前言:中文期刊网精心挑选了脱硫工艺论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
脱硫工艺论文范文1
【关键词】 电厂锅炉;烟气除尘技术;烟气脱硫技术
环境保护是我国重要的一项基本国策,随着各行业技术进步的加快以及我国环境保护法律、法规的不断完善,人民越来越来注重环境保护。我国GDP的增长和重化工业的不断发展,致使我国面临的环境压力与日俱增,如果环境治理不能达到有效实施,我国将像西方发达国家一样走先污染后治理的工化业道路。火电厂作为我国主要的发电厂,应在环境保护方面起到模范带头作用,已响应国家对在环境保护的政策。
1.电厂锅炉烟气除尘技术分析
1.1 静电除尘
烟灰在运动摩擦中会产生静电,比电阻一般在 1×104-5×104Ω・cm,静电除尘比电阻应低于静电比电阻,因为静电除尘器的极板与烟灰之间需产生电势差,烟灰颗粒才会在电场力的作用下向极板运动。静电除尘的工作原理:在除尘器的两极施加高压直流电,当烟气经过时,烟尘的负电在除尘器两极形成的电场力的作用下会向正极板移动,从而逐一被电极板吸附排除。静电除尘过程大致分为五个部分:高压电场电离烟气使产生大量负电离子;烟尘获取负电离子;带静电粉尘吸附到一起变成带静电大颗粒粉尘;大颗粒粉尘向正极板运动被吸附;清除极板上的灰尘。
1.2 水幕除尘
水幕除尘脱硫工艺,采用碱性液体脱硫除尘。选用防堵喷淋装置,喷洒碱性液体,循环碱水在与烟气中二氧化硫接触时将其反应吸收,因而达到脱硫除尘的效果。
工艺流程:
从锅炉出来的烟气温度在155-200℃,烟气夹杂着粉尘和二氧化硫等有害气体进入工艺装置,与脱硫除尘喷雾同向运动,由于烟气温度高与喷雾混合呈湿烟气状态,从而被喷雾充分吸收,剩余的热量可将水雾烘干一起由引风机进入烟囱而被排出。被水雾吸收的烟气由预热器出口进入雾化室,使烟与碱水进行反应,在经过文丘管的时候高流速使烟气产生紊乱,直径大于10微米的颗粒在水重力的作用下,坠落水面得到净化。没有完全被吸收的烟气和颗粒会随旋流板到达塔内,再次与塔内的液体接触而被全部吸收。
1.3 布袋除尘器
箱式布袋除尘器可以根据粉尘的大小选择布袋的数量和材料,布袋设计成圆形,采用Φ130滤袋,袋笼垂直度按国标。用弹簧或文丘里把滤袋的上端缩进,以避免袋内积灰。烟尘从布袋除尘器的进风阻流板吹进各个袋室,并在阻流板的引导下,直径较大的粉尘被直接分离到灰斗,直径较小的粉尘会被引进中部箱体,被滤袋吸附。过滤后的烟气再进入另一个箱体,由排风管道引排出。随着滤袋的使用率增加,滤袋上沾的颗粒会累积变厚,当积尘的阻力值达到设定状态时,清灰装置就会按设定的程序开启清灰阀,滤袋上的积尘会在清灰装置的喷吹下抖落,由卸灰阀排出。
2.电厂锅炉烟气脱硫技术分析
2.1 干式烟气脱硫技术
在烟气脱硫技术中根据脱硫剂的种类可分为以下几种:CaCO3、MgO、NaSO3、NH3。国外常用的烟气脱硫方法根据工艺的不同可以分三类:湿式抛弃工艺、湿式回收工艺以及干法工艺。
干式烟气脱硫工艺从二十世纪八十年代开始就常常被用在供暖锅炉烟气净化。常采用的干式脱硫技术有喷雾式和粉煤式。喷雾干式烟气脱硫工艺,与上边提到的水幕除尘脱硫工艺相似。粉煤灰干式脱硫技术,是1985年由日本研制出来的,该技术用粉煤灰作为脱硫剂除去烟尘中的硫。粉煤灰干式脱硫设备,脱硫率高达60%以上,而且成本低,用水少,具有各种优势。
2.2 湿法烟气脱硫技术
采用的脱硫剂主要有石灰石,石灰,以及碳酸钠,通过对烟气的净化,而除去烟气中的硫。湿法烟气脱硫原理可分为物理吸收和化学吸收,物理吸收的主要方式是烟气溶解于液体,化学吸收的主要方式是与烟气中的二氧化硫产生化学反应。物理吸收与化学吸收性能不同点在于,物理吸收需要保持塔内的液平衡,需要有一定的控制稳定性,而且物理吸收相比化学吸收的效率会差一些。
