永磁传动技术论文范例6篇

前言:中文期刊网精心挑选了永磁传动技术论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

永磁传动技术论文

永磁传动技术论文范文1

【关键词】永磁同步电机;恒压频比开环控制;矢量控制;直接转矩控制

1.引言

近年来,随着电力电子技术、新型电机控制理论和稀土永磁材料的快速发展,永磁同步电动机得以迅速的推广应用。永磁同步电动机具有体积小,损耗低,效率高等优点,在节约能源和环境保护日益受到重视的今天,对其研究就显得非常必要。因此。这里对永磁同步电机的控制策略进行综述,并介绍了永磁同步电动机控制系统的各种控制策略发展方向。

2.永磁同步电机的数学模型

永磁同步电机(PMSM)的永磁体和绕组,绕组和绕组之间的相互影响,电磁之间的关系十分复杂,由于磁路饱和等非线性因素,建立精确的数学模型是很困难的。为了简化PMSM的数学模型,我们通常作如下的假设:

(1)磁路不饱和,电机电感不受电流变化影响,不计涡流和磁滞损耗;

(2)忽略齿槽、换相过程和电枢反应的影响;

(3)三相绕组对称,永久磁钢的磁场沿气隙周围正弦分布;

(4)电枢绕组在定子内表面均匀连续分布;

(5)驱动二极管和续流二极管为理想元件;

(6)转子磁链在气隙中呈正弦分布。

对于永磁同步电机来说,即用固定转子的参考坐标来描述和分析其稳态和动态性能是十分方便的。此时,取永磁体基波励磁磁场轴线即永磁体磁极的轴线为d轴,而q轴逆时针方向朝前90o电角度。d轴与参考轴A之间夹角为。图1为永磁同步电机(PMSM)矢量图。

图1 PMSM空间向量图

Fig.1 Space vector diagram of PMSM

根据图1所示向量图进行坐标变换,满足功率不变原则,得到在旋转坐标系下PMSM的数学模型方程如下

(1)电压方程

由三相静止轴系ABC到同步旋转轴系dq的变换得:

(1)

,Rs为定子相电阻,其中:

(2)磁链方程

(2)

式中为转子(永磁体)在dq轴的磁链,,ud、uq,id、iq和、分别为dq轴的电流、电压和磁链。、为dq轴的电感。

(3)转矩方程

电磁转矩的表达式为:

(3)

pn为极对数,定子磁链空间矢量,is为定子电流空间矢量。

3.恒压频比开环控制(VVVF)

恒压频比开环控制(VVVF)是为了得到理想的永磁同步电机转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的。 按照这种控制策略进行控制,使供电电压的基波幅值随着速度指令成比例的线性增长,从而保持定子磁通的近似恒定。VVVF控制策略简单,易于实现,转速通过电源频率进行控制。但同时,由于系统中不引入速度、位置等反馈信号,因此无法实时捕捉电机状态,致使无法精确控制电磁转矩:在突加负载或者速度指令时,容易发生失步现象;也没有快速的动态响应特性。因此,恒压频比开环控制电机磁通而没有控制电机的转矩,控制性能差。通常只用于对调速性能要求一般的通用变频器上。

4.矢量控制(VC)

七十年代中期,德国学者提出“交流电机磁场定向的控制原理”,即用矢量变换的方法研究交流电机的动态控制规律。矢量控制理论采用矢量分析的方法来分析交流电机内部的电磁过程,是建立在交流电机的动态数学模型基础上的控制方法。它模仿对直流电机的控制技术,将交流电机的定子电流解祸成互相独立的产生磁链的分量和产生转矩的分量。分别控制这两个分量就可以实现对交流电机的磁链控制和转矩控制的完全解祸,从而达到理想的动态性能。使交流传动的动、静态特性有了显著的改善,开创了交流传动的新纪元。矢量控制是目前高性能交流电机调速系统所采用的主要控制方法,具有很好的动态性能。然而这种控制技术本身还是存在一些缺陷的,受电机参数影响较大,由于电机参数在不同运行情况与环境的多变性,所以系统鲁棒性不强;矢量控制的根本是实现类似直流电机的控制,因此需要进行复杂的解耦运算,增加了信号处理工作负荷,要求更高的硬件处理器配合;

5.直接转矩控制(DTC)

1985年德国学者M.DepenBrock教授首次提出了磁链采用六边形控制方案的直接转矩控制理论。该方法只是在定子坐标系下分析交流电机的数学模型,强调对电机的转矩进行直接控制,省掉了矢量旋转变换等复杂的变换和计算。其磁场定向所用的是定子磁链,只要知道定子电阻就可以把它观测出来。因此,DTC大大减少了矢量控制技术中控制性能易受参数变化影响的问题,很大程度上克服了矢量控制的缺点。

转差角频率越大,转矩越大。转差角频率增加,转矩也增加。说明异步电机的转矩和转矩增长率都可以通过控制定子磁场对转子的角频率来控制。也就是说,异步电机DTC是建立在电机转差角频率控制的理论基础上的。而同步电机并不存在这种转差角频率,正是由于这个原因,DTC策略在同步电机上没有能够快速地得到应用。直到1996年英国的French.C和Acarnley .P发表了关于PMSM的DTC的论文,1997年由澳大利亚的Zhong L, Rahman.M.T教授和南航的胡育文教授等合作提出了基于PMSM的DTC方案,初步解决了DTC控制策略在PMSM上应用的理论基础。有了这个理论基础,PMSM的DTC控制也成了众多学者研究的一个热点。

就目前而言,永磁同步电机控制的直接转矩控制摒弃了矢量控制解耦的思想,将转子磁通定向更换为定子磁通定向,通过控制定子磁链的幅值以及磁通角,达到控制转矩的目的,具有控制手段直接、结构简单高效、控制性能优良、动态响应迅速的特点。直接转矩控制在克服了矢量控制弊端的同时,这种粗犷式控制方式也暴露出固有的缺陷。首先控制器采用Bang-Bang控制,实际转矩必然在上下限内脉动;再者调速范围受限。在低速时,转矩脉动会增加,而且定子磁链观测值会不准。另外,电机参数的时变对直接转矩控制也有影响。

6.结论

本文所阐述的永磁同步电机的控制方式是最基本的三种控制方式。通过文中的阐述,可以看出每种控制方式都有其利弊,可以根据设备的应用环境工况来选择设备的控制方法。

同时随着控制理论的不断发展,学者们采用智能控制策略,如最优控制、遗传算法、模糊控制等方法,用来克服每种控制方式的弊端,使得永磁同步电机的应该更加广泛,充分发挥其体积小,损耗低,效率高等优点。

参考文献

[1]王成元,周美文,郭庆鼎.矢量控制交流伺服驱动电动机[M].北京:机械工业出版社,1994.

[2]李华德,杨立永,李世平.直接转矩控制技术的新发展[J].工业大学,2001.

[3]许大中编著.交流电机调速理论[M].杭州:浙江大学出版社,1991.

