前言:中文期刊网精心挑选了网络系统论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
网络系统论文范文1
1.1星型结构具有网络结构简单,建网容易,网络易于扩展,故障的检测和隔离方便.但也存在着一些缺点,如网络的中心节点负担过重,一旦中心节点出现故障,可能会造成整个系统瘫痪.根据实际情况,化学化工学院机房面积约为120m2,现有38台微型计算机,其中1台配置较高,作为教师机;另外的37台配置相对低一点,但都是相同型号.网络设备包括2台24换机.综合上述条件考虑,决定采用星型拓扑结构,如图2所示.
1.2网络硬件
1.2.1网络中服务器与客户机的选择系统结构选择客户机-服务器系统,该技术是计算机发展史上的一次革命,它与集中式平台、计算机局域网体系结构不同,它以系统成本低、功能强大、用户可以自由实现各种各样的客户机与服务器的联网组合等显著优点,被广大用户所采用[4].这种结构的优点体现在:服务器能够对网络中的数据进行有效的控制和管理,对于没有取得安全机制授权和鉴别的客户,不允许其对服务器中的数据进行非法访问,充分保证了系统地安全性能.客户机是具有独立性能的智能化微机,它既可以单独运行存储在其中的应用程序,也可以通过网络享受服务器提供的服务.网络最重要的作用是资源共享和信息传递.对于共享的资源来说,绝大多数都存在于网络服务器中,因此,作为网络服务器的微机应具有大容量、高速度、性能可靠等优点.根据机房现有机器的特点,选择PIV3.0GHz的处理器,1GB的内存,160GB的硬盘作为基本配置的高档微型计算机作为网络服务器.客户机有37台同样档次的微机组成,PIV2.6GHz的处理器,520MB的内存,80GB的硬盘作为基本配置.
1.2.2网络互联设备网络互联(Interconnection)就是根据实际情况,选择合适的技术和设备将相互独立的网络或计算机连接起来,从而达到数据交换和资源共享的目的.一般来说,网络互联的方式主要有如下两种:一是通过中继系统实现网络互联;二是通过互联网进行网络互联.考虑到机房的具体情况,将采用第一种互联方式.目前常用的中继设备有中继器、集线器、交换机、路由器和网关.本系统将采用TPLink24端口的智能交换机,配以3COM公司及D-LINK10M/100M自适应网卡.具体连接过程是从其中一台交换机的一个下方端口引出一条线接入另一台交换机的上方端口,即可实现将37台客户机全部连接.
1.2.3通信介质传输介质是指连接计算机的通讯线路,一般分为有线介质和无线介质两类.双绞线、同轴电缆和光纤是常用的3种有线传输介质.无线电通信、微波通信、红外线通信以及激光通信的信息载体都属于无线传输介质.双绞线是综合布线工程中最常用的一种传输介质.由于它具有性能好、成本低、抗干扰作用强的特点,因此在机房组建网络系统中使用了非屏蔽双绞线作为通信介质.如图3所示.它是由两根绞在一起的导线来形成传输电路.两根导线绞在一起主要是为了防止干扰(线对上的差分信号具有共模抑制干扰的作用),利用RJ-45水晶头连接在网络互联设备上.
2网络软件
完整的计算机网络是由计算机网络硬件和网络软件共同组成的.要实现计算机网络的基本功能,必须在具备了计算机网络硬件的同时,配备完善的网络软件.而计算机网络软件,又分为网络系统软件和网络应用软件.