4PS 型燃煤锅炉烟气除尘脱硫技术。该技术可同时除尘和脱硫,装置由两部分组成:喷雾脱硫塔和湿式除尘器。在脱硫塔内,烟气首先经过石灰浆喷雾,烟气中的二氧化硫被吸收生成硫酸钙。烟气然后进入湿式除尘器,除尘器内的喷气头会产生强大的风速,将烟气吹到除尘器底部,使其与贮水池进行交融进而被吸收。
技术流程为:
3.电厂锅炉烟气除尘脱硫技术的发展趋势
根据我国中小型电厂燃煤锅炉的具体情况,首选的烟气脱硫技术应是技术可靠、经济可行以及无二次污染。而对于燃煤中小型锅炉的SO2污染源,朝着因地制宜地采用成熟的烟气脱硫技术方向发展:对电厂新建燃煤中小型锅炉,采用除尘脱硫―体化净化设备;现有燃煤电厂中小型锅炉,对于已有除尘系统正常运行者,其烟尘脱硫用低阻、中效、占地面积小的半干式喷雾脱硫器,对于除尘系统失效者以除尘脱硫一体化的净化设备取代;对于有废碱行业的电厂中小型锅炉,可利用碱法造纸废水进行湿法脱硫。
总之,电厂锅炉作为燃烧原料的设备,其在生产运行期间会引起粉尘及硫氧化物的污染,破坏了周围的生态环境。考虑到可持续发展观对环境保护的需要,用户在使用供暖锅炉期间必须要控制好锅炉的燃烧产物,采用先进的除尘脱硫技术降低锅炉污染。只有引进高科技辅助设备操作运行,才能在保证生产质量的前提下创造理想的经济效益。对于除尘脱硫综合技术还有相当长的一段路要走。因此,电厂技术人员应不断探索,不断创新,在实践中不断总结经验和教训,从而完善除尘脱硫综合治理技术,防止火电厂烟气中的粉尘和污染性气体排入大气,改善人们的生活环境,以造福于了孙后代。
参考文献
脱硫工艺论文范文2
[关键词]烟气氨法脱硫;工艺;存在问题;优化措施
中图分类号:TQ113.7+2 文献标识码:A 文章编号:1009-914X(2016)24-0307-01
近年来,我国经济的快速发展和人们物质生活水平的不断提高,对生态环境产生了严重的破坏,如土地荒漠化、水体污染、大气污染、酸雨等环境污染问题接连涌现,已严重制约了我国经济发展,影响了人民生活,环境治理,环境保护已刻不容缓。目前,影响我国环境空气质量的主要污染物有:烟尘、总悬浮颗粒物、氮氧化物、二氧化硫等。如何削减SO2排放量,控制大气污染,提高环境质量,是目前及未来我国环境保护的重要课题和研究方向。本文针对工业烟气氨法脱硫工艺运行中存在的问题,提出优化措施进行并就其可行性进行探讨,从而为环保达标排放提供有力理论支持。
1 烟气氨法脱硫工艺概述
1.1 氨法脱硫原理
SO2+H2O+xNH3=(NH4) xH2-xSO3 (1)
(NH4) xH2-xSO3+1/2O2+(2-x)NH3=(NH4)2SO4 (2)
1.2 脱硫工艺流程
烯烃一分公司烟气氨法脱硫装置共设置六套烟气脱硫系统(五运一备),采用6炉6塔配置模式。锅炉来原烟气进入脱硫吸收塔,经洗涤降温、吸收 SO2、除雾后的净烟气通过烟囱直接排放。吸收和浓缩循环系统主要设备有:脱硫塔、一级循环泵、二级循环泵、三级循环泵、循环槽等。在此过程中含氨吸收剂的循环液将烟气中的SO2吸收,反应生成亚硫酸铵;含亚硫酸铵的液体再与氧化空气进行氧化反应,将亚硫酸铵氧化成硫酸铵,形成硫酸铵稀溶液;在脱硫塔的浓缩段,利用高温烟气的热量将硫铵溶液进一步浓缩、结晶后,得到固含量为10%-15%左右的硫铵浆液送至硫酸铵处理系统,经旋流、离心分离、干燥包装后得到成品硫酸铵[1]。烟气氨法脱硫工艺流程图详见下图1。
2 烟气氨法脱硫运行中存在问题及优化措施
2.1 氨逃逸
氨逃逸实际是氨气、亚硫酸铵、硫酸铵的阴阳离子发生的挥发性损失。
2.1.1氨逃逸高的原因
⑴液气比小。⑵温度高,氨的气相浓度高。⑶亚硫酸铵氧化率低。
2.1.2氨逃逸高的危害:⑴脱硫反应效率低,可能造成出口SO2超标排放。⑵液氨有效利用率低,造成物料浪费。⑶容易形成气溶胶,造成脱硫塔内除雾器堵塞,影响系统的正常运行。
2.1.3降低氨逃逸的优化措施:⑴根据烟气中SO2含量,合理控制液氨的投加量,避免加氨量过大而造成氨的挥发。⑵提供喷淋吸收段的雾化效果,高效喷淋洗涤烟气中的SO2,确保除雾器填料及喷头运行状态良好。⑶加强监控烟气温度、吸收液pH、浓度、液气比等工艺参数,提高液氨的利用率。