永磁传动技术论文范文2

关键词:永磁同步电动机;应用特性;研究

引言

稀土永磁电动机具有高效节能的显著优点,应用范围正日益遍及国防、航空航天、工农业生产和日常生活的诸多领域,发展潜力巨大。相较于电励磁电动机,稀土永磁电动机结构特殊且种类多样,传统的设计理论和分析方法已难以适应高性能电机研发的要求,需要综合运用多学科理论和现代设计手段,进行创新研究。传统设计模式得到的产品,在工况相对固定的应用场合,能够表显出良好的技术性能,但在永磁同步电动机实际运用的过程中,其振动与噪声始终没有得到有效解决,甚至会对其实际运行的稳定性产生不利的影响。为此,针对永磁同步电动机设计当中的关键技术研究十分有必要,同样也逐渐成为国民经济发展的关键增长点。因此,本文在电机和电磁场理论的基础上,结合实际工程应用问题,对永磁同步电动机的工作工程中的振动和噪声问题进行实验分析研究,并提出具体解决改善措施。论文的工作主要集中在以下几个方面:(1)测试装置与系统的实验,选择11kW的永磁同步电动机,对其振动和噪声的特性进行测试。其中,将非金属环合理安装于9000A的涡流传感器之上,随后,同样将其安装在轴承端盖的位置,进而对转子动态特性展开全面测试。(2)永磁同步电动机振动与噪声信号的分析,通过对永磁同步电动机振动和噪声信号的测试与分析,当电动机处于额定负载的情况下,其振动信号呈现出一簇脉冲,其电流信号也有所改变,并非正常的正弦时域波形。(3)对噪声频谱的分析,当11kW永磁同步电动机处于空载状态时,根据声压级频谱的内容可以发现,其中存在两个峰值。而当11kW永磁同步电动机处于额定负载的状态下,根据声压级频谱内容可以发现,存在三个峰值。而通过噪声频谱与振动频谱的对比和比较,可以发现对于永磁同步电动机噪声产生影响的因素中,轴承振动并非主要矛盾。通过对空载以及额定负载条件下的声压级频谱对比与比较可以发现,峰值多出一,而具体的原因就是受负载增加的影响,导致电流与功角随之提高,进而生成了频率成分。

以下是详细实验过程:

1 永磁同步电动机应用特性的实验分析――以振动与噪声为实验对象

1.1 测试装置与系统的实验

选择11kW的永磁同步电动机,对其振动和噪声的特性进行测试。其中,将非金属环合理安装于9000A的涡流传感器之上,随后,同样将其安装在轴承端盖的位置,进而对转子动态特性展开全面测试。

1.2 永磁同步电动机振动与噪声信号的分析

通过对永磁同步电动机振动和噪声信号的测试与分析,当电动机处于额定负载的情况下,其振动信号呈现出一簇脉冲,其电流信号也有所改变,并非正常的正弦时域波形[1]。

1.3 对噪声频谱的分析

当11kW永磁同步电动机处于空载状态时,根据声压级频谱的内容可以发现,其中存在两个峰值。而当11kW永磁同步电动机处于额定负载的状态下,根据声压级频谱内容可以发现,存在三个峰值。而通过噪声频谱与振动频谱的对比和比较,可以发现对于永磁同步电动机噪声产生影响的因素中,轴承振动并非主要矛盾。通过对空载以及额定负载条件下的声压级频谱对比与比较可以发现,峰值多出一个,而具体的原因就是受负载增加的影响,导致电流与功角随之提高,进而生成了频率成分。

2 改善永磁同步电动机应用特性的具体措施

2.1 有效降低力波

第一,绕组选择要科学。在选择定子绕组的过程中,最好选择谐波磁动势不高的,像是正弦绕组,能够有效地降低噪声。第二,将定子槽与转子槽的开口宽度减小。通过半闭口槽亦或是闭口槽能够使气隙磁导谐波有效降低。与此同时,为了能够实现转矩脉动的降低,就需要采用槽开口宽度增大的方式。第三,气隙磁通密度适当减少。因为径向力和气隙磁密平方呈现出正比例关系,而振幅和径向力同样呈正相关关系。除此之外,升功率和振幅平方近似呈正比例的关系[2]。在这种情况下,磁通的密度如果相对较高,那么不仅只是声功率随之提高,同样还会影响系统运转的效果,分叉与混沌现象的发生几率会更高。然而,一旦减小气隙磁密,还会使电动机的自重增加。在这种情况下,应当综合考虑多种因素来进行设计。

2.2 磁场应对称

在永磁同步电动机实际运行的过程中,如果转子偏心很容易引起低阶径向力,导致电动机自身的噪声不断增加[3]。在这种情况下,不仅要对加工工艺与装配工艺进行合理地控制,同样采取定子并联绕组的方式,也能够避免因转子不同心而带来的噪声,这样就能够确保各级磁通处于一致状态,有效地规避了磁拉力出现的不平衡性,使得振动与噪声的产生几率下降。

2.3 斜槽与斜极的控制

对于永磁同步电动机来说,将其定子铁心以斜槽的形式制作出来,能够确保径向力波始终沿着电动机的长度方向轴线来移动[4]。这样一来,其沿着轴线方向的平均径向力就会随之下降,同时,附加转矩以及噪声也会随之降低,然而,实际的附加损耗却并不会下降。

2.4 定子动态振幅与声振幅的合理减少

第一,要科学增加阻尼。可以在永磁同步电动机的定子铁心以及机座中适当地涂上阻尼材料,与此同时,使用清漆亦或是环氧树脂,实现定子叠片的有效粘结[5]。基于此,应当对定子铁心以及机座间存在的间隙进行及时填充,这样也能够使电动机阻尼不断增加。第二,声辐射效率的减少。在对永磁同步电动机声辐射功率进行计算的过程中,主要是相对声强辐射系数和无穷大平板声强公式相乘[6]。其中,相对声强辐射的系数和电动机的定子长径比以及振动模态阶数等存在紧密的联系。为此,在立波阶数的增加,使声强辐射系数减少,可以有效地控制噪声。

3 结束语

综上所述,永磁同步电动机在实践应用中的作用十分重要,所以,对其应用特性的研究具有重要的现实意义。电动机振动过大不仅会对运行可靠程度带来负面影响,同样还会引发噪声。因而,文章将稀土永磁同步电动机作为重点研究对象,并且以振动和噪声两个特性为例,阐述了控制这两种特性的可行性方式,以期为永磁同步电动机的正常运转提供有价值的参考依据,充分发挥其自身的功用。

参考文献

[1]皇甫宜耿,LAGHROUCHES,刘卫国,等.高阶滑模消抖控制在永磁同步电动机中的应用[J].电机与控制学报,2012,16(2):7-11,18.

[2]姬芬竹,高峰.电动汽车驱动电机和传动系统的参数匹配[J].华南理工大学学报(自然科学版),2006(04).

[3]王家军.速度指定位置跟踪双永磁同步电动机的反推控制[J].控制理论与应用,2015,32(2):202-209.

[4]杨玉波,王秀和,张鑫,等.磁极偏移削弱永磁电机齿槽转矩方法[J].电工技术学报,2006(10).