2.1网络操作系统[5]网络操作系统(NOS)是向网络计算机提供网络通信和网络资源共享功能的操作系统,它是负责管理整个网络资源和方便网络用户的软件的集合.由于网络操作系统是运行在服务器之上的,所以有时我们也把它称之为服务器操作系统.工作站服务器型网络中,服务器所使用的操作系统是每个组网者都需要考虑的.目前网络环境中主要存在以下几类网络操作系统:Windows、NetWare、Unix、Linux等几类.而微软公司的Windows系统在网络操作系统中是最常见的.一般常用到的操作系统有Win-dowsNTServer4.0,Windows2000Server等.本系统主要采用Windows2000server操作系统.Windows2000server是为服务器开发的多用途操作系统,与以往的网络操作系统相比,Windows2000Server在安全性、可靠性、可操作性、适应性和网络性能等方面的功能都得到了进一步的加强.可为部门工作小组或中小型公司用户提供诸如Web服务、文件打印服务以及软件应用服务等.Windows2000Server对系统配置要求较高,具体如下:CPU为Pentium133MHz或更快的中央处理器,每台计算机最多支持4个CPU;内存容量建议最少256MB(最小支持64MB,最大支持4GB);需要的最少硬盘空间大约为1GB.为了发挥Windows2000Server的性能,特别是承担关键应用的服务器在硬件上应该选择更高的.在Windows2000Server中,FAT16、FAT32、NTFS是最常见的3种磁盘文件系统.可以将服务器的主分区设置成NTFS格式,用来安装操作系统.其他分区设置成FAT32格式,用来安装必要的应用软件,方便学生进行作业的收发.在具备了相关的网络硬件设备和网络操作系统后,要想使具有不同操作系统、不同类型的计算机之间能够互相通信,就必须有一组共同遵守的通信标准,即网络协议.协议本质上无非是一种网上交流的约定,目前,全球最大的网络———因特网(Internet),它所采用的网络协议是TCP/IP,它是因特网的核心技术.其中传输控制协议TCP和网际协议IP是两个最基本、最核心的协议,是目前被各方面遵从的网际互联工业标准.在开通校园网后,由网络中心分配唯一的IP地址,并配置相应的网关和子网掩码后,机房内所有计算机就可以通过校园网服务器连入互联网进行畅游了.
2.2网络应用软件根据学院实验课程的要求,为机房内计算机安装必要的网络应用软件.比如学生在查阅文献资料时,要登录网页,因此需要安装WWW服务;有时候可能需要校内网进行作业的暂存,资源的下载,就需要FTP服务的支持.
3结束语
网络系统论文范文2
1.1标准帧与扩展帧的选择
CAN2.0包括A部分和B部分,即CAN2.0A与CAN2.0B。其中,CAN2.0A是按CAN1.2规范定义的CAN报文格式的说明,规定CAN控制器必须有一个11位的标识符。CAN2.0B是对CAN报文的标准格式和扩展格式的说明,CAN控制器的标识长度可以是11位或29位。遵循CAN2.0B协议的CAN控制器,可以发送和接收11位标识符的标准帧或29位标识符的扩展帧。如果禁止CAN2.0B,则CAN控制器只能发送和接收11位标识符的标准帧,而忽略扩展格式的报文结构,但不会出现错误。标准帧与扩展帧如图2所示。标准帧理论上最多可以标识211(2048)个数据类型。由于协议规定标识符最高7位不能同时全是隐性位,所以最多可以标识211-24(2032)个数据类型。扩展帧使用29位标识符,最多可标识5亿多个数据类型。当采用CAN2.0B传输报文时,需对标准帧和扩展帧进行选择。从延迟的角度分析,它用于表示网络响应速度,延迟越少,响应越快,性能越好。CAN最高位速率可达1Mbps,此时每位的传输时间是1μs。