2.2 气溶胶
2.2.1原因分析:⑴在氨法烟气脱硫过程中,烟囱排出的烟气所夹带的氨水挥发逃逸出气态氨与烟气中未脱除的二氧化硫通过气相反应,生产亚硫酸氢铵、硫酸铵等组分形成气溶胶。⑵液氨吸收烟气中二氧化硫后脱硫液滴被烟气携带出,由于蒸发、烟气气体流速过快等作用,析出亚硫酸氢铵固体结晶形成气溶胶[2]。
2.2.2危害:所谓的气溶胶即“气拖尾”现象。⑴亚硫酸铵和亚硫酸氢铵气溶胶随净烟气排放,造成氨的损耗,成为氨法脱硫技术发展的瓶颈。⑵堵塞除雾器,对脱硫装置正常生产运行造成影响。
2.2.3优化措施:⑴采用低温度的工艺水等措施来降低烟气携带的亚硫酸铵反应产物,以净化烟气排出的环境质量,降低烟气携带水分。⑵严格控制脱硫系统的热、水平衡,使烟气排出温度控制在45℃-50℃。⑶严格控制烟气进入脱硫塔吸收段温度
2.3 脱硫塔超温现象
2.3.1原因分析:二级循环泵入口过滤器频繁堵塞、二级喷淋量小易造成吸收塔超温。在超温时蒸发量小、补水量增大,造成吸收塔液位高而无法正常冲洗、稀硫铵副线无法正常开启。
2.3.2危害:⑴长期超温,会严重损坏塔内件。⑵降低脱硫效率,对整个脱硫系统运行造成恶性循环。
2.3.3优化措施:建议在泵入口过滤器前增加一个导淋,增加一股冲洗水。或者对过滤器孔径根据工艺运行实际情况进行选型。
2.4 脱硫塔内壁上部出现硫酸铵结晶挂壁现象
在调试阶段,脱硫系统原始开车初次上液后,虽然脱硫液的pH控制在5~6,但脱硫液中无硫酸铵结晶沉淀。打开人孔检查发现:在脱硫塔塔体上部有近30mm厚的硫酸铵结晶挂壁,有的已经脱离塔壁落人塔底。
2.4.1原因分析
除雾器冲洗次数及冲洗水量过多,且液氨未能连续补给,使得脱硫液中的液氨浓度降低,造成脱硫效率低,导致烟气带出的气相氨与高含量的SO2,反应生成硫酸铵,附着在塔壁上。此外还存在其他原因,如:⑴氧化风分布异常,导致氧化率下降,硫酸铵结晶差。⑵加氨量过大,造成脱硫塔pH偏高,硫酸氨结晶变细,离心机无法分离出料。⑶灰分、油分等杂质对硫酸铵的晶型和结晶过程存在复杂影响。
2.4.2危害
脱硫塔内壁产生硫酸铵结晶会导致后处理系统出料不畅,造成脱硫塔超温将影响整个脱硫系统的正常运行。
2.4.3优化措施
用便携式气体检测仪每天检测脱硫塔出口净烟气中SO2含量;其次,及时加氨并合理控制除雾器冲洗次数及水量,保证脱硫效率。按优化措施处理后,烟气脱硫系统运行5天后便出现了硫酸铵结晶沉淀。
2.5 脱硫液浓度高、硫酸铵晶体小
2.5.1原因分析及危害
在运行中,取脱硫液分析,其结果显示硫酸铵结晶质量浓度达20%,但将脱硫液送入离心机又分离不出硫酸铵,且还会造成离心机振动严重。由于脱硫液中固含量过大,阻碍硫酸铵晶体长大[3],使得硫铵处理系统无法出料,造成脱硫塔超温、脱硫效率降低等后果。
2.5.2优化措施
操作人员每班需测脱硫塔浓缩段硫酸铵浆液的固含量,当脱硫塔内的硫铵结晶浆液浓度约为5~15%(含固量)时,及时安排出料。
2.6 电除尘运行效率低
因静电除尘器的除尘效果不好,导致进入脱硫塔的烟尘含量严重超标,硫酸铵饱和液的晶体不能较好地聚集成核,氧化段、浓缩段、循环槽底部沉积大量的淤泥,致使硫酸铵系统无法正常出料。经借鉴经验和长期摸索,将循环槽、氧化段的浓液需经过滤泵再进入压滤机过滤,清液返回脱硫塔[4],同时加强电除尘运行的管理,以保证副产品合格。
3 结论
烟气氨法脱硫工艺属于回收法,将烟气中的SO2作为资源,回收生产使用价值较高的硫酸铵,减少污染,变废为宝,达到了以废治废的目的,且无二次污染,通过在运行过程中逐步优化工艺、改进设备,并且采取设备的防腐、防磨措施,可进一步提高脱硫效率,提升经济和环境双重效益,实现清洁生产。
参考文献
[1] 靳亚琼.湿法烟气脱硫技术研究现状及进展[J],科技与企业(221).