永磁传动技术论文范文3

【关键词】滤波装置 成像 步进电机

摄像机拍摄的图像是由被拍摄物发射光(反射光)及背景光两部分组成。在摄像机已经确定下来的情况下,一般采用通过改变曝光参数的方法,调整目标成像的亮度来改善目标的成像质量。但是在实际使用中,受被拍摄物体的亮度、运动方式、背景环境等多种因素影响,摄像机的曝光参数的调节有时比较困难,特别是物体本身亮度较强的情况下,参与成像的主要光谱对应的光强太大,使得摄像机接收CCD饱和,而目标轮廓对应的成像光谱光强较弱,所以轮廓不清晰。只靠摄像机自身降低曝光参数来进行目标的清晰成像并不是那么容易,因此,仅仅依靠调整曝光参数是无法从根本上解决成像质量清晰与否的问题,需要设计一套载有不同波段滤光片的滤波转动装置,采用步进电机驱动的转盘来装夹滤光片,滤波装置与摄影机时序匹配。本文中设计的滤波载盘旋转时,不拍摄;电机停转时,摄影机工作。滤波转动装置通过选择适当的高通、低通或带通滤波片,将干扰目标成像的光谱成分滤除,使目标在图像中的对比度得到改善。

1 滤波装置的组成

滤波装置是将装载不同波长性能滤光片的转轮置于摄影或摄像机之前,在摄影、摄像机工作时,控制转轮,使不同波长的光成像,比较成像的质量,决定滤光波长。

本套装置选用常规摄像机,考虑到目标距离摄影点很远,使用伽利略系统,目镜放大倍数为10倍,焦距为25mm,物镜焦距为900mm,总角放大倍数为36倍,有连拍功能。滤波装置由机械载片转盘、步进电机驱动器、控制电路以及显示设备组成。

主要完成以下功能:

(1)控制机能够带动转盘在0.5s内转动72°。

(2)完成转动后滞留一段时间,继续下一步,滞留时间以0.1s为单位可调。

(3)运行速度、加速度可调,转动角度以0.9°为单位可调。

(4)具有显示功能,显示参数设置信息以及电机运行信息。

(5)具备串口功能,可以方便进行程序烧写,并可与上位机交互通信及控制。

2 步进电机驱动控制装置

2.1 步进电机选型

摄像机带动转盘转动,对电机要求较高,不仅启动速度要快,而且停止后定位要准确,但在设计时发现转盘的转动惯量较大,不易停止下来。通过实验发现,采用永磁式步进电机可以满足本装置中对电机的要求:电机既可满足带动转盘高速运动的同时,又可满足在停止时转盘定位准确无过冲现象,同时功率消耗较小。

步进电机型号定为:85BYGH-201。

2.2 控制电路设计

步进电机控制方框图如图2所示。

为了保证本装置结构简单、运行可靠,经过论证,步进电机控制器采用STC89C52单片机芯片,能够满足本装置使用要求。该系统能够发出脉宽、频率、脉冲个数均可控制的方波,控制电机运行,并且还可以利用串口对单片机进行程序的烧写,对其功能可以进一步扩展。其整体的电路图如图3所示。

采用SMC1602A液晶显示器,能够将滤波装置的参数设置及工作状态实时显示出来,供操作人员实时监控。操作人员可以通过操作液晶显示器面板的控制按键,实现装置控制参数的显示、设置、电机运行和停止等功能。如图4所示是按键控制电路图。

2.3 软件设计

单片机采用多中断系统,分析判断中断标志位,确定有无中断以及中断方式,确定中断方式后再通过查询方式判断具体工作模式,最后执行相对应程序。软件控制流程如图5所示。

3 实验分析

采用普通摄像机加装本滤波装置,滤波片滤光范围在300nm至1200nm之间,对150米以外的物体做光谱采集,不漏掉目标,干扰光不进入系统,电机带动转盘按照预设程序,与摄像系统配合,依次拍下目标光谱信息。本滤波装置正确地在外场采集了目标光谱。如图6为拍摄照片滤波对比效果图。

综上实验结果,从图中可以看出,滤波装置正常工作,滤波效果达到预期目标。

4 结束语

本套滤波装置采用步进电机传动,脉冲频率控制转速,脉冲个数控制转角,使曝光与传动匹配。结构简单易行,用常规摄影摄像仪器、滤光片,经过光谱滤波后改进像质效果很明显,得到较好的像质。

参考文献

[1]崔星.机电混合驱动系统特性与参数匹配研究[D].北京:北京理工大学机械与车辆学院,2009.

[2]姚荣斌,孙红兵.基于STC89C51RC的转速测量系统设计[D].连云港师范高等专科学校学报,2007(04):84 -87.

[3]刘保延等.步进电机及其驱动控制系统[M].哈尔滨:哈尔滨工业大学出版社,1997.

[4]冯晓,刘仲恕.电机与电器控制[M].北京:机械出版社,2005.

[5]王诣,尤丽华.基于AT89S51单片机的步进电机控制系统的研究[D].无锡:江南大学机械工程学学术论文,2005.

作者简介

李阳(1977-)男,辽宁省葫芦岛市人。工程师,从事光学测量工作。

永磁传动技术论文范文4

1引言

当前,我国中小零部件机械产业正处于稳步发展的成熟期,国外进口设备一统天下的局面已经结束,国产零部件机械已经成为主力。主要表现如下:

一、国产机械的技术水平已接近或达到世界先进水平,大规模靠引进技术发展的时代已经结束,吸收、学习国外先进技术的渠道和方法大为增强,自身开发能力大大提升,大型机械开发周期一般不超过一年。

二、行业格局发生很大变化。一是国外著名的机械企业纷纷在中国建厂,改变了机械生产企业的结构。它们在机械方面具有雄厚的技术和经济实力,代表着世界领先水平,今后将对中国机械行业的生产格局产生深远影响。其在产品开发、制造及知识产权保护等许多方面给中国企业提供了学习机会。二是国内著名大企业成功介入机械产品的生产,并向多品种方向发展,凭借大厂在经验、技术、经济、制造方面的实力,其机械产品在销售市场上已经占据了主导地位。这些变化,极大增强了我国机械行业的实力,对中小企业的发展也有很大影响。

三、一批民营中小企业迅速成长壮大,规模和技术实力大增。

尚存问题有待解决 。在看到我国零部件机械行业获得长足发展的同时,一些潜在的问题也不容忽视。首先,我国多数机械企业规模偏小,抵抗风险能力有限,回款率低,流动资金不足。其次,也如同其他产品一样,我国零部件机械存在着科技投入不足、创新能力偏低等问题。对基本研发的投入很少,采用挖人才、“偷”技术的方式很普遍。所以各家的产品都是大同小异,很少有标志性的技术,原始创新很少。第三,零部件机械厂家正面临着水、电、钢材等原材料持续上涨的压力,利润损失较大,不利于进一步扩大生产。第四,对出口欧洲、美国等发达国家和地区的产品,由于不熟悉其市场准入和标准,经常遭遇“专利门槛”问题,对产品出口产生不利影响。

认清趋势促进发展 。针对上述问题,相关企业要重视创新,主动加大科技投入;树立尊重知识、保护知识产权的法律意识;企业对技术骨干要有留人和防挖办法;可在市场接受的范围内,适当进行涨价,以促进生产发展。

多轴头主要用于快速钻孔。是目前国内刚兴起的一种提高生产效率、降低成本的工作母机。随着国内汽配行的发展,各零部件供应商之间竞争激烈,选择一种高性能、高效率的机床是企业降低生产成本、提高企业竞争力的一种行之有效的途径。一台普通的多轴头+一台普通的钻床就能一次把几个乃至十几二十个孔或螺纹一次性加工出来。如再配上专用多轴钻孔机就能把好几个面上的孔或螺纹一次性加工完成。解决许多工件难以装夹、定位或定位不准的问题。多轴头钻床设计结构,加工精度高,性能稳定,钻孔能力强。适用于高精度钻孔,镗孔。解决了高精度钻孔,镗孔上加工中心加工成本高的问题。丝锥夹头夹持范围大节省攻不同直径的螺纹需换芯的时间。

