的隐喻性理解才有可能变成字面语言的理解。所以,在科学研究的活动中,研究对象越远离日常经验,科学话语中的隐喻成份就越多。这也许是为什么在量子理论产生的早期年代,物理学家在理解微观现象时,不可能在微观对象的粒子性和波动性之间作出任何选择的原因所在。实际上,微观粒子的波——粒二象性概念只是在现象学意义上的一种典型的隐喻概念,它们并不拥有概念的字面意义,而只具有隐喻的意义。因此,它们不是对真实世界的基本结构的实际描述。正如惠勒的“延迟实验”所揭示的那样,物理学家不可能选择用其中的一类图象来解释另一类图象。只有当关于微观世界的内在结构在可能世界的模型中得到全部模拟时,原来的波——粒二象性的概念才被一个更具有普遍意义的新的量子态概念所取代。

如果科学语言只具有隐喻的意义,科学理论所描述的是可能世界,那么,物理学家对测量现象的描述,也只是一种隐喻描述,而不是非隐喻的按照字义所理解的描述。这种描述既依赖于观察者的背景知识,也依赖于当时的技术发展的水平。就像格式塔心理学所阐述的那样,同样的图形、同一个对象,不同的观察者会得出不同的结论。在这个意义上,测量与观察不再是纯粹地揭示对象属性的一种再现活动,而是观察者与对象发生相互作用之后,受到测量语境约束的一种生成活动。在这个活动中,就现象本身而言,至少包含有两类信息:一是来自对象自身的信息;二是包括观察者在内的测量系统内部发生相互作用时新生成的信息。

从这个意义上看,微观粒子在测量过程中表现出的波——粒二象性只是一种现象学意义上的相似,而不是微观粒子的真实存在。在大多数情况下,现象还不等于是证据,把现象作为一种证据表述出来,还要受到物理学家的背景知识和社会条件的制约,甚至受到已接受的可能世界的基本理念的制约。按照对理论、真理和测量的这种理解方式,由“波包塌缩”现象所反映的问题,就变成了提醒物理学家有必要对过去所忽视的物理测量过程的各个细节,对宏观与微观之间的过渡环节,进行更细致的理论研究的一个信号,成为进一步推动物理学发展的一个技术性的物理学问题,而不再是观念性的与实在论相矛盾的哲学问题。

玻姆的量子论是试图用非隐喻的字面语言对真实的量子世界进行描述,而现有的量子力学在它的产生初期则是用隐喻的语言对量子世界的一种模拟描述。正是由于理论模型具有的相似性,才使得薛定谔的波动力学与海森堡等人的矩阵力学能够得出完全相同的结果,并最终证明两者在数学上是等价的。在量子力学的语境中,不论是波动图象,还是粒子图象都只是理论与世界之间的现象学意义上的初级相似。在以后的发展中,量子力学所描述的可能世界的预言与真实世界的实验现象相一致的事实说明,当冯诺意曼在希尔伯特空间以量子态为基本概念建立了量子力学的公理化体系之后,这些现象学意义上的相似已经上升到认识论意义上的结构相似,说明量子力学描述的可能世界与真实世界在微观领域内是一致的。这时,以波——粒二象性为基础的隐喻图象被整体论的世界图象所取代。这也许正是物理学家可以在抛开哲学争论的前提下,只注重量子物理学的技术性发展的一个原因所在。而相比之下,玻姆的理论不过是追求传统意义上的非隐喻的字面图象和传统哲学观念的一种理想产物。