[2] 徐启明.氨法脱硫装置存在问题及解决方案[J],大氮肥,2013,36(2).
[3] 高建强,罗翔启.浅析氨法脱硫脱硫结晶存在的问题及处理措施[J],大氮肥,2016(2):102-105.
[4] 周大明,张波,王志武.烟气氨法脱硫的可行性优势及工业运行简介[J],化工设计通讯, 2011,37(3).
脱硫工艺论文范文3
关键词:BP神经网络,半干法脱硫工艺,钙硫比
一、引言
循环流化床烟气脱硫工艺是半干法脱硫工艺的一种,是使用粒状脱硫剂及其他各个因素在脱硫塔内相反应以降低烟气中的SO2含量。该工艺具有流程比较简单、较少的耗水量、平均投入资金少、固化排出物、无废水排放等优点。此工艺与湿法脱硫工艺相比,相对成本低比较低,对于很多热电厂是很好的选择,受到了众多热电厂的青睐。
在脱硫过程中如何控制净烟气中SO2含量、降低钙硫比是目前研究的重点和难点,也是半干法脱硫工艺目的所在。国家已经订立了强制性的二氧化硫排放标准,即由400mg/Nm3进一步严格控制为200mg/Nm3的限值,并且增加了监管力度。这对于目前的脱硫系统是一个重大的考验。由此,二氧化硫的排放量的预测在实际工作的重要性也不尽凸现出来。然而目前对于循环流化床烟气脱硫工艺的预测的研究比较少,这严重阻碍了脱硫工艺的发展。通过合理及准确的预测二氧化硫的排放量,可以很好的确定在脱硫中各个因素所占的比重,从而为下一步的优化提供有力的证据和科学依据。对于企业来讲,也可以据此调整产业结构,减低成本。
本文中采用的数据为国家某电厂脱硫数据,此电厂自2008年设计和改造了脱硫除尘系统,属于典型的经预除尘后烟气先脱硫后除尘的布置方式,其设计钙硫比为1.3,但是实际运行中,钙硫比高达2.3~2.5,极大的增加了脱硫装置的运行成本,经厂家多次调试和改造,没有明显改善。BP神经网络是一种多层前馈型神经网络,目前的研究发现,三层的神经网络可以模拟从输入到输出的任意非线性函数映射关系,其权值的调整采用反向传播的学习算法。其主要应用于四个方面:函数逼近,模式识别,分类,数据压缩。经过调整权值,实现对数据的在精确范围内的预测,辅助下一步的优化工作。
二、构造BP神经网络模型
构建神经网络一般需要进行三个步:神经网络生成,初始化权值和仿真。
BP神经网络的学习规则是要保证网络权值和阀值要沿着负梯度方向修正,以实现映射函数的最快下降方向。其基本形式为:
wk+1=wk-ηkdk
其中wk为权值或阀值矩阵,dk是映射函数的梯度,ηk是学习率。
假设三层BP神经网络,输入节点xi,隐层节点hj,输出节点yl,输入层节点与隐层节点之间的权值为wji,隐层节点与输出层节点之间的权值为vlj,θi为相应的阈值。输出节点的期望值为tl。
隐层节点的输出:hj=f(∑iwjixi-θj)=f(netj)
其中netj=∑iwjixi-θj
输出节点的输出:netl=∑jvljhj-θlyl=f(∑jvljyj-θl)=f(netl)
其中:E=12∑l(tl-yl)2=12∑l(tl-f(∑jvljf(∑iwjixi-θj)-θl))2
输出节点误差为:Evlj=∑nk=1Eykykvlj=Eylylvlj
1. 误差函数对输出节点求导:
Ewlj=∑nk=1Eykykvlj=Evlylvlj
2. 误差函数对隐层节点求导:
Ewji=∑i∑jEylylhjhjwji
3. 阀值的修正:
在修正权值的过程中,也应该考虑对阈值的修正,其修正原理同权值修正基本一致。
误差函数对输出节点阀值求导:
Eθl=Eylylθl
误差函数对隐层节点阀值求导
Eθj=∑Eylylhjhjθj
f(x)=11+e-x
4. 传递函数:
f(x)=21+e-x
S型传递函数
三、数据分析
在循环流化床烟气脱硫工艺中,影响脱硫效率的因子比较多,主要分为5部分:原烟气、净烟气、水路部分、增压风机部分和吸收剂部分。其中原烟气包括:硫化床阻力、塔前温度、塔前压力、塔后压力、氧含量、平均压差和二氧化硫含量;净烟气包括:二氧化硫含量、氧含量、粉尘浓度、出口压力、出口温度、烟气流量;水路部分包括:出口流量、回水流量、工艺水量;增压风机包括:增压风机电机电流信号、增压风机入口挡板开度;吸收剂部分包括:吸收剂送风压力、吸收剂给料机开度。其中塔前压力和塔后压力各有两个监测点,平均压差=塔后压力—塔前压力;工艺水量=出口流量—回水流量。