总线竞争获胜的标准格式报文在传输不被中断的情况下,长度为最大值的报文总线访问时间只有111μs,加填充位为134μs;扩展帧格式最大长度报文的总线访问时间为131μs,加填充位为159μs。从总线吞吐量分析,它在数值上等于网络或信道在单位时间内成功传输的总信息量。标准格式信息帧的长度为47+8×DLC,数据域在一帧报文中所占比率为(8×DLC)(/47+8×DLC),在1Mbps位速率时的总线吞吐量为(8×DLC)(/47+8×DLC)×1Mbps。扩展格式信息帧的长度为67+8×DLC,数据域在一帧报文中所占比率为(8×DLC)(/67+8×DLC),在1Mbps位速率时的总线吞吐量为(8×DLC)/(67+8×DLC)×1Mbps。当数据域长度为8字节时,若不考虑填充位,则标准帧的总线吞吐量为577kbps,而扩展帧的总线吞吐量为488kbps。从以上分析可见,虽然扩展帧格式可以表示的数据类型比标准帧格式多得多,但在总线访问时间和总线吞吐量方面,标准帧格式明显优于扩展帧格式,所以在满足节点数量要求的条件下,应优先考虑采用标准帧格式。
1.2标识符分配和网络实时性分析
1)标识符分配。CAN只提供与物理层和数据链路层相关的协议,并没有制定与特定应用相关的应用层的内容。因此,根据具体应用的特点,在总线协议的基础上,定义详细的标识符分配及网络配置管理的具体方式是开发基于CAN的客车网络控制系统的前提。标识符分配可以通过两种方式来实现:一是用户自定义;二是采用CAN的高层协议标准,如SAEJ1939、CANOpen等。无论采用哪种方式,都必须保证与安全性相关的高实时性的信息能够获得高优先级。如SAEJ1939中,信息优先级顺序为控制参数、驱动状态参数、驱动系控制、驱动系配置参数、信息参数、信息状态参数等。2)网络实时性分析。客车网络控制系统是分布式实时系统,许多任务具有严格实时性和硬实时性,信息传输与控制必须满足任务截止期要求。客车网络控制系统的实时性可以通过信息的响应时间来衡量,典型的理论方法有Worst-case、Actual-case、Average和Maximum等。Actual-case同时考虑到周期性信息和非周期性信息,Worst-case考虑到信息传输过程中的最坏情况,一般将两者结合进行实时性分析。位速率是网络实时性分析的一个重要参数,它的确定必须考虑到通信距离,尤其在高速通信的情况下,距离的增加带来的传输延迟是不可忽略的。表3为通讯位速率与总线两个节点间最大距离的关系。
2典型的电动客车整车网络结构设计及控制策略优化
随着客车电子控制单元的增多和信息通讯性能要求的不同,单总线网络结构引发网络通讯负载大、通信效率低、实时性能差和通信距离与网络性能矛盾突出等问题。因此,一般采用多网段结构来构建基于CAN的客车整车网络控制系统。一个典型纯电动客车的整车网络的拓扑图见图3。多网段结构适合于连接功能相对独立的网段,信息交换通过网关来实现。其特点是:同一网段的节点通过总线方式连接;不同网段之间通过网关连接,并实现相互通信;网络管理和集中控制的功能由网关实现。如采用低速总线连接低实时性要求的车身控制单元,增加通信传输距离,提高抗干扰能力;采用高速总线连接动力传动系统,以满足与行驶安全相关信息的高实时性要求;采用带双通道CAN控制器的微处理器,实现两条CAN总线信息的通信和控制功能。对于网络层可以采用静态地址分配机制,可以参照SAEJ1939通讯协议为公路设备定义地址分配表。
2.1整车控制器的拓扑结构
根据电动汽车整车网络的特性,整车运行、安全性、经济性等整车控制策略主要是由整车控制器(VMU)完成。整车控制器VMU的结构图见图4。整车控制器一般采用两路CAN总线(参照商用车SAEJ1939协议):CAN1为VehicleCAN与电池管理系统、ABS防抱死系统、仪表等设备相连,接收车身系统相关信息;CAN2为MCUCAN,只与驱动电机控制器相连,专用的MCU内部CAN2的设置会使整车驱动系统响应速度更快、实时性更高、性能更稳定可靠。