在对理论、概念和真理的意义的这种理解方式中,理论与世界之间的一致性关系不是建立在命题与概念的层次上,而是以测量语境为本体,建立在物理模型与真实世界之间从现象学意义上的初级相似到认识论意义上的结构相似的基础之上的。测量语境的本体性,成为我们在认识论意义上承认科学理论是一个信念系统的同时,拒绝后现代主义者把理论理解成是可以随意解读的社会文本的极端观点的根本保证。所以,真理的意义不是取决于词、概念和命题与世界之间的直接符合,而是在于理论整体与世界整体之间在逼真意义上的一致性。由于可能世界与真实世界之间的这种一致性关系在一定程度上是依赖于社会技术条件的动态关系。因此,以一致性为基础的真理是依赖于语境的真理,它永远是一个动态的和可变的概念,而不是静止的和不变的概念。这显然是对“把科学研究的目的理解为是追求真理”这句话的最好解答。

3.从思维方式的变革到语境实在论的基本原理

当我们把对理论、真理和意义的这种理解方式应用于对真实世界的认识时,也可以在测量语境的基础上,对理论进行实在论的解释。所不同的是,这种实在论不再是把科学理论理解成是提供关于世界的某种镜象图景的、以强调语言与命题的真理符合论为基础的那种实在论,而是把科学理论理解成是通过先对世界的模拟,然后,与真实世界趋于一致的、依赖于测量语境的实在论。不同的理论模型和测量语境可以提供对世界的不同描述。但是,通过进一步的观察或实验,我们可以判断哪一个模型能够更好地与世界相一致。在这里,理论模型与世界之间的关系是一种相似关系,而不再是相符合的关系;测量结果与对象之间的关系是在特定条件下的一种境遇性关系,而不再是一种纯粹的再现关系。我们把这种与量子力学的整体性特征相一致的量子实在论称为“语境实在论”。用语境实在论的观点取代传统实在论的观点,必然带来思维方式的根本转变。需要以整体性的语境论的思维观取代传统思维观。这种思维方式的逆转主要通过下列几个方面体现出来:

首先,在本体论意义上,用普遍的本体论的关系论(global-ontological relationalism)的观点取代传统的本体论的原子论(ontological atomism)的观点。承认关系属性或倾向性属性的存在,承认概率的实在性,承认世界中的实体、属性与关系之间的整体性。传统的原子本体论总是把世界理解成是由可以进行任意分割的部分所组成,整体等于部分之和,牛顿力学是这种本体论的一个典型范例;关系本体论则把世界理解成是一个不可分割的整体,整体大于部分之和,量子力学是这种本体论的一个典型范例。与原子本体论中认为实体可以独立地拥有自身的属性所不同,在关系本体论中,实体及其属性总是在一定的关系中体现出来。这里存在着两层关系:一层是实体之间的内在关系属性;另一层是实体固有属性表现的外在关系条件。前者具有潜存性,后者为潜存性向现实性的转变创造了有利条件。 其次,在认识论意义上,用理论模型的隐喻论的观点取论模型的镜象论的观点。传统的模型镜象论观点把理论理解成是命题的集合,命题与概念的指称和意义是由对象决定的,它们的集合构成了对对象的完备描述;而模型隐喻论的观点虽然也认为理论能够以命题的形式表示出来,但是,理论不是命题的集合,而是包含有模仿世界的内在机理的模型集合。理论与世界之间的关系不是传统的相符合关系,而是在一定的语境中,理论描述的可能世界与真实世界之间以相似为基础的一致性关系。理论系统的模型与真实系统之间的相似程度决定理论的逼真性。这样,真理不再是命题与世界之间的符合,而是成为理论的逼真性的一种极限情况。或者说,当理论所描述的可能世界与真实世界相一致的时候,理论的真理才能出现。这是对基本的认识论概念的倒转:传统的逼真性理论是用命题或命题集合的真理作为基本单元,来衡量理论距真理的距离,即理论的逼真度;而现在正好反过来,是通过对逼真性概念的理解来达到对真理的理解。