齿轮传动多轴头设计是一个传统的机械课题,对设计者的机械基础知识要求较高。多轴头的设计特点是程序性强。我们应按照设计程序,逐步进行设计与计算。

2 设计前准备工作

2.1 产品图

产品图见图纸。本产品毛坯为铸造件,材料为HT100。生产批量:中等批量。

2.2 工艺卡

本工艺卡为产品的工艺过程,本产品的重点工序是4(3)个直径为14.5mm的孔的加工,从产品图我们可以知道,产品毛坯为铸造件。但在铸造时,产品是否要留余量,以及留多少;产品是否需要留由铸造芒孔。都是需要考虑的问题。

我根据[8]中表39.3-7查得铸造余量为4mm,再根据[9]表1-166查得:当孔径 时,不需铸造孔。所以本产品不需要铸造孔。

从零件图上看,底盖的加工工艺流程可定为:铸造——铣——钻。其中铣这一工艺是为了钻孔进行的辅助工序或准备工序,只要能达到尺寸及粗糙度要求即可,所以这不是本零件的主要工序。本零件的重点工序是四个(三个)孔的加工工序,因为这几个孔必须保证位置的要求,而且这几个孔并不是环型规则布置,不可能采用分度盘来加工;其次如果采用画线来加工的话,位置误差将会很大,不能保证零件的技术要求;即使我们采用了画线来加工,对我们的生产员工的技术水平有很大的要求,会大大降低生产率。我们为了能提高生产率,降低生产成本,我们似乎可以选择一种可以一次完成加工的设备,这个设备必须满足零件的设计要求,不需定位直接将零件的几个孔加工出来。为此,我选择多轴头来加工这几个孔,多轴头既能保证零件的各项技术要求,有能提高生产率,降低生产成本的作用。所以对几个孔的加工我采用多轴头这一辅助设备来加工。

下面是这个产品的工艺方案。

方案一:

工序号 工序 工序内容

0 铸造 砂型铸造,清砂。

5 铣 以零件的下底面为粗基准,铣底盖的上表面,保证个尺寸余量0.2。

10 铣 以上以加工免为精基准,加工下表面,使钻孔台厚度为16.2mm,表面至要求。

15 检验 检验各个尺寸至要求。

20 铣 以钻孔台下表面为基准,精铣上表面至图纸要求。

25 钻 采用多轴头钻孔,一次完成4(3)个孔的加工,使各要求满足。

30 检验 检验各个尺寸至要求。

35 入库

方案二:

工序号 工序 工序内容

0 铸造 砂型铸造,清砂。

5 铣 以零件的下底面为粗基准,铣底盖的上表面,保证个尺寸余量0.2。

10 铣 以上以加工免为精基准,加工下表面,使钻孔台厚度为16mm,表面至要求。

15 检验 检验各个尺寸至要求。

20 钻 采用多轴头钻孔,一次完成4(3)个孔的加工,使各要求满足。

25 检验 检验各个尺寸至要求。

30 入库

我们可以比较,因为图纸对钻孔台有粗糙度要求,所以我认为需要将对钻孔台的加工分为粗加工和精加工,以此满足钻孔台的表面粗糙度。所以选择方案一。

2.3 刀具图

刀具是机械制造中用于切削加工的工具,又称切削工具。广义的切削工具既包括刀具,还包括磨具。

绝大多数的刀具是机用的,但也有手用的。由于机械制造中使用的刀具基本上都用于切削金属材料,所以“刀具”一词一般就理解为金属切削刀具。切削木材用的刀具则称为木工刀具。

刀具的发展在人类进步的历史上占有重要的地位。中国早在公元前28~前20世纪,就已出现黄铜锥和紫铜的锥、钻、刀等铜质刀具。战国后期(公元前三世纪),由于掌握了渗碳技术,制成了铜质刀具。当时的钻头和锯,与现代的扁钻和锯已有些相似之处。

然而,刀具的快速发展是在18世纪后期,伴随蒸汽机等机器的发展而来的。1783年,法国的勒内首先制出铣刀。1792年,英国的莫兹利制出丝锥和板牙。有关麻花钻的发明最早的文献记载是在1822年,但直到1864年才作为商品生产。

那时的刀具是用整体高碳工具钢制造的,许用的切削速度约为5米/分。1868年,英国的穆舍特制成含钨的合金工具钢。1898年,美国的泰勒和.怀特发明高速钢。1923年,德国的施勒特尔发明硬质合金。

在采用合金工具钢时,刀具的切削速度提高到约8米/分,采用高速钢时,又提高两倍以上,到采用硬质合金时,又比用高速钢提高两倍以上,切削加工出的工件表面质量和尺寸精度也大大提高。

由于高速钢和硬质合金的价格比较昂贵,刀具出现焊接和机械夹固式结构。1949~1950年间,美国开始在车刀上采用可转位刀片,不久即应用在铣刀和其他刀具上。1938年,德国德古萨公司取得关于陶瓷刀具的专利。1972年,美国通用电气公司生产了聚晶人造金刚石和聚晶立方氮化硼刀片。这些非金属刀具材料可使刀具以更高的速度切削。

1969年,瑞典山特维克钢厂取得用化学气相沉积法,生产碳化钛涂层硬质合金刀片的专利。1972年,美国的邦沙和拉古兰发展了物理气相沉积法,在硬质合金或高速钢刀具表面涂覆碳化钛或氮化钛硬质层。表面涂层方法把基体材料的高强度和韧性,与表层的高硬度和耐磨性结合起来,从而使这种复合材料具有更好的切削性能。

刀具按工件加工表面的形式可分为五类。加工各种外表面的刀具,包括车刀、刨刀、铣刀、外表面拉刀和锉刀等;孔加工刀具,包括钻头、扩孔钻、镗刀、铰刀和内表面拉刀等;螺纹加工工具,包括丝锥、板牙、自动开合螺纹切头、螺纹车刀和螺纹铣刀等;齿轮加工刀具,包括滚刀、插齿刀、剃齿刀、锥齿轮加工刀具等;切断刀具,包括镶齿圆锯片、带锯、弓锯、切断车刀和锯片铣刀等等。此外,还有组合刀具。

按切削运动方式和相应的刀刃形状,刀具又可分为三类。通用刀具,如车刀、刨刀、铣刀(不包括成形的车刀、成形刨刀和成形铣刀)、镗刀、钻头、扩孔钻、铰刀和锯等;成形刀具,这类刀具的刀刃具有与被加工工件断面相同或接近相同的形状,如成形车刀、成形刨刀、成形铣刀、拉刀、圆锥铰刀和各种螺纹加工刀具等;展成刀具是用展成法加工齿轮的齿面或类似的工件,如滚刀、插齿刀、剃齿刀、锥齿轮刨刀和锥齿轮铣刀盘等。

各种刀具的结构都由装夹部分和工作部分组成。整体结构刀具的装夹部分和工作部分都做在刀体上;镶齿结构刀具的工作部分(刀齿或刀片)则镶装在刀体上。

刀具的装夹部分有带孔和带柄两类。带孔刀具依靠内孔套装在机床的主轴或心轴上,借助轴向键或端面键传递扭转力矩,如圆柱形铣刀、套式面铣刀等。

带柄的刀具通常有矩形柄、圆柱柄和圆锥柄三种。车刀、刨刀等一般为矩形柄;圆锥柄靠锥度承受轴向推力,并借助摩擦力传递扭矩;圆柱柄一般适用于较小的麻花钻、立铣刀等刀具,切削时借助夹紧时所产生的摩擦力传递扭转力矩。很多带柄的刀具的柄部用低合金钢制成,而工作部分则用高速钢把两部分对焊而成。