2.2整车控制器控制策略与优化方向
2.2.1整车控制器VMU整车控制器VMU是纯电动车辆的主要管理单元,与车辆的牵引系统及车上的其他主要部件的相互通讯。整车控制器读取并识别驾驶员的输入信号(踏板、换档器、按钮等),并确保驾驶的舒适性。扭矩控制(TorqueManagement)是整车控制器驱动控制的最关键的策略,成熟的转矩管理算法编程时,应设计为可进行系统参数配置软体,以满足整车集成时不同参数的需求,如踏板传感器参数、扭矩转化斜率、最大速度(正向和反向)等。扭矩控制需要满足以下几个方面功能:1)扭矩过渡处理平滑,以确保乘客的舒适性。2)科学有效地管理挂档器(DriveSelector),以防止因挂档器误操作带来的安全隐患。3)超速保护(OverSpeed)功能。4)驻坡功能(HillHolder)、跟车功能(Creep)等增值功能。5)能量回馈与电制动策略管理,基于不同回馈能量需求及电制动限值条件,如防抱死(ABS)及客户指令需求时,可以自动切断电制动。
2.2.2优化管理整车控制器除了常规的行车控制及保护功能外,在以下这些方面也可以做针对性的优化管理:上下高压电安全控制;行车动态数据监测及安全行车管理;节电模式及动力电池管理等。整车控制器控制策略的智能控制方法有递阶控制、专家控制、模糊控制、神经控制和学习控制等[10]。
3结束语
网络系统论文范文3
随着气象业务的不断发展,气象应用系统越来越多,各项技术对计算机网络的依赖性也越来越大。计算机网络通过综合分析、处理接收到的气象卫星资料,提供准确的气象预测数据。气象资料是气象信息资源的重要组成部分,它包括过去和现在所有的信息数据,庞大的信息量是人工作业所不能完成的,而应用计算机网络大大提高了对气象卫星资料的计算、处理能力,为社会经济的发展提供了更全面的数据服务。气象预报分析系统是在引进国外先进技术的基础上,以计算机系统为核心的一种网络系统。该系统具有强大的互交功能、较强的使用性和自动化水平,它的使用推动了气象预报朝着更加准确的方向发展,并利用“计算机自动接收信息—自动分析信息—自动处理信息”的模式提高了气象通信的处理效率。
2气象局计算机网络面临的不安全因素
2.1操作系统存在安全漏洞任何软件的使用都是由操作系统控制运行的,软件自身存在的缺陷和漏洞就成为了病毒攻击的目标,而大量病毒的传播也是通过这种方式运行的。错误的操作也会使网络受到威胁,一些工作人员技术不够或错误地设置软件服务器端等就会引发安全漏洞,比如常见的有用户权限设置失误、网络设备设置不完整、服务器端口错误等,这些都是引发漏洞的不安全因素。
2.2气象网络管理工作者水平较低由于各级气象局在网络管理制度上都存在一些问题,基于气象局的工作性质,很难长期聘请高能力的网络技术人员,甚至有些基层的气象站没有专职的网络管理人员,即便有,也是专业水平较低,不具备监督、维修、管理能力的人,再加上机房的设备落后,这对网络的安全运行极为不利。
2.3管理制度不够完善基层气象局部分管理员工作态度散漫,对气象网络安全不够重视。在某些时刻,为了自己便利,管理员就把密码告诉别人,并交由非工作人员操作,这样由外人随意操作就可能会丢失数据,在网络连接的情况下,还会暴露数据,为黑客入侵提供通道。
2.4网络病毒攻击随着网络技术的发展,网络病毒屡见不鲜,曾有气象局遭遇“熊猫烧香”病毒的入侵。电脑中毒后,出现蓝屏、频繁启动和硬盘数据丢失或被破坏等现象,大多数病毒具有感染性、变种、传播速度快等特性,最终会导致网络瘫痪。计算机是病毒的直接受害者,因此,气象工作人员要养成良好的上网习惯,不要随意打开来历不明的文件,要定期升级杀毒软件,进行有效的防控。
3维护网络系统安全运行的措施
3.1建立必要的安全管理制度有效的管理制度可以在一定程度上约束管理员的工作,提高气象相关工作人员的技术水平和职业道德。对重要的工作项目要提出明确的要求,实行员工工作责任制。在气象计算机网络安全系统这方面,要制订有关网络操作使用规程和人员出入机房重地的签到管理制度,严格做好开机杀毒工作,绿色上网,并养成及时备份的好习惯。