第三,在方法论意义上,用语义学方法取代传统的认识论方法。在传统的认识论方法中,是用命题的真理或图象与世界之间的逼真度的术语来表达科学实在论的一般论点。然而,这种方法使我们从开始就需要清楚地辨别对一些解释性描述的理解。例如,在相同的研究领域内,我们为什么能够说,一个理论比与它相竞争的另一个理论更逼近真理或更远离真理?对于诸如此类的问题,如果没有一个明确的和可辩护的回答方式,那么,逼真性概念要么是空洞的;要么就是不一致的。结果,对理论的逼真性的论证反而成为对“认识的谬误(epistemic fallacy)”的证明,并在某程度上支持了认识论的怀疑论观点。但是,如果我们在语义学的语境中,通过对逼真性概念的分析与辩护,然后,衍生出理论的真理,对上述问题的理解方式将不会陷入如此的认识论困境。并且从认识论的怀疑论也不会推论出语义学的怀疑论。

第四,在经验的意义上,用现象生成论的测量观取代现象再现论的测量观。所谓现象再现论的测量观是指,把物理测量结果理解成是对对象固有属性的一种再现,测量仪器的使用不会对对象属性的揭示产生实质性的干扰,它扮演着一个单纯意义上的工具角色。理论术语能够对这些观察证据进行精确的表述。观察证据的这种纯粹客观性成为建构与判别理论的逻辑起点;而现象生成论的测量观则认为,测量是对世界的一种透视,测量结果是在对象与测量环境相互作用的过程中生成的。测量结果所表达的经验事实,不是纯粹对世界状态的反映,因为经验事实存在于我们的信念系统之中,而不是独立于观察者的意识或论述之外与世界的纯粹符合,只是在特定的测量语境中的一种相对表现,是相互作用的结果。或者说,测量语境构成了对象属性有可能被认识的必要条件。

所以,理论的逼真度与科学进步之间的联系,应该在经验的意义上来确立。科学进步的记录并不是真命题的积累,而是从模型系统与真实系统之间的相似性出发,用逼真度的概念衡量科学研究纲领接近真理的程度。在这里,相似性不是一个命题,也不是两个世界之间的一种固定不变的关系,而是依赖于语境的一个程度性的概念。它的内容将会随着我们对世界的不断深入的理解而发生变化。所以,科学进步不是真命题积累的问题,而是理论的成功预言与经验事实的函数。

第五,在语义学的意义上,用整体论或依赖于语境的隐喻语言范式取代非隐喻的字面真理范式(literal-truth paradigm)。从17世纪开始,非隐喻的字面真理的范式就已经被科学家广泛地接受为是理想的语言。其动机是期望把理论模型的言语和论证,建立在优美而简洁的数学和几何的基础之上。当时的理性论者和经验论者把科学语言当成是理想的合乎理性的语言,或者说,把科学的经验和知识看成是人类经验和知识的典范。这种观点认为,所有的知识与真实世界之间的关系是根据表征知识的命题方式来讨论的,科学语言与概念的意义由它所表征的世界来确定,它们不仅在本质上具有固有的字义,而且语言本身的字面意义就是使用词语的标准。语言的意义不仅与语言的用法无关,而被认为是客观地对应于世界的各个方面。科学的话语总是关于自然界的现象、内在结构和原因的话语。

然而,在整体论的隐喻语言范式中,理论所讨论的是由科学共同体提出的关于世界的因果结构的信念,知识与真实世界之间的关系是根据可能世界与真实世界之间的相似关系来讨论的。在这里,两个世界之间的相似程度的提高是它们共有属性的函数。在隐喻的意义上,语言与概念的意义是极其模糊的和语境化的,隐喻的表达通常并不直接对应于世界中的实体或事件:即,按照字面的意义理解隐喻的陈述常常是错误的。例如,在理解量子测量现象时,实验已经证明,或者强调使用粒子语言,或者强调波动语言都是失败的。这也是玻尔的互补性原理在量子力学的时期岁月里容易被人们所接受的高明之处。从本文的观点来看,关于微观世界的粒子图象或波动图象只不过是传统思维惯性的一种最显著的表现而已。事实上,这两种图象都只是一种隐喻意义上的图象,而不代表微观世界的真实图象。隐喻与其它非字面的言词是依赖于语境的。正如后期维特根斯所言,语言与概念的意义依赖于活动,使用一个符号的充分必要条件必须包括对活动的描述。