刀具的工作部分就是产生和处理切屑的部分,包括刀刃、使切屑断碎或卷拢的结构、排屑或容储切屑的空间、切削液的通道等结构要素。有的刀具的工作部分就是切削部分,如车刀、刨刀、镗刀和铣刀等;有的刀具的工作部分则包含切削部分和校准部分,如钻头、扩孔钻、铰刀、内表面拉刀和丝锥等。切削部分的作用是用刀刃切除切屑,校准部分的作用是修光已切削的加工表面和引导刀具。

刀具工作部分的结构有整体式、焊接式和机械夹固式三种。整体结构是在刀体上做出切削刃;焊接结构是把刀片钎焊到钢的刀体上;机械夹固结构又有两种,一种是把刀片夹固在刀体上,另一种是把钎焊好的刀头夹固在刀体上。硬质合金刀具一般制成焊接结构或机械夹固结构;瓷刀具都采用机械夹固结构。

刀具切削部分的几何参数对切削效率的高低和加工质量的好坏有很大影响。增大前角,可减小前刀面挤压切削层时的塑性变形,减小切屑流经前面的摩擦阻力,从而减小切削力和切削热。但增大前角,同时会降低切削刃的强度,减小刀头的散热体积。

在选择刀具的角度时,需要考虑多种因素的影响,如工件材料、刀具材料、加工性质(粗、精加工)等,必须根据具体情况合理选择。通常讲的刀具角度,是指制造和测量用的标注角度在实际工作时,由于刀具的安装位置不同和切削运动方向的改变,实际工作的角度和标注的角度有所不同,但通常相差很小。

制造刀具的材料必须具有很高的高温硬度和耐磨性,必要的抗弯强度、冲击韧性和化学惰性,良好的工艺性(切削加工、锻造和热处理等),并不易变形。

通常当材料硬度高时,耐磨性也高;抗弯强度高时,冲击韧性也高。但材料硬度越高,其抗弯强度和冲击韧性就越低。高速钢因具有很高的抗弯强度和冲击韧性,以及良好的可加工性,现代仍是应用最广的刀具材料,其次是硬质合金。

聚晶立方氮化硼适用于切削高硬度淬硬钢和硬铸铁等;聚晶金刚石适用于切削不含铁的金属,及合金、塑料和玻璃钢等;碳素工具钢和合金工具钢现在只用作锉刀、板牙和丝锥等工具。

硬质合金可转位刀片现在都已用化学气相沉积法涂覆碳化钛、氮化钛、氧化铝硬层或复合硬层。正在发展的物理气相沉积法不仅可用于硬质合金刀具,也可用于高速钢刀具,如钻头、滚刀、丝锥和铣刀等。硬质涂层作为阻碍化学扩散和热传导的障壁,使刀具在切削时的磨损速度减慢,涂层刀片的寿命与不涂层的相比大约提高1~3倍以上。

由于在高温、高压、高速下,和在腐蚀性流体介质中工作的零件,其应用的难加工材料越来越多,切削加工的自动化水平和对加工精度的要求越来越高。为了适应这种情况,刀具的发展方向将是发展和应用新的刀具材料;进一步发展刀具的气相沉积涂层技术,在高韧性高强度的基体上沉积更高硬度的涂层,更好地解决刀具材料硬度与强度间的矛盾;进一步发展可转位刀具的结构;提高刀具的制造精度,减小产品质量的差别,并使刀具的使用实现最佳化。

这里我选用硬质合金钻头,钻头直径为 ,如图1。

图1 刀具图

2.4 机床有关规格尺寸

1. 概 述

钻床系指主要用钻头在工件上加工孔的机床。通常钻头旋转为主运动,钻头轴向移动为进给运动。钻床结构简单,加工精度相对较低,可钻通孔、盲孔,更换特殊刀具,可扩、锪孔,铰孔或进行攻丝等加工。钻床可分为下列类型:

(1)台式钻床:可安放在作业台上,主轴垂直布置的小型钻床。

(2)立式钻床:主轴箱和工作台安置在立柱上,主轴垂直布置的钻床。

(3)摇臂钻床:摇臂可绕立柱回转、升降,通常主轴箱可在摇臂上作水平移动的钻床。它适用于大件和不同方位孔的加工。

(4)铣钻床:工作台可纵横向移动,钻轴垂直布置,能进行铣削的钻床。

(5)深孔钻床:使用特制深孔钻头,工件旋转,钻削深孔的钻床。

(6)平端面中心孔钻床:切削轴类端面和用中心钻加工的中心孔钻床。

(7)卧式钻床:主轴水平布置,主轴箱可垂直移动的钻床。

2. 我选用立式钻床Z535,规格尺寸如下:

产品名称

型号

最大钻孔直径(mm)

主轴端至底面距离(mm)

主轴中心线至立柱表面距离(mm)

主轴转速

主轴行程(mm)

电机功率

级数

范围(r/min)

主电机

总容量

立式钻床

Z535

35

0.75

300

9

68-1100

225

4

4

重量

外包箱直径

长x宽x高(mm)

外形尺寸

长x宽x高(mm)

毛重

净重

1.6

1480x1042x2785

1280x842x2585

2.5 夹具图

机械制造过程中用来固定加工对象,使之占有正确的位置,以接受施工或检测的装置。又称卡具。从广义上说,在工艺过程中的任何工序,用来迅速、方便、安全地安装工件的装置,都可称为夹具。例如焊接夹具、检验夹具、装配夹具、机床夹具等。其中机床夹具最为常见,常简称为夹具 。在机床上加工工件时,为使工件的表面能达到图纸规定的尺寸、几何形状以及与其他表面的相互位置精度等技术要求 ,加工前必须将工件装好(定位)、夹牢(夹紧)。夹具通常由定位元件(确定工件在夹具中的正确位置)、夹紧装置 、对刀引导元件(确定刀具与工件的相对位置或导引刀具方向)、分度装置(使工件在一次安装中能完成数个工位的加工,有回转分度装置和直线移动分度装置两类)、连接元件以及夹具体(夹具底座)等组成。

夹具种类按使用特点可分为:①万能通用夹具。如机用虎钳、卡盘、分度头和回转工作台等,有很大的通用性,能较好地适应加工工序和加工对象的变换,其结构已定型,尺寸、规格已系列化,其中大多数已成为机床的一种标准附件。②专用性夹具。为某种产品零件在某道工序上的装夹需要而专门设计制造,服务对象专一,针对性很强,一般由产品制造厂自行设计。常用的有车床夹具、铣床夹具、钻模(引导刀具在工件上钻孔或铰孔用的机床夹具)、镗模(引导镗刀杆在工件上镗孔用的机床夹具)和随行夹具(用于组合机床自动线上的移动式夹具)。③可调夹具。可以更换或调整元件的专用夹具。④组合夹具。由不同形状、规格和用途的标准化元件组成的夹具,适用于新产品试制和产品经常更换的单件、小批生产以及临时任务。