四、算法分析
在预测之前,首先需要对数据进行清理,除去数据中得一些噪音。数据清理在数据分析中是一个重要的步骤,对数据合理的清理可以加快算法收敛速率,提高预测准确度。本文中所采用的数据都为清理后的数据,保证了预测的准确度。
此外,由于数据中各个变量的变化差异比较大,在应用之前也需要对其归一化处理。设数据中任意变量矩阵为X,X=x1,x2,…xn,则任意xi,i=1,2…n为此变量中得数据。归一化处理:
X′=X/max(X)。
数据中得每一变量都经过此归一化方法进行归一化处理。
从数据中可以分析得到,该BP神经网络模型的有21个输入变量,即影响因素;1个输出变量,此输出为净烟气的二氧化硫的含量。在本文中,笔者采用三层BP神经网络,输入层包含21个神经元,隐含层包含了20个神经元,输出层包含1个神经元。
图1所示为利用BP神经网络训练的仿真;图2所示为预测值与实际值得比较图。
通过BP神经网络的仿真训练图,我们可以看到,经过305次迭代神经网络停止,预测精度约为0.0072。
图1BP神经网络仿真图2预测值与原值比较图
五、结语
通过仿真,利用BP神经网络不断的训练,实现了对循环流化床烟气脱硫工艺预测,并实现了预测值与实际值得比较。从实验中,可以看出,预测值存在的一定的误差。今后本课题的目标就是更加减小误差值,尽量满足预测的需要。
在符合实际情况下的高精度预测,对于预测主题是非常重要的。利用预测可是预知不利的情况,提前做好防范。并且可以为进一步优化提供了便利条件。利用预测值,可以客观的验证优化的效率及程度。(作者单位:河北大学管理学院)
参考文献:
[1]范丽婷,李鸿儒,王福利.半干法烟气脱硫工艺在绝热饱和温差的软测量[J].仪器仪表学报,2009,30(7).
[2]董长虹.Matlab神经网络与应用[M].国防工业出版社,北京,2005.
[3]展锦程,冉景煜,孙图星. 烟气脱硫吸收塔反应过程的数值模拟及试验研究[J]. 动力工程,2008,28(3).
脱硫工艺论文范文4
【关键词】国电菏泽发电有限公司;运行系统;优化
1.引言
国电菏泽发电有限公司三期2×330MW机组配套建设的石灰石——石膏湿法脱硫装置于2006年投入运行以来,当机组燃烧设计煤种,脱硫设施运行稳定,烟气排放指标完全能达到国家环保排放指标和设计要求。入炉煤硫份掺配到1.2%以下,脱硫设施满负荷运行,基本能满足环保排放要求。为山东省SO2的减排作出了巨大贡献目前。目前煤炭供应低硫煤愈来愈少,高硫煤愈来愈多,入炉煤硫份掺配越来越困难,与设计煤种相比,燃用煤种含硫量大幅增加,脱硫系统出力明显不足,SO2排放指标不能处于受控状态,严重影响了脱硫装置的安全、经济运行。同时,地方环保部门对电厂脱硫装置的监督管理力度越来越大,为确保电厂SO2达标排放和实现总量控制,电厂迫切需要针对原有脱硫系统进行必要的技术改造,以满足生产运行的需要。[1-2]
2.国电菏泽发电有限公司运行系统优化方案的提出
通过对美国MET技术的研究和山东百年电力发展股份有限公司、华电国际邹县发电厂等现有喷淋塔脱硫装置的调研、普查和专题研究,根据喷淋塔脱硫技术的特点,并结合国电菏泽发电有限公司的实际情况,综合考虑脱硫效率、环保要求、场地条件、吸收剂来源、脱硫工艺方案的成熟程度、投资估算及企业发展规划等方面的因素,根据总量控制要求,给出了国电菏泽发电有限公司运行系统优化的三个方案[3]:
方案一:保留原塔,增加附塔。吸收塔系统,原吸收塔、浆液循环泵、氧化风机整体系统保持不变,在原#5、#6吸收塔西侧各增加一座吸收塔,相应配套增加循环泵、氧化风机等设备;浆液制备系统,增加一套浆液管道系统;脱水系统,对石膏旋流器、真空皮带脱水系统进行扩容更换;同时对工艺设备各辅助系统设备、电气设备、热控设备根据核算进行相应改造。[4]