在这种整体论的思维方式的基础上,我们可以把语境实在论的主要观点,总结为下列六个基本原理:

本体论原理:在物理测量的过程中,物理学家所观察到的现象是由不可能被直接观察到的过程因果性地引起的。这些不可能被直接观察到的过程是独立于人心而自在自为地存在着的。

方法论原理:对一个真实过程的理论模型的建构,是对不可能被观察到的真实世界的机理和结构的模拟。对于真实世界而言,它在现象学意义上的表现与它的内在结构或机理在定性的意义上具有一致性。即,理论模型具有经验的适当性。

认识论原理:理论描述的可能世界与真实世界只具有的相似性,它们之间的相似程度是它们具有的共同特性的函数。这些共性是在实验与测量语境中找到的。

语义学原理:在一定的语境中,理论模型与真实系统之间的相似关系决定理论的逼真性。在理想的情况下,真理是理论描述的可能世界逼近真实世界的一种极限。

价值论原理:科学理论的建构在最终意义上总要受到实验证据的制约,科学理论的发展总是向着越来越接近真实世界机理的方向发展的。

伦理学原理:包括人类在内的自然界具有不可分割的整体性,关于人类行为的评价标准应该建立在人与自然的整体性关系上。

4.科学进步的语境生成论模式

探讨科学进步的模式问题一直是科学哲学研究中的重大理论问题之一。不同的学派提出了不同的观点。逻辑实证主义者继承了自培根以来的哲学传统,认为科学的发展在于对经验证实的真命题的积累。理论所包括的真命题越多,它就越逼近真理。波普尔把理论逼近真理的这种性质称为“逼真性”,逼真性的程度称为“逼真度”。他认为,理论是真内容与假内容的统一,理论的逼真度等于理论中的真内容与假内容之差。而真内容由理论中那些得到经验确认的真命题所组成。真命题越多,理论的逼真度就越高。在所有这些观点中,逼真性的主要特性是用命题与事实的符合作为近似真理的基本单元。换言之,是用命题真理的术语来理解理论的逼真性。在这里“符合”没有程度上的差别;逼真性与真理之间的关系是部分与整体之间的关系。这种“符合”或“与事实相符”包含着四个方面的关系:其一,句子的主语与谓词之间处于相互联系的状态;其二,事态(the state of affairs)与主语之间的指称关系;其三,谓词表达与被选择的事态之间的指称关系;其四,说话者所选择的对象与事态之间的相适合关系。[1]

然而,这种以真命题的多少来衡量理论的逼真度的方法,似乎没有办法回答诸如下面的那些问题:如果一个理论最后被证明是与事实不相符,那么,这个理论怎么可能接近真理呢?比如说,在当前的情况下,量子场论还是一个不成熟的理论,它在未来一定会被加以修改,那么,我们能够说,量子场论不如牛顿力学与事实更相符吗?此外,“符合事实”这个概念也会遇到同样的问题:如果某个理论根本就是错误的,我们又怎能说,它与事实符合的更好或更糟呢?也许有些在表面上曾经显示出具有某种逼真性的理论,实际上,它却在根本意义上就是错的。例如,化学中的“燃素说”、物理学中的“地心说”,等等,这些理论都曾经在科学家的实际工作中,起到过积极的作用。但是,后来的发展证明,它们都是错误的假说。另一方面,这种方法还无法解释为什么在前后相继的理论中使用的同一个概念,却具有不同的内涵这样的问题。例如,经典物理学中的质量概念不同于相对论力学中的质量概念;量子力学的中微观粒子概念也比经典物理学中的粒子概念拥有更丰富的内涵。库恩在阐述他的科学进步的范式论模式时,为了避免上述问题的出现,走向了彻底的相对主义。