夹具是机械加工不可缺少的部件,在机床技术向高速、高效、精密、复合、智能、环保方向发展的带动下,夹具技术正朝着高精、高效、模块、组合、通用、经济方向发展。

一、高精

随着机床加工精度的提高,为了降低定位误差,提高加工精度,对夹具的制造精度要求更高。

二、高效

为了提高机床的生产效率,双面、四面和多件装夹的夹具产品越来越多。为了减少工件的安装时间,各种自动定心夹紧、精密平口钳、杠杆夹紧、凸轮夹紧、气动和液压夹紧等,快速夹紧功能部件不断地推陈出新。新型的电控永磁夹具,加紧和松开工件只用1~2秒,夹具结构简化,为机床进行多工位、多面和多件加工创造了条件。

三、模块、组合

夹具元件模块化是实现组合化的基础。利用模块化设计的系列化、标准化夹具元件,快速组装成各种夹具,已成为夹具技术开发的基点。省工、省时,节材、节能,体现在各种先进夹具系统的创新之中。模块化设计为夹具的计算机辅助设计与组装打下基础,应用CAD技术,可建立元件库、典型夹具库、标准和用户使用档案库,进行夹具优化设计,为用户三维实体组装夹具。模拟仿真刀具的切削过程,既能为用户提供正确、合理的夹具与元件配套方案,又能积累使用经验,了解市场需求,不断地改进和完善夹具系统。

四、通用、经济

夹具的通用性直接影响其经济性。采用模块、组合式的夹具系统,一次性投资比较大,只有夹具系统的可重组性、可重构性及可扩展强,应用范围广,通用性好,夹具利用率高,收回投资快,才能体现出经济性好。

底盖的钻孔夹具设计由于时间紧张,未能将完整设计图纸画出来,现在只将设计方案表达如下,如图2,底盖的夹紧和固定都采用定位销,用定位销和平台将底盖的各个自由度限制,这样就能满足底盖钻孔的要求。

2.6 核算多轴头的总轴向力( )和消耗的总功率( )

要核算多轴头的总轴向力和消耗的总功率,使其不超过机床允许的最大轴向力和机床的额定功率。核算公式如下:

式中:N为多轴头各工作轴消耗的功率的总和;

为多轴头每个工作轴消耗的功率

为机床的额定功率

P为多轴头各工作轴轴向力的总和

为各工作轴的轴向力

为机床允许的最大轴向力

首先计算每个工作轴的切削扭矩( )和轴向力( ):

( )

(N)

因为每个工作轴的 和 相等,所以多轴头的总轴向力和消耗的总功率为:

(N)

(kW)

查Z235机床说明书,机床主轴最大进给抗力 ,主电机功率 。

核对可知: ,满足设计要求。

3 设计传动系统图

多轴头齿轮传动系统的设计既要保证工艺要求,又要保证多轴头的结构的紧凑性。齿轮传动系统的设计与计算,其内容包括:齿轮模数和工作轴直径的确定,传动方式的选择,主动轴中心位置的确定,传动比及齿轮齿数的确定,布置惰轮,检查结构上的干涉现象,传动系统图的坐标计算与绘制等。

齿轮传动系统图应按照所规定的符号绘制。齿轮中心及分度圆应尽可能画得准确(精度在0.2~0.3mm),这样便于用图解法核对所计算的坐标尺寸。

在齿轮传动系统图中应清晰的表明:齿轮的传动方式,各齿轮的齿数及模数,主动轴及工作轴的旋转方向,齿轮层数(对两层以上)。同时还应在图旁注明:工作轴每分钟转速、工作轴每分钟进给量及传动比等。

下面按设计步骤分别讨论每项内容的设计要求和设计方法。

3.1齿轮模数的确定

在一般齿轮传动设计中,齿轮模数是按齿轮的抗弯强度和齿面疲劳强度计算的,然后经过试验确定。但是由于齿轮传动多轴头在生产中早已广泛应用,在使用和制造方面已有一定的经验,在[1]中,有关多轴头齿轮的结构和规格参数,以及齿轮的材料、热处理、齿宽及工作条件都作了规定,所以当利用[1]所介绍的齿轮进行设计时,可根据加工孔径,按表1查得齿轮模数,此表查得的模数为主动轮的模数,每个主动齿轮可带动三个工作轴。

表1 加工孔径与模数

加工孔径

<8

8~15

15~20

模数

1.5~2

2~2.5

2.5~3

从中查得:主动轮的模数m=2.5。

3.2确定工作轴直径

多轴头工作轴直径是按扭转刚度所计算的,若工作轴不兼做中间轴使用时,其直径可按表2查得。

表2 加工孔径与工作轴直径

加工孔径

<6

6~9

9~12

12~16

16~20

工作轴直径

9

12

15

20

25

查表2得:工作轴直径d=20mm。

3.3选择传动方式

多轴头的齿轮传动系统一般是定轴轮系,即主动轴、工作轴、惰轮轴的中心距是固定的。··但由于被加工孔之间的相互位置有许多不同的排列形式,使得传动系统图随之也出现了多种多样的类型。下面列出各种传动类型,供参考。

(1)、按齿轮组合形式分

按齿轮组合形式分有如下两种形式:

A、单式传动,即每个轴上只有一个齿轮与其他齿轮啮合传动。

B、复式传动,即每个轴??嫌辛礁觥⑷?龌蚨喔龀萋钟肫渌?萋帜龊希?殖闪讲恪⑷?慵岸嗖愦???莆??丁⑷?都岸嗉洞???/P> (2)、按齿轮传动方式分

A、外啮合传动。外啮合传动有如下几种传动分布形式:工作轴成长方形分布的;工作轴成“一”字形分布的;工作轴成框形分布的;工作轴成“八”字形分布的;工作轴成圆形分布的;工作轴成环形分布的。

B、内啮合传动。

C、内啮合与外啮合联合传动。

(3)、按工作轴布置情况分

按工作轴布置情况可分为规则分布和不规则分布的。

在这个设计中,按照工作轴分布情况,可选择工作轴成长方形分布的外啮合传动形式。

3.4确定主动轴中心位置

从多轴头工作平稳性方面考虑,主动轴中心应与各个工作轴所受轴向力的合力作用点(称为压力中心)重合。此时,机床主轴及多轴头本身均不受弯曲力矩。

从多轴头结构的对称性方面考虑,主动轴应处于多轴头本体的几何中心上。此时,多轴头外形匀称。

对于加工孔对称分布的多轴头,使主动轴中心既要与压力中心重合,又要与多轴头本体的几何中心重合,是比较容易做到的。

对于加工孔不对称分布的,或同时加工不同孔径的。或同时进行钻、扩、铰等多工序加工的多轴头,压力中心往往偏向某些加工孔。此时,若只是考虑到主动轴中心与压力中心重合,将会造成齿轮传动系统布置困难,及多轴头本体对主动轴中心不对称等缺点。所以在传动系统的设计中,通常采取如下处理方法:如果多轴头与机床的连接是法兰盘式的。则压力中心不应超过法兰盘半径。但由于结构要求,主动轴中心不得不远离压力中心时,应采用较粗的导柱,或使多轴头与机床主轴箱作固定式连接。

压力中心相对于各个工作轴的坐标计算公式如下:

式中: 为压力中心的横坐标

为压力中心的纵坐标

为各工作轴的轴向力

为工作轴中心的横坐标

为工作轴中心的纵坐标

若 ,则公式变为:

其中:N为工作轴个数。

当四孔加工时,压力中心正好在对称中心A点上(见图3),即A点可作为主动轴中心。A点坐标为: =78mm, =35mm。当按三孔加工时,压力中心在B点上(见图4),其计算坐标如下:

图3 压力中心示意图

图4 压力中心示意图

B点与A点在x方向上重合,在y方向上相差3.7mm,远小于法兰盘直径,所以,选A点为主动轴中心。

3.5确定传动比及齿轮的齿数

(1)确定传动比

A、确定传动比的原则

l 要保证工艺对工作轴所提出的转速、切削速度及每转进给量的要求。

l 本设计的齿轮,外啮合传动比一般应不大于2.5,最好等于1。

l 应尽可能不选最高一级或最低一级的机床转速,以便给工艺上的更改留有余地。

l 攻丝多轴头的对工作轴的每转进给量必须与丝锥的螺距相等。

B、传动比的计算公式及其确定方法

(A)传动比的计算公式

单式传动:

复式二级传动:

复式三级传动:

式中: 为主动轴对第N根对工作轴的传动比

为第N根对工作轴的转速(r/min)

为主动轴的转速(r/min)

为主动轴上齿轮的齿数

、 、 、 为惰轮的齿数

第N根对工作轴上齿轮的齿数

(B)钻孔多轴头传动比的确定方法

钻孔多轴头是按对工作轴转速初步确定的,然后验算对工作轴每转进给量,最后确定可行的传动比。工作轴转速是按工艺要求确定的。主动轴转速即为机床主轴转速,我们可以从机床主轴各级转速中,选择与对工作轴转速相接近的作为主动轴的转速,然后计算传动比。

当传动比初步确定后,可按照工艺规定的对工作轴每转进给量计算出主动轴每转进给量:

式中 为主动轴每转进给量(mm/r), 为对工作轴每转进给量(mm/r)。

再以机床主轴各级进给量中选取与计算值相近的一级作为主动轴每转进给量。然后,再按所选取的主轴每转进给量计算出对工作轴每转进给量。这时,比较计算后的每转进给量与工艺规定的每转进给量之值是否相近,此外,还要从工艺方面考虑,按计算后的对工作轴每转进给量进行加工是否可行,若不行,还要重新确定传动比。

上述所确定的传动比是理论值,当主动轴与对工作轴齿轮的齿数确定之后,按此数计算出来的传动比是实际值。传动比的理论值与实际理论值相差很小,钻孔多轴头可忽略不计,但对于攻丝多轴头,则需要进行验算。

(C)攻丝多轴头传动比的确定方法

攻丝多轴头传动比的确定可按如下步骤进行:

1)选定机床主轴进给量 。为了使多轴头的传动比尽量接近于1,故再选机床主轴寄给量时,一般选用小于丝锥螺距中的最大的一个。

2)按选定的 ,求出多轴头的理论传动比 。为了便于检查核对实际进给量与理论值之间的差值, 一般取小数点后四位。

3)按求出的 值,选择齿轮,并求出实际传动比 及实际每转进给量 。

4)验算进给量的差值,用实际传动比 求出的 与丝锥螺距的名义值的差值应在 范围内,差值过大应重新选择齿轮齿数。

5)选择机床转速n。按合理的攻丝切削速度,应尽量选较低的机床转速。

6)验算攻丝切削速度:攻丝切削速度应在表3。

加工材料

铸铁

钢及其合金

铝及其合金

切削速度v(m/min)

2.5~5

1.5~5

5~15

C、确定各轴上齿轮的齿数

在多轴头传动系统设计中,各轴上齿轮的齿数一般不是按照中心距、模数等已知条件计算出来的,因为多轴头的对工作轴相互位置往往距离较近,有的分布还不规则,为保持对工作轴与主动轴旋转方向相同,要通过惰轮,而惰轮的位置一般不是已经确定的,通常是通过反复作图与计算相结合的方法来确定。

各轴上齿轮的齿数确定方法介绍如下:

主动轴和工作轴上齿轮的齿数可按传动比进行分配。首先给定较小齿轮的齿数,即:当 时,现给定工作轴上齿轮的齿数;当 时,现给定主动轴上齿轮的齿数。然后按传动比求出另一个齿轮的齿数。

初步确定齿数时,还必须检查主动轴上齿轮的尺寸是否足够大,因为主动轮的直径比较大,如果主动轮上齿轮的齿数过少,就保证不了厚度。此外还应尽可能选择奇数齿数。

工艺给定工作轴的转速 ,Z235机床主轴的各级转速中与其相接近的转速为400r/min,但降速传动会使工作轴上的齿轮加大,在此情况下,不易布置惰轮,故选低一级的转速,即225r/min。

从机床主轴各级进给量中选取相接近的一级,即为0.32mm/r。

与工艺给定的工作轴每转进给量0.21mm/r相近似,所以,传动比确定为1.62。

选工作轴齿轮齿数

3.6惰轮的布置及其坐标计算

(1) 工作轴的旋转方向与惰轮布置的关系

惰轮的主要作用是保证工作轴有一定的旋转方向。从主动轴开始到工作轴为止,齿轮的个数为奇数时,工作轴和主动轴的旋转方向相同;从主动轴开始到工作轴为止,齿轮的个数为偶数时,工作轴和主动轴的旋转方向相反。

(2) 各轴受力情况与惰轮布置的关系

在多轴头传动系统设计中,惰轮的布置是受一些条件限制的,尤其是受主动轴和工作轴位置的限制,一般不可能使各轴受力情况都是良好的。但是,各轴受力情况的好坏,将影响到多轴头的工作情况及各轴和轴承的使用寿命。所以,设计中应尽可能使各轴的受力情况良好。

(3) 惰轮分度圆半径及中心位置的确定

在传动系统中,有的惰轮与两个齿轮相啮合,有的与三个齿轮相啮合。当惰轮与两个齿轮啮合时,惰轮的中心位置及分度圆大小都是不确定的,需要由我们根据暗送秋波情况确定,一般通过作图法确定。当惰轮与三个齿轮相啮合时,惰轮的中心位置及分度圆大小都是确定的,可利用一圆与三圆相切,求内切圆和外切圆半径及其中心位置的计算来求出。惰轮布置形式见图5,其坐标位置计算如下:

a

b c

图5 惰轮布置图

按照一圆与三个不等圆相切,求外切圆的半径及其中心位置的计算公式,在图3-a中选定坐标,确定原始尺寸: 。

惰轮齿数(z)为17,计算实际中心距(A)与理论中心距( )

A与 相差0.85,齿轮需要变位。

齿轮3与5之间的惰轮齿数定为17,其计算三角形如图3-c所示,中心坐标计算按照解三角形通用公式计算进行。原始尺寸: 。

在[1]中表2-4中,根据组别,按照 点所在象限对照图形,本计算三角形与表2-4图1相似。

3.7绘制传动系统图

按照坐标尺寸绘制传动系统图如图6所示.