方案二:异地建造新塔,原塔综合利用。吸收塔系统,吸收塔异地重建、浆液循环泵、氧化风机进行扩容更换;浆液制备系统,增加一套浆液管道系统;脱水系统,对石膏旋流器、真空皮带脱水系统进行扩容更换;同时对工艺设备各辅助系统设备、电气设备、热控设备根据核算进行相应改造。
方案三:原塔改造。吸收塔系统,改造原有吸收塔,增加浆液循环泵,氧化风机等进行扩容更换;浆液制备系统,增加一套浆液管道系统引自二期脱硫浆液制备系统以满足新增脱硫量的需要;脱水系统,对石膏旋流器、真空皮带脱水系统进行扩容更换;同时对工艺设备各辅助系统设备、电气设备、热控设备进行重新校核,对需进行扩容改造的设备材料进行相应改造。在满足改造性能要求的基础上,综合经济性、合理性、运行安全性以及现有场地利用等各方面考虑,建议按方案三(即:改造原塔)进行改造,GGH拆除及烟囱防腐与脱硫改造工程同时进行。[5]
参考文献:
[1]H.Garcia Molina and J.UUman.Database Systems[M].The Complete Book:Pearson Education,Inc,October,2003.
[2]王勇领.系统分析与设计[M].清华大学出版社,1991.
[3]Zhang H,Li H,Tam C M.Particle swarm optimization for resource constrained project scheduling[J].International Journal of Project Management,2006,24(1):83-92.
[4]Zhang H,Li H,Tam C M.Particle swarm optimization for resource constrained project scheduling[J].International Journal of Project Management,2006,24(1):83-92.
[5]徐晓飞.支持ERP快速实施的建模方法及系统实现[D].哈尔滨工业大学硕士学位论文,2005:89-95.
作者简介:
脱硫工艺论文范文5
关键词:压缩天然气(CNG) 加气站 技术发展
中图分类号:TE64 文献标识码:A 文章编号:1003-9082(2016)01-0264-02
一、CNG加气站的原理和流程
CNG加气站主要是指为CNG汽车充装燃料,也可为大型的CNG运输槽车充装转运的CNG燃气燃料场所。天燃气管道输送天然气到CNG加气站,燃气通过工艺设备进行脱硫、脱水等预处理,再通过压缩机压缩后储存到储气瓶中或通过加气机给出售给加气车辆。
加气站控制系统被分为压缩机控制系统、网络控制工艺流程管道系统、加气机费用管理系统、可燃气体报警控制系统,加气站实现安全运营、平稳加气功能是与四套系统互相配合工作密不可分的。天然气加气站的流程如图1所示。
图1 天然气加气站的流程图
Fig. 1.1 Flowchart of natural gas filling stations
二、国外CNG加气站技术
国外CNG加气站的技术水平和发展趋势以美国安吉公司(ANGI)、加拿大IMW 公司和意大利新比隆公司等外国厂家的CNG技术为代表。
1.加气站总体技术
加气站普遍采用撬装式结构,按照集装式和模块化设计,将压缩机、天然气净化系统、冷却系统、气体回收系统、控制系统、储气瓶组等都集成在一个类似集装箱封闭的金属箱体中,该箱体具有降噪、防雨、防爆和便于运输安装等作用。模块化结构具有可变形组装的特点,可以满足不同用户和不同地区建站的要求。
2.安全为首的设计
为了安全加气站普遍采用了防爆设计、集中排空、紧急关机、安全泄压、售气机自动关闭等措施:
3.自动化系统监控
美国 CNG加气站普遍自动化程度较高。压缩机组启动后,系统在运行过程中,包括启动、净化压缩、给气瓶组充气、停机排空、再启动,以及通过售气机按低、中、高压的顺序给汽车充气等,完全按一定的时序自动运行。管理人员通过SCADA系统对本地或各地多台加气站实现远距离实时集中控制管理,出现故障,立即报警,同时自动紧急关闭系统,进行故障诊断和排除。
4.模块式的灵活组装