如果我们用强调理论描述的物理模型与世界之间的相似性比较,取论中包含的真命题的比较来理解理论的逼真性,那么,上述问题就很容易得到解决。在特定的语境中,并存着的相互竞争的理论,分别描绘出几个相互竞争的可能世界,这些可能世界与真实世界之间的相似程度决定理论的逼真性。逼真度越高的理论,将会越客观、越接近于真理。真理是理论的逼真度等于1时的一种极限情况。例如,牛顿力学比伽里略的力学更接近真理的真正理由是,因为牛顿物理学所描绘的世界模型比伽里略物理学所描绘的世界模型与真实世界更相似。而不应该把这个结论替换成是,在每一个方法中通过真命题的计数来使它们与精确地说明真实世界的真命题的总数进行比较后作出的选择。前后相继的理论中所使用的共同概念的意义也是依赖于可能世界的。不同层次的可能世界虽然赋予同一个概念以不同的内涵。但是,由于更深层的可能世界更接近真实世界的内在结构,所以,对为什么同一个概念会有不同内涵的问题就容易理解了。

我们把由理论描绘的可能世界逼近真实世界的过程,以及前后相继的理论之间的更替关系总结为:

前语境阶段——语境确立阶段——语境扩张阶段——语境转换阶段

——新的语境确立阶段……

在科学进步的这个模式中,前语境阶段是指,当科学进入一个新的研究领域时,面对不可能被旧理论所解释的有限数量的实验证据和存在的重要问题,科学家首先是进行大胆的创新和积极地猜测,提出可能与证据相一致的相互竞争的理论或假说。这些理论或假说分别描绘出了相互竞争的各种可能世界的图象。这个时期,科学家在建构理论时,通过模型与现象的比较来约束他们的想象。或者说,他们的富有创造性的想象力是一种意向性的想象,而不是完全随意的想象。这种意向性的信息直接来自不可能被直接观察到的对象本身。科学家在相互竞争的理论中作出选择时,依赖于两个主要的归纳根据:其一,相信任何一个理论模型的建构都是为了尽可能准确地模拟真实世界的结构和机理;其二,依据模型所产生的信念能够作为成为设计新的实验方案的基础,这个实验方案的设计是为了探索世界,和检验模型与它所表征的世界之间的类似程度。在特定领域内和一定的历史条件下,根据一个理论的信念所设计的实验越新颖,在得到应用之后,越能够证明理论的成功性。同时,理论的调整总是向着与新的实验结果相一致的方向进行的。而新的实验结果是由自然界中某种未知的因果机理引起的。

然而,说明的成功(explanatory success)只是理论逼近真理的一个象征或一个结果,或者说,说明的成功只是理论逼近真理的一个必要条件。凡是逼真的理论都必定能够对实验现象作出成功的说明。但是,并不是每一个拥有成功说明的理论都是逼真的理论。在理论的说明中,理论的逼真性与不断增加的成功之间的联系应该是一个认识论问题,而不是一个语义学问题。一个完整的科学理论从产生到成熟通常要经过三个阶段:其一,对现象的描述阶段,这个阶段得到了在经验上恰当的模型。例如,在量子力学之前,玻尔等人提出的各种原子模型;第二个阶段是建立一个理论的说明模型。例如,现有的量子力学的数学形式体系。第三个阶段是为成功的说明模型寻找一种可理解的机理,或者说,对说明模型提供语义学的基础。相对于一个成熟的科学理论而言,现象——模型——机理三者之间的相互关系具有内在的不可分割的整体性。这也就是为什么原子物理学家在理解量子力学的内在机理的问题上没有达成共识时,产生了量子力学的解释问题的原因所在。