3.2计算机网络系统的冗余备份计算机网络终端操控是人为的,尽管已经采取了各种防护手段,但是,难免会出现意外。在这种情况下,网络的冗余性就显得十分重要。冗余备份技术在网络维护、数据存储和通讯中被广泛应用,它在提高系统工作效率的同时,还对通讯线路、通讯设备、电力设备的冗余等进行管理,大大缩短了故障存在的时间,有效维护了系统的正常工作。
网络系统论文范文4
在网络通信系统中的硬件组建方面的质量安全隐患通常来源于网络通信系统中的设计工作,其主要表现在硬件安全方面,因为是原有硬件的因素,运用软件程序来进行处理的方式效果不是非常的明显,实际应该在管理工作上来强化人工不久的措施。所以说,在继续宁硬件选购和硬件制作的过程中,应当快速的解决或者是最大程度上去消除这方面的安全隐患问题的产生。在网络通信系统中的软件风险方面,风险性产生的主要来源是软件工程中的设计问题,在对软件进行设计的过程中,不经意的疏忽大意将会使得网络通信系统产生安全性的漏洞,软件的设计长度过大或者是存在一些不必要的功能,这些都将可能导致网络通信系统中软件的组建出现脆弱性,在进行软件设计的过程中,不遵循信息系统的标准安全等级。
2通信与网络协议
在当前网络通信协议中,因为不能做到直接和异构网络的连接实施通信,所以说,专用的网络与局域性的网络相互之间的通信协议一直存在一定的制约性和封闭性,封闭性的网络相比开放式的因特网在安全强度方面较高,第一就是可以从外部的网络或者是站点直接攻入到系统内部的可能性被有效的降低,但是我们从协议的分析中可以发现,截取的问题与信息的电磁信息出现泄漏的问题仍然比较频繁;还有就是专用性的网络其本身具有比较成熟和较为完善的身份识别、权限的划分好以及在访问过程中的安全控制等安全体系。
2.1信息系统中出现的威胁
威胁就是指在阻碍或者是对某一项命令完成的阻碍,或者是降低了真实存在的和潜在的力量以及在完成使命的能力方面的总称。安全性的威胁通常就是指对系统形成危害的故意行为或者是营造出一种环境的威胁性。威胁性的产生可以具体分成故意性、偶然性、主动性以及被动性来实施分类。故意性威胁:就是针对检测可以从运用易行的监视软件来随意的实施操控,对网络通信系统的知识实施针对性和精心的策划与攻击,一种故意的威胁要是得到了切实的实现,那么我们就可以认为这是一种故意威胁的行为偶然性威胁:偶然性威胁就是指抛出所有的不利的威胁,其中就包含了操作上的事物、网络通信系统软件出现错误以及网络通信系统出现故障等。主动性威胁“就是指对网络通信系统以及设计到系统内部所含有的各方面有效信息的盗取和篡改,或者是对系统的操控状态的变更。
2.2网络通信系统风险在空间上的分布
网络通信系统中风险性在不同的区域有着不同的分布状况,当信息从信息源发送到信宿需要经过九个区域,因为信息系统的风险性是其中资源或者是信息系统的实现,其中的安全性的具体要求过程当中存在不确定性的因素,为了方便对系统风险实施分布,可以通过指标坐标系图来体现。
3结束语
网络系统论文范文5
改进的SOINN算法
SOINN是用于机器人工程的联想记忆神经网络,实现了在线的拓扑结构学习。最初SOINN是一个双层的竞争神经网络结构,存在着诸如难于决定何时停止第一层网络的训练,并开始第二层训练等问题。增强的SOINN,即ESOINN引入了单层网络的结构,同时引入了新的参数。2011年Shen提出改进的SOINN(以下简称为ISOINN),减少了参数数目。
改进的SOINN以序列的方式读取训练数据,然后维持节点集合N以及一些连接这些节点的边用来表示数据的拓扑结构。当读取一个新样本时,将经过三个步骤的处理:首先将其进行类间插入或类内插入;然后,如果学习已经进行了λ次,则进行噪音删除;最后进行节点编组。