生产厂家已形成自己固定的工艺流程和结构模式。同一厂家生产,同一规格排量的加气站,几乎没有完全相同的。任一台结构上都有些变异,或局部更换了某台设备,或增加了某些功能。这些都是应不同用户要求,或不同地区的需要而修改的。
5.调试后出厂,现场安装工作量小
美国普遍采用橇装结构,将加气站组装调试的大量工作都放在工厂完成,易于加强质量控制,保证加气站稳定可靠。现场施工量很小,只要接通电源和气源,连上售气机即可安全运行。
三、国内CNG加气站技术
中国石化集团公司江汉三机厂生产的撬装式结构和其他部分厂家生产的开放式结构产品基本反映了目前国内CNG加气站的技术水平。脱硫设备和干燥设备比较庞大,一般采用水冷却和后置净化干燥处理方式,管路复杂,无法在工厂内完成安装调试,质量控制有一定困难。
1.天然气压缩机
国内天然气压缩机技术与国外相比有较大的差距,目前广泛应用的是重庆气体压缩机厂和自贡高压容器厂生产的产品。
2.净化设备
(1)脱水干燥设备压力高达25MPa,对容器的制造工艺要求较高,需要配置较大的水池、冷却塔等设备,使整个系统复杂,不宜与撬装式压缩机相匹配。
(2)由于各地天然气的气质和含硫量不同,所选用的脱硫工艺和设备也有较大不同。
3.控制系统
加气站控制系统多数为常规电器控制,比较简单。
4.售气机
目前国内目前多数厂家生产的售气机技术性能和精度不高,稳定性和可靠性差,故障率较高。
四、国内加气站发展方向
根据中国国情,将国内多年来CNG加气站积累的成熟经验总结继承下来,同时积极借鉴国外先进技术和服务理念,使我们开发研制的CNG加气站成套设备,达到起点高,性能稳定,技术完善,安全可靠的目的。为了赶超国外CNG加气站的技术水平,应从以下方面去努力。
1.集装式设计,模块化安装
加气站应进行集装式和模块化设计,使之成为一种标准化的成套设备。具有较高的灵活性和可靠性,能方便运输、简化安装、变形安装、减少占地面积、缩减投入运行成本,以满足不同用户和不同地区建站的要求。
2.完善安全措施,提高自动化程度
为了减少人为不安全因素的影响,要提高加气站自动化程度,完善监控、安全保障措施。
3.提高集成化,加强质量控制
结合用户情况提高加气站集成化程度。将加气站主要设备(干燥器、储气瓶组)全部集成到橇装里去,设备只剩下售气机。在工厂里完成全部安装调试任务,在生产制造环节加强质量控制,确保设备安全。
4.加强技术合作,提高管理水平
在国产化过程中应积极寻求国际合作。通过销售、合资合作等多种方式,引进国际CNG先进技术和管理经验,使我国CNG 技术的发展与世界一流水平保持同步,就能在市场竞争中占据较强的优势。
参考文献
[1]周淑慧.高峰 国内外天然气汽车和加气站的发展现状及在我国的发展前景(二)[期刊论文]-中国能源2002,156(12)
[2]徐涛龙.姚安林.杨春.蒋宏业 城市CNG加气站事故致因机理分析[期刊论文]-重庆科技学院学报(自然科学版)2010(3)
[3]高猛.王宪.GAO Meng.WANG Xian 压缩天然气站投产及运行中应注意问题的研究[期刊论文]-山西建筑2010,36(31)
[4]刘军.CNG汽车加气站规模的设计分析[J].煤气与热力,2011,21(5):446-449.
脱硫工艺论文范文6
论文关键词:烟气;SO2;控制
论文摘要:我国的能源以燃煤为主,燃烧过程中产生严重污染。本文分析了锅炉烟气SO2污染的产生;提出了控制燃煤SO2污染的三种途径;讨论了烟气脱硫技术。
我国的能源以燃煤为主。占煤炭产量75%的原煤用于直接燃烧,燃烧过程中产生严重污染,如烟气中的CO2产生温室效应,SOX 导致形成酸雨,NOX引起酸雨、破坏臭氧层以及产生化学烟雾。1995年国家颁布了新的《大气污染防治法》,并划定了SO2 污染控制区及酸雨控制区,各地对SO2 的排放控制越来越严格,并且开始实行SO2 排放收费制度。随着人们环境意识的逐渐增强,减少污染源,净化大气,保护人类生存环境的问题,正在被亿万人们所关心和重视。寻求解决这一污染源的措施,已成为当代科技研究的重要课题之一。因此,治理锅炉烟气具有十分重要的意义。
1 锅炉烟气的污染
1.1 锅炉内煤的燃烧过程