在这里,我们所说的模型是指物理模型而不是仅仅指数学模型。物理模型除了包括数学模型之外,还包括理解世界的构成机理的模型。物理模型是为数学模型提供一个语义学基础。例如,分子运动论模型是解释压强公式的语义学基础;场的观点是理解引力理论的语义学基础。所以,物理学中的模型是指真实物理系统的替代物,它既具有解释的作用,也能够把抽象的数学系统翻译为一个可理解的论述。正是在这个意义上,物理学模型是指一个模型簇。由这些模型簇所描绘的可能世界的结构与真实世界的结构之间的相似关系,在选择理论时是很重要的。一方面,它能够使理论在科学实践中被不断地修改和扩展以适应新的现象,而不是静止的和孤立的;另一方面,它使相互竞争的理论之间的选择在科学实践的规则与活动之内自然地得到了求解。这时,被淘汰掉的理论并非必须要被证伪(尽管证伪也是因素之一),而是如同生物进化那样是自然选择的结果。

在这里,把逼真度作为选择理论的标准,与要么强调经验证实,要么强调经验证伪的标准不同,它永远是动态的和依赖于研究语境的概念。它既有助于把淘汰掉的理论中的某些合理化因素进行再语境化,也能够确保科学描述和与此相关的实验技巧与独立于人心的世界之间建立起一种物理联结,从而坚持了存在着一个不可能被观察到的独立于人心的世界的本体论的实在论观点。大体上,衡量可能世界与真实世界之间的结构或机理的相似程度可以通过它们之间的共有属性(或共同特征)来进行。如果用S(A ,B)表示两个世界之间的基本特征的相似关系,用 A∩B表示共有属性,A – B和 B - A表示它们之间的差异,那么,在定性的意义上,这些量之间的关系可以定性地表示为:[1]

S(A ,B)= C1F(A∩B)- C2F(A - B)- C3F(B - A)

这个公式说明,两个世界之间的相似关系是它们的共性与差异的函数。当C1远远大于C2和C3时,两个系统之间的共性将比差异处于更重要的支配地位。其中,三个系数C1、C2和C3 的值是通过实验来确定的。这样,我们就有可能在经验的意义上来研究相似关系。在经验的意义上,如果相互竞争的理论中的某个理论的描述和说明模型能够完全依据当前的实验结果和本体论概念被加以校准,那么,我们就可以认为,这个理论是似真的(plausible)。理论越拟真,它就越逼真。

在一个特定的语境中,当一个理论的说明与理解模型能够完全经得起经验的考验时,科学共同体将认为理论描绘的可能世界与真实世界之间达到了某种一致性。这时,科学的发展进入了语境确立的阶段。这个阶段相当于库恩的常规科学时期或范式形成时期。这时,科学家不仅拥有共同的信念和共同的语言,而且拥有对真实世界的共同图象。他们相信,理论描绘的可能世界代表了真实世界的内在机理;理论描绘的图象就是不可观察的真实世界的图象。为了进一步探索真实世界的精细结构,科学家常常会根据现有理论提供的信念和约定,设计新的实验规划,预言新的实验现象,特别是运用成熟理论中的理论实体进行实验操作,从而形成了一个相对稳定的语境阶段。但是,这个相对稳定的语境边界是非常不确定的。

当科学家把成熟理论所揭示的世界机理作为一个范式和信念的基础,延伸推广到解释其它相关领域的现象时,科学的发展进入到语境的扩张阶段。其中,既包括理论研究的信念与方法的扩张,也包括以它的基本原理为基础的技术与实验的扩张。例如,在牛顿理论确立之后,不论是物理学还是化学家,他们都用牛顿力学的基本思想解释他们所面临的其它领域内的新的实验现象,并且成功地制造出了许多测量仪器;同样,现代技术的崛起和分子生物学、量子化学等学科的产生都是量子力学的基本原理成功应用的结果。所以,语境扩张的过程实际上是已有语境膨胀的过程。当科学共同体在语境扩张的过程中,遇到了与理论信念相矛盾的而且是他们料想不到的实验事实时,他们才有可能开始对理论的信念产生怀疑,这时,理论的应用边界,或者说,语境扩张的边界逐渐地变得明确起来,科学的发展开始进入语境转换阶段。在这个阶段,旧语境的扩张受到了限制,新的语境处于形成与培育当中。新的理论竞争也就随之开始了。随着新理论竞争的开始,科学共同体的信念也在不断地发生着改变,直到一个全新的语境形成为止。