1类间插入和类内插入在进行类内插入之后,将连接获胜者和其邻居的所有边的年龄加1,如果一条边的年龄大于指定的最大年龄age_max时,删掉这条边。
2噪音删除
在接受了λ个样本之后,进行噪音删除。删除的方法是删掉N中邻居的数目小于2的点。在实验的过程中发现,如果将算法加上额外的噪音删除,将大大提高训练的分类器的分类效果。具体的做法是,在最后一轮噪音删除中,删掉累积点数小于λ的点,理由有两点:(1)这些点是在最后一轮训练时候刚刚到来的,因此是孤立点;(2)这些点代表的类型的数目太少。
3节点编组
在噪音删除之后,ISOINN算法对节点进行编组。为了表示节点的拓扑结构,引入了一个密度的概念,节i的密度iD的计算方法如(7)式:(7)式中||iN是节点i邻居节点的数目。根据点的密度的定义,定义边的密度为其连接的两个点中密度较小的点的密度。算法1总结了节点编组的方法。
4使用ISOINN训练网络数据分类器
ISOINN的训练结果是子簇的中心点,已及这些点归属于哪个组的信息。从训练结构中构造网络数据分类器的方法为:将点的数目最多的组中所有点标记为正常,其他组中的点标记为异常。这样做的理由是,网络中的正常应用的种类和数据(对于使用入侵检测的度量方法来说)内容相似,且数据量较多。对于待分类的样本,利用公式(1)来寻找其最近邻居,将样本用其最近邻居的标记来标记。这样就构建了一个对于网络数据的最近邻分类器。
使用数据精简的方法加速网络数据的训练
通常在网络入侵检测的数据集“10%KDDCup99”上训练神经网络分类器的时候,需要超过一天的时间。训练速度过慢,对于在线训练的异常检测系统是不能接受的,因为这意味着高的丢包率。因此提出使用数据精简的方法来加速ISOINN的训练。将要讨论的数据精简方法包括三种:随机子集选取(RandomSubsetSelection,简写为RSS),基于k-means聚类的方法,和基于主成分分析(PCA)的方法。在接下来的实验中,将比较这三种方法的加速效果。RSS方法可以看做是简单的下采样,另外两种方法则要复杂一些,有更坚实的理论基础。
1基于k-means聚类的数据精简
此方法的灵感来自于用于数据流聚类的k-means。用于流聚类的k-means使用滑动窗口的方式,首先对每个窗口内的样本聚类,获得聚类中心,然后再对这些聚类中心进行聚类。提出的方法与流聚类的k-means不同的是,当获得了窗口内的聚类中心之后,不是进行存储,而是直接将其用于ISOINN的训练。这样直接用于ISOINN的训练的样本数目就能减少。记滑动窗口的大小为w,数据精简率为reduct_rate,则基于k-means的数据精简方法为:每读取了w个样本之后,对其进行k-means聚类,聚类中心数目为reduct_rate×w。将聚类中心作为精简之后的数据。
2基于主成分分析的数据精简
PCA是一种利用统计学理论,选取具有最大方差的数据成分的方法。它是一种通过线性变换,在尽量不损失数据中有效信息的情况下,降低数据维数的方法。
PCA目前被广泛应用于机器学习领域的数据降维。在提出的方法中使用PCA进行数据精简。精简的方式同基于k-means的数据精简方法一样,使用滑动窗口的方法。每当获得了维数为n的w个样本之后。对数据进行一次精简。算法2总结了使用PCA进行数据精简的方法。这个算法可以从w个样本中,获得精简率为reduct_rate的数据。
特征
选取与k-means这样的聚类算法一样,ISOINN需要计算样本与样本之间的距离。而网络入侵检测的测试数据集属性较多,这就带来了维度诅咒的问题。
可以采用特征选取的方法来解决维度诅咒的问题。使用Adaboost进行特征选取。Adaboost结合DecisionStump的方法,已经被证明适合于网络入侵检测问题,这是一种贪心算法,其基本思想是将若干个弱分类器结合为一个强分类器,并采取迭代的方法实现这个组合,每次选取对于提高分类准确率贡献最高的那个弱分类器。弱分类器DecisionStump是单节点的决策树,最终权值较高的DecisionStump相对应的属性,优先选择。