在煤的燃烧过程中,当煤块受热后温度达100 ℃,煤中水分就逐渐被烘干。当煤块温度继续升温时,在煤尚未与空气作用的条件下,煤开始干熘出碳氧化合物及少量的氢和一氧化碳,这些气体的混合物叫挥发物(着火250~700℃)。当温度不断升高,挥发物逸出的量不断增多,煤粒周围的挥发物在一定的温度条件下,遇到空气中的氧就开始着火燃烧,在煤粒外层形成黄色明亮的火焰。煤中的挥发物全部逸出后,所剩下的固态物质就是焦炭。当煤块周围的挥发物燃烧时,放出大量的热将焦炭加热到红热状态,为焦炭的燃烧创造了条件。焦炭是煤的主要可燃物,它的燃烧是固体与气体间进行的化学反应,它比挥发物难燃烧,如何创造焦炭燃烬的条件,关系到煤块燃烧程度。综上所述,固体燃料的燃烧都包括加热干燥、干熘析出挥发物,形成焦炭燃烧和燃烬形成灰渣等4个阶段。
1.2 煤在燃烧过程中SO2 的生成
煤中的全硫分包括无机硫和有机硫。在高硫分煤中,硫主要以硫铁矿的形式存在。有机硫、游离状态的硫和硫铁矿中的硫皆为可燃性硫。硫燃烧生成SO2 、SO3 和H2O 生成H2SO3 。硫酸盐中的硫难于分解出来,为不可燃烧硫,进入灰分中。但在高温下有些金属的硫酸盐是可以分解的。煤在燃烧过程中产生的SO2 在锅炉和烟道内要发生一系列复杂的物理变化和化学反应:SO2的氧化反应主要是在金属氧化物、金属盐类和其它粉尘的接触催化作用下转化为SO3进而转化为H2SO4或硫酸盐。在硫的转化过程中,湿度对SO2 的转化率有重要的影响。相对湿度低于40 %转化速度缓慢,相对湿度高于70%,转化速度明显提高。
2、燃煤锅炉烟气脱硫技术及控制
烟气脱硫方法可分为抛弃法和回收法两大类。抛弃法是将吸收剂与SO2 结合,形成废渣,其中包括烟灰、CaSO4、CaSO3 和部分水,没有再生步骤、废渣抛弃或作填充处理,其最大问题是污染问题未得到彻底解诀,只是将空气污染变成固体污染;回收法是将吸收剂吸附SO2 ,然后再生或循环使用,烟气中的SO2 被回收,转化成可出售的副产品如硫磺、硫酸或浓SO2 气体,回收效果较好,但成本较高、一般按使用的吸收剂或吸收剂的形态和处理过程的不同,将回收法分为干法烟气脱硫、半干法烟气脱硫和湿法烟气脱硫三类。
2.1干法脱硫干法烟气脱硫是用固体吸收剂(或吸附剂) 吸收(或吸附) 烟气中SOX的方法,具有系统简单、占地小、同时具有脱氮功能等优点,缺点是钙利用率低,脱硫剂再生、更换费用高。一般钙硫比为2 时,脱硫效率可以达到70 % ,干法脱硫又有活性炭法、活性氧化锰法、接触氧化法和还原法之分。如活性炭法就是利用活性炭的活性和较大的比表面积使烟气中的SO2在活性炭表面上与水蒸汽反应生成硫酸的方法。
2.2半干法烟气脱硫半干法烟气脱硫介于湿法和干法之间,脱硫剂以溶液的形式被喷入烟气中,SOX 与脱硫剂发生反应的同时,溶液的水分全部蒸发。一般钙硫比为1.6 时,脱硫效率可以达到80 %。半干法烟气脱硫要求的控制水平较高,以使喷水量能全部蒸发。
2.3湿法烟气脱硫湿法烟气脱硫是用水或钙盐溶液作吸收剂吸收烟气SOX 的方法,一般钙硫比为1 时,脱硫效率可以达到90 % ,缺点是须建立水循环系统,防腐、烟气脱水问题突出。湿法中由于所使用的吸收剂不同,湿法脱硫又有石灰石- 石膏法、钠法、氧化镁法、氨和催化氧化法之分。如氨法就是用氨(NH3?H2O) 为吸收剂吸收烟气中的SO2 ,其湿灰(中间产物) 为亚硫酸铵(NH4 ) 2SO3 和亚硫酸氢铵NH4HSO3。采用不同方法处理湿灰,还可回收亚硫酸铵(NH4)2SO3、石膏CaSO4?2H2O和单体硫S等副产物。由于回收系统工艺复杂、投资高等因素80%湿灰采用经济的抛弃法。
3结论
3.1目前我国燃煤锅炉众多,锅炉烟气脱硫治理难度大、存在问题多及造成污染严重,成为我国当今令人关注的热点之一。
3.2实现烟气脱硫低成本的“经济化”目标是烟气脱硫技术发展的大趋势。
参考文献
[1] 刘志全1 关于燃煤二氧化硫排放污染防治技术政策的探讨[J ], 环境保护,2001 , (2) :8 - 101
[2] 安恩科1 湿法脱硫问题的探讨[J ]1 环境工程,2001 ,19(2) :25 - 261