当新的语境确立之后,不仅科学家确立了新的信念,而且他们对问题的求解值域也随之发生了改变。这时,原来前语境中的一些不合理的偏见,在新语境中得到了纠正。在前语境中是真理的理论,在后语境中失去了它的真理性。后语境的形成是伴随着新理论的确立而完成的。由于新语境比旧语境揭示出了更深层次的世界结构或机理。所以,它在理论信念、方法和技术层次的扩张与渗透力将会比旧语境更强、更彻底。这也就是,为什么量子力学的产生所带来的理论、方法与技术革命会比牛顿力学更深刻、更广泛的原因所在。但是,前后语境之间的界线是连续的。这时,就像新理论是对旧理论的一种超越一样,新语境也是对旧语境的一种超越。由于语境的变迁和运动是不断地向着揭示世界的真实机理的方向发展的。因此,在语境中生成的理论也使得科学的发展与进步向着不断地逼近真理的方向进行。本文把科学发展的这种模式称为“语境生成论模式”。

这里包括两个层次的生成,其一,理论的形成与完善是在特定的语境中进行的;其二,科学进步也是在语境的变更中完成的。但是,值得注意的是,强调语境化并不意味着使科学进步成为无规则的游戏。把理论系统放置于特定的语境当中,强调了系统的开放性和连续性。在这个意义上,语境论的事实也是一种客观事实。运用语境论的隐喻思考与模型化方法,不仅能够使科学进步过程中的微观的逻辑结构与宏观的历史背景有机地结合起来,而且能够使基本的内在逻辑的东西在历史的发展中内化到新的语境当中,从而使得语境在自然更替的同时,一方面,完成了理论知识的积累与继承的任务;另一方面,揭示出更深层次的世界机理。所以,语境生成论的科学进步模式既不会像库恩的范式论那样,走向相对主义,也不会像普特南那样,走向多元真理论。科学进步的语境生成论模式,既能够包容相对主义的某些合理成份,又能够坚持实在论的立场。

5.结语

从量子力学的认识论教益中抽象出的语境实在论的观点,是一种具有更广泛的解释力,并且有可能把许多观点有机地融合在一起的实在论观点。它不仅能够赋予量子力学以实在论的解释,而且为解决科学实在论面临的许多责难,理清上世纪末围绕“索卡尔事件”所发生的一场震惊西方学坛的科学大战,[1] 提供了一条可能的思路。法因曾经在《掷骰子游戏:爱因斯坦与量子论》一书中断言“实在论已经死了”。[2] 然而,我们通过对量子力学与实在论的分析,在放弃了传统的真理符合论之后,运用隐喻思考与模型化方法所得出的结论则是,“实在论还活着,而且活的很好”。

[1] D.Bohm and B.J.Hiley, The Unpided Universe: An ontological interpretation of quantum theory, Routledge and Kegan Paul, London (1993).

[1] Jeffrey Alan Barrett, The Quantum Mechanics of Minds and Worlds, Oxford University Press (1999).

[1] Jerrold L. Aronson, Rom Harré & Eileen Cornell Way, Realism Rescued: How Scientific progress of possible, Gerald Duckworth & Co.Ltd (1994): 136-137.

[1] Jerrold L. Aronson, Rom Harré & Eileen Cornell Way, Realism Rescued: How Scientific progress of possible, Gerald Duckworth & Co.Ltd (1994): 133.