基于ISOINN的异常检测框架
图1给出了基于ISOINN的,在线无监督学习的网络入侵检测方法框架。特征选取过程的输入是经过处理的用于入侵检测的数据,输出经过筛选的,保留部分属性的数据;数据精简的过程与在线聚类的过程同时进行。在经过适当时间的训练之后,就可以停止训练,并得到一个针对网络数据的最近邻分类器。利用这个分类器,对之后到达的网络数据进行分类,从中发现网络入侵。
实验结果
实验所使用的平台环境为:处理器IntelCorei32.4GHz双核,存储器2GB,操作系统为64位linux。
1KDDCup99数据集
尽管KDDCup99数据集有一些不足,但是它仍被广泛应用于入侵检测算法的性能测试。其数据是从一个模拟的军事网络中,经过9个星期的采集而来,其中包括24种攻击类型。这些攻击类型分为4类:DOS,R2L,U2R和网络嗅探。实验中采用10%KDDCup99数据集,这是个更加简要,也更有挑战性的数据集。在下载数据中,除开一条格式错误的记录,总共包含了494020条记录,其中396743条为攻击记录。
2特征选取结果
使用Weka作为工具。Weka中包含了Adaboost算法。实验中使用了Weka3.6版本,Adaboost的参数为软件默认设置。针对所有的数值类型属性进行选取,结果选中了其中7个:count,dst_bytes,hot,src_bytes,dst_host_srv_serror_rate,dst_host_same_src_port_rate,dst_host_srv_diff_host_rate。训练的时间为227.5秒。
3ISOINN的参数选取
实验采用网格搜索的方法来进行参数选取。因为单次训练的时间较长,往往耗时超过一天。为了缩短搜索时间,并保持较好的搜索效果,采用如下的方法:(1)将数据集进行20%的下采样;(2)仅使用特征选取中权值最高的4个属性;(3)在对每个参数组合进行评估时,使用2序交叉验证。在搜索之前,需要对数据进行的对数变换,并针对每个属性的标准化。将α设置为无穷大,最大年龄age_max的搜索范围是100~1000,每100搜索一次;另一参数λ的搜索范围是20~120,每10搜索一次。评估指标是分类准确率。网格搜索的结果如图2所示。图中准确率所构成的平面有大量的平坦区域,说明将ISOINN应用于网络入侵检测的问题时,其性能是稳定的。参数λ取值较大的时候,网络的训练耗时较长。综合考虑准确率与训练时间与准确率,选取参数组合为:age_max=600,λ=30,α=∞。
4实验结果
对比入侵检测算法的评估指标主要为两项:检测率与误警率。检测率计算方法为,检测率=准确检测到的入侵数目/总共的入侵数目,误警率的计算方法为,误警率=被误报为入侵的数目/正常记录数目。实验中,数据精简部分的参数设置为:reduct_rate=0.33,w=reduct_rate/λ=90,并且将基于PCA的数据精简的参数k设为1。数据精简部分与ISOINN均用python与numpy实现,其中k-means的实现使用了scipy科学计算库。测试中使用了特征选取的7个特征,经过了对数变换,并且针对每个属性进行了标准化。
程序的运行没有使用任何的硬件加速。实验对比结果如表4所示。为了与现有文献中的方法的效果对比,表3中列出了一些现有方法的效果。实验结果表明,(1)在ISOINN的训练加速方面,使用k-means进行数据精简的方法对于加速训练最有利。使用RSS也能达到很好的效果,其原因可能是数据集本身是过采样的。使用PCA进行数据精简的方法对于减少训练时间同样有效,但此方法由于提高了对于网络入侵的灵敏度,造成了较高的误警率。(2)总的来说基于ISOINN与数据精简的网络异常检测方法,在保证较高检测率的前提下,降低了训练时间。