图6 传动系统图

3.8检查结构上的干涉现象

3.8.1检查齿顶外圆干涉

在图6中,主动轮与工作轴齿轮5的齿顶圆由可能发生干涉。

图7 检查干涉

计算齿顶圆:

在图7中,画出了齿顶圆 和 ,从图中可以看出:没有发生干涉现象。

3.8.2 检查轴承干涉

如工作轴直径 ,轴承的外径为47mm,惰轮轴的轴径为17mm,其轴承的外径为40mm,在图5中画出了轴承外圆,发生干涉,但干涉量很小。其处理的方法便是减小工作轴直径。在本设计中,加工孔径为 ,按表2 查得的工作轴直径是偏大的,可按公式:

式中, 为小分度圆直径

为允许接触应力,由表3查得。

为小齿轮的扭矩

为齿轮宽度

为传动比。

表3 允许接触应力

材料

热处理

硬度HRC

允许接触应力

45

调质

30~35

1500

调质

30~35

1620

调质

30~35

2180

根据表3,公式变为:

式中: d为工作轴或中间轴直径(cm)

为轴上所受的扭矩(N*cm)。

从中我们可以计算出工作轴的直径:

取工作轴直径d=17mm,其轴承同惰轮轴轴承大小一样,不会发生干涉。

4 多轴头齿轮的几何尺寸计算

在多轴头传动系统中,一般采用标准齿轮,但在这个设计中我们采用变位齿轮。因为本设计中存在实际中心距与理论中心距不相等,所以应采用变位齿轮。根据已知条件,变位齿轮几何尺寸计算如表4。

表4 变位齿轮的几何尺寸

序号

名 称

符号

计算公式

计算结果

备 注

主动轮与惰轮

工作轮与惰轮

1

小齿轮数

17

16

已知

2

大齿轮数

26

17

已知

3

模数

m

2.5

2.5

已知

4

实际中心距

A

54.60

41.97

已知

5

理论中心距

53.75

41.25

6

两轮齿数和

= +

43

33

7

中心距变动系数

0.34

0.29

8

中心距变动系数的模数

0.10

0.01

9

反变位系数的模数

根据 查表

0.029

0.001

10

反变位系数

0.1340

0.0005

11

总变位系数

= +

0.474

0.291

12

小轮变位系数

0.286

0.011

大轮变位系数

0.187

0.286

13

小轮分度圆直径

42.5

40

大轮分度圆直径

65

42.5

14

小轮齿顶圆直径

48.30

45.06

大轮齿顶圆直径

70.80

48.30

15

小轮公法线长度

19.54

19.03

大轮公法线长度

27.06

19.53

16

公法线长度的最小偏差

0.085

0.085

0.105

0.085

17

公法线长度公差

0.038

0.038

0.050

0.038

18

公法线长度的最大偏差

= +

-0.047

-0.047

= +

-0.067

-0.047

5 绘制多轴头装配图

装配图及零件图见图纸。多轴头的结构总图见装配图其中的结构有:

(1) 连接部件和传动部件。连接部件由连接法兰、连接环组成;传动部件是传动杆。

(2)导向部件。导向部件由导柱、导柱衬套和钻模板组成,还有其他一些零部件。

(3)齿轮传动箱。齿轮传动箱有工作轴、主动轴、惰轮轴以及轴上的齿轮、轴承及其他零件,还有本体、盖、中间板和一些固定零件。此传动箱采用单层布置。

6 轴承寿命的验算

多轴头中常用的轴承有单列向心轴承(0000型)、单向推力球轴承(8000型)及滚动轴承。在特殊情况下,也采用滑动轴承。

在这个设计中,首先根据轴径的大小选择轴承,然后进行强度或寿命等方面的验算。下面是部分轴承的验算。

6.1单列向心球轴承的验算

单列向心球轴承需要验算轴承的工作能力系数,其中计算公式如下:

式中:C为轴承工作能力系数

Q为轴承的计算负荷( );

为转速( );

为轴承寿命( ),多轴头轴承的寿命一般规定为2000小时;

[C]为允许的工作能力系数,由轴承标准手册查得。

轴承的计算负荷(Q)按下式计算:

从受力分析看,惰轮轴(6和7)受径向力比工作轴大,而惰轮又距离下轴承较近,所以应验算惰轮轴的下轴承。

图8 惰轮轴受力分析

利用图解法求出惰轮轴(6或7)所受的径向力 。图8为惰轮轴7受力情况分析图,图中各力计算如下:

(N)

(N)

(N)

(N)

作力的矢量图,得 。

求出支承力 :

(N)

惰轮的转速:

轴承寿命(h)定为2000小时,工作能力系数为:

查轴承手册,轴承允许的工作能力系数[C]=11300,可知:[C]>C,大于所要求的工作能力系数,可以选用。

6.2止推轴承的验算

单向推力轴承的工作能力系数C的计算与前面的相同,其中计算负荷应按下式计算:

式中 为某个工作轴上的轴向力。

这个轴承中,其中 (N),所以可以得到:

查轴承手册,允许的工作能力系数[C]=31000,即[C]>C,满足所需,可以使用.

结论

由本文的论述,我们了解到:通过对底盖的加工工艺与多轴头的设计,在齿轮、各种辅助零部件、工艺流程等方面进行合理设计和选择,有效提高了加工效率和产品质量,提高了可靠性,具备一定的先进性,取得了良好的经济效益和社会效益,为解决此类多孔零件的加工问题举了一个实例。

通过本次毕业设计,从收集资料到对工艺方案和系统方案的设计,再到绘制多轴头装配图和部分零件图,我学到了不少知识,能综合应用机械设计课程,机械制造工艺学课程及AUTOCAD等系统软件,进行系统的机械设计,培养机械设计及制造的技能,并巩固所学知识,尤其更熟练掌握了AUTOCAD绘图软件工具。同时,也发现了自己许多不足的地方,还有待改正和完善,使自己不断进步。

参考文献

[1]第一汽车制造厂工艺装备设计室编.齿轮传动多轴头设计.北京:机械工业出版社,1979

[2]大连组合机床研究所编.组合机床设计.机械工业出版社,1978

[3]上海柴油机厂工艺设备研究所编.金属切削机床夹具设计手册.机械工业出版社,1984

[4]王秀青.钻轴均布可调钻床用多轴头.机械工程师.2000,(3)

[5]丁志强等. 基于知识工程的多轴头传动智能CAD设计系统.机电工程.2004年(5)

[6]万东海.多轴头设计及计算——车桥轮毂孔系加工.江南航天科技.1997,(3)

[7] Boyes W E.Hand Book of Jig and Fixture design.2ed ed.Michigan:SEM,1986

[8]机械工程手册、机电工程手册编辑委员会.机械工程手册.机械工业出版社

[9]机械设计手册联合编写组.机械设计手册.化学工业出版社

[10]胡家秀.简明机械零件设计实用手册.机械工业出版社.2003

[11]刘泽九、贺士荃、刘晖主编.滚动轴承手册.机械工业出版社.2007

[12]上海柴油机厂工艺设备研究所编.金属切削机床夹具设计手册.机械工业出版社.1984

致谢

本研究及学位论文是在我的导师陈为国老师的亲切关怀和悉心指导下完成的。他严肃的科学态度,严谨的治学精神,精益求精的工作作风,以及爽朗的性格,深深地感染和激励着我。从课题的选择到项目的最终完成,陈老师都始终给予我细心的指导和不懈的支持。一年多来,陈老师不仅在学业上给我以精心指导,同时还在思想、生活上给我以无微不至的关怀,在此谨向陈老师致以诚挚的谢意和崇高的敬意。

在此,我还要感谢在一起愉快的度过研究生活的040311班各位同学,正是由于你们的帮助和支持,我才能克服一个一个的困难和疑惑,直至本文的顺利完成。特别感谢我的同学们,他们对本课题做了不少工作,给予我不少的帮助。

在论文即将完成之际,我的心情无法平静,从开始进入课题到论文的顺利完成,有多少可敬的师长、同学、朋友给了我无言的帮助,在这里请接受我诚挚的谢意!最后我还要感谢培养我长大含辛茹苦的父母,谢谢你们!