网络系统论文范文6
1.1网络结构总体方案
网络结构是整个系统的基础,网络结构的设计直接关系到整个网络的传输质量、业务拓展及运营服务质量。目前,网络结构的设计已从电缆向光纤,从模拟向数字化、宽带化、智能化趋势发展。网络拓扑结构主要分星形网、树形网及环形网,一个网络一般由多种网络结构组合而成,为达到较高的可靠性拟采用环形+星型网络拓扑结构,在主干段以及配线段用光传输系统实现光纤到楼,再建同轴电缆和双绞线重叠网作为用户引入。重叠网在光信号通路上通过共缆分纤方式将电视与数据业务物理分开形成以CATV为基础的重叠式综合业务网络。整个网络拓扑图如图1所示,具体方案为:在小区综合楼内设置一分前端,并入会泽县城域骨干环网,具有自愈传输功能;从分前端到各个光节点采用一级星形结构,尽量延伸光传输距离,使光信号几乎送至用户;从光节点至用户电缆(同轴电缆或双绞线)采用星形无源结构,传输距离不超过100m,最大限度保证信号传输质量。
1.2分前端机房的设置
因要接入城区自愈环中,故机房应配备具有二选一光接收并且具有自动切换功能的光接收机和支持冗余环网拓扑结构的数据传输设备,从而实现来自顺方向及逆方向上信号的冗余。环网光缆采用48芯光缆,以满足今后多业务需求。根据实地情况,机房设于小区中较集中的综合楼内,同时考虑到今后这一区域的发展,在路口设一交接箱,以满足今后小区处用户的接入。
2分配光缆网路由规划
(1)光网络结构:如前所述,分前端后采用一级星形光网络拓扑结构。
(2)光节点芯数:考虑到下一步互动电视及今后其它数据业务的开展,每个光节点设计8芯(一芯下行、一芯上行、两芯数据、四芯备用)。
(3)光节点数:依据一步到位、分步实施、逐步发展的方针,同时根据小区实际情况,为满足星形无源电缆网的要求,尽可能延长光网络范围,以达到高质量传输、易维护的标准,小区内共设光节点38个。
(4)由于全部光缆为地沟敷设,且距离相对较短,考虑到降低施工难度,同时又能达到最高的网络传输标准,所有光节点均用8芯光缆直接铺设至机房。根据以上标准,绘制路由图如。
3CATV系统设计
网络整体结构确定之后,就可以对CATV及相应的数据业务系统进行设计。目前虽然新产品层出不穷,但对于HFC网络来说,网络结构确定之后对CATV系统的设计变得较为容易。
(1)光系统波长:环网节点仍采用以前的1550nm系统主用、1310nm系统备用的方案,分前端之后的分配光网络由于传输距离较短,故采用1310nm系统,具有很大的灵活性。
(2)由于分配光网络采用一级星形结构,故光发射机及分路器在分前端集中分配。
(3)计算出各光节点链路参数,确定所需光发射机参数,每个光节点接收机的输入光功率按-2dB计算,计算过程略。
(4)绘制出光系统分配图。
(5)光机以下的同轴电缆分配网由于采用无源星形入户设计,光机信号经分支分配器后直接至用户,经实地勘察最大传输距离不超过80m,故此部分网络较为简单,同时最大限度地保证了用户端的信号指标(同轴电缆分配图略)。
4数据传输系统设计
小区数据传输系统的设计必须依托于现有的城域骨干网。目前我县城域骨干网是由MSTP系统为切入,以CiscoCatalyst3750M为核心,旁挂BAS做认证设备,采用星形结构联至分前端各汇聚节点CiscoCatalyst3560上的网络构架。同样的,把小区分前端作为一汇聚节点,由于汇聚层不采用环路结构,故用CiscoCatalyst3560直接联至中心机房CiscoCatalyst3750M即可。通过开启CAT3750M的MPLSVPN功能即可满足汇聚层下集团用户对虚拟专用网的需求,同时用BAS实现对个人用户的认证工作。对接入层来说,根据上述网络设计结构,小区内共设38个星形接入点,如果接入点用户有MPLSVPN需求的,要求接入设备必须支持路由功能,否则的话直接采用普通接入交换机,来实现对个人用户的网络接入。数据传输系统结构设计。
5结束语