人工神经网络范例6篇

前言:中文期刊网精心挑选了人工神经网络范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

人工神经网络

人工神经网络范文1

在上世纪九十年代初期,利用数学知识将感知器模型的弊病全面提出,致使社会各界对于人工神经网络的探究非常少。另一方面,针对逻辑运算的人工神经网络研究存在一定的弊端,一直没有被大家发现,因此,致使人工神经网络探究工程进入严重的低谷期。

关于人工神经网络技术飞速发展时期,九十年代初期,对于人工神经网络技术的弊端予以充分解决,尤其是Hopefield的人工神经网络技术模型的提出,致使对于互联网的稳定性以及收敛性的探究有了充分的理论依据。而且将人工神经网络模型全面应用到具体的实践中,并且得到全面推广,同时,将科学技术和人工神经网络进行有机结合,使人工神经网络技术更加具有可研究性。

2关于人工神经技术的构造以及典型模型

互联网人工神经技术的构造的组成包括以神经元件为主,同时,这项包含多种神经元结构的互联网信息处理技术是可以并行存在的。每一个具体的人工神经元件可以单一输出,还可以和其他的神经元件相结合,并且具有非常多的连接输出方法,每一种连接措施都会有相应的权系数。具体的人工神经网络技术的特点有:(1)针对每一个节点i,都会有相应的状态变量Xi存在;(2)节点j到节点i之间,是相应的权系数Wij存在;(3)在每一个节点i的后面,具体存在相应的阈值θi;(4)在每一个节点i的后面,存在变换函数fi(Xi,Wijθi),但是,通常情况来说,这个函数取fi(∑,WijXi-θi)的情况。

3将人工神经网络技术进行全面使用

互联网的人工神经网络技术具有独特的结构和处理措施,具体包括在:自动控制处理和网络技术模式识别、模型图像处理和相应的传感器信号处理技术。信号处理技术和机器人控制处理技术、地理领域和焊接、在电力系统应用和相关数据挖掘、军事和交通行业、农业和气象行业等多个领域纷纷体现出其卓越的贡献。

ART人工神经网络技术的运用。人工神经网络技术ART在网络语音和网络图像、文字处理和具体识别等方面,得到广泛的应用;同时,在工业处理系统中也有相应的应用,例如,在工业系统中的故障诊断和故障检测以及事故警报等情况的控制;人工神经网络ART技术还应用在数据挖掘方面,在相关数据中挖掘最稳定和最有意义的模式。具体的神经网络技术ART的优势为:网络技术处理能力高、稳定性强以及聚类效果非常好。

4结束语

人工神经网络范文2

关键词:人工神经网络;信息处理;风险评估

中图分类号:TP18 文献标识码:A 文章编号:1009-3044(2014)06-1285-02

Research on the Application of Artificial Neural Network

LI Hong-chao

(China University of Petroleum (East China), Qingdao 266580,China)

Abstract: Artificial neural networks are part of an integrated artificial intelligence, it is proposed is based on research of modern neuroscience. With the continuous development of artificial neural networks, and their use more widely. This article first analyzes the basic concepts and features of artificial neural networks, from six aspects of information, medicine, psychology and other details of the application of artificial neural networks.

Key words: artificial neural network; information processing; risk assessment

1 人工神经网络

人工神经网络,英文名为“Artificial Neural Network”,简称ANN,它充分分析大脑神经突触联接的结构特点,对其进行模拟,然后进行信息处理。简单来说,人工神经网络就是对人脑结构、人脑功能的模仿。它的特点有很多,比如非线性、非局限性、非常定性、非凸性等。这些特点铸就了人工神经网络的各种功能,促进了它的应用。

2 人工神经网络的应用

随着人们对人工神经网络的不断研究,人工神经网络的作用越来越大,给人们提供了更好的服务,下面就以人工神经网络在信息领域、医学、经济领域、控制领域、交通运输、心理学六个方面分别介绍其应用。

2.1 信息领域

人工神经网络在信息领域的应用分为两个方面,一个是信息处理,一个是信息识别。

1)信息处理

由于现代信息的多样化和多变性的特点,信息处理就变得复杂起来,人工神经网络可以对人的一部分思维能力进行模仿甚至代替,解决传统信息处理的困难。在通常情况下,人工神经网络可以自动诊断问题,开启问题求解模式。另外,人工神经网络系统的容错性能高,当其连接线遭到破坏,自身的组织功能还是可以保持它的优化工作状态。因此,军事系统充分利用这一优势,在其电子设备广泛应用人工网络信息系统。

2)模式识别

这项功能的理论基础有两个,一个是贝叶斯的概率论,另一个是申农提出的信息论。模式识别主要是分析和处理存在于目标体上的各种形式的信息,然后在处理和分析的基础上对目标体进行描述、辨认等过程。随着人工神经网络在模式识别中的应用,传统的模式识别逐渐被取代。随着模式识别的发展,已经逐渐应用到语音识别、人脸识别、文字识别等各个方面。

2.2 医学领域

人体是非常复杂的,在医学中,想要弄清楚疾病的类型、疾病的严重情况等,仅仅依靠传统的望闻问切诊断方法是远远不够的,医学的发展需要运用新技术。人工神经网络应用于医学中,可以分析生物信号,观察信息的表现形式以及研究信息的变化规律,将这三者的结果进行分析和比较,从而掌握病人的病情。

1)生物信号的检测与分析

在医学诊断中,医生基本上都是通过对医学设备中呈现出来的连续波形进行分析。人工神经网络中有一套自适应的动力学系统,该系统由一些数量庞大的简单处理单元互相连接。因此,它具有多种功能,比如Massively Parallelism,即所谓的巨量并行,分布式存贮功能以及强大的自组织自学习功能等。用常规处理法处理生物医学信号分析非常困难,而人工神经网络的功能可以有效解决难题,其在生物医学人脑检测与处理中的应用非常广泛,比如分析电脑信号,对心电信号进行压缩处理,医学图像的识别等,在很大程度上促进了医学的发展。

2)医学专家系统

对于传统的专家系统而言,其工作原理基本上就是先由专家根据自己多年的医学经历,总结自己的经验和所掌握的知识,以某种规则的形式将这些经验和知识存储在电脑中,建立一个专家的知识库,然后借助逻辑推理等方式开展医疗诊断工作。但是,随着专家知识的不断增长和经验的日益丰富化,数据库的规模会越来越大,极有可能产生知识“爆炸”的现象。同时,专家在获取知识的过程中也会遇到困难,导致工作效率低下。人工神经网络中的非线性并行处理方式解决了传统专家系统中的困难,在知识推理、自组织等方面都有了很大的提高,医学专家系统也开始逐渐采用人工神经网络系统。

在医学领域中,麻醉和危重医学的研究过程中,存在很多的生理方面的分析与检测工作,人工神经网络系统有良好的信号处理能力,排除干扰信号,准确检测临床状况的相关情况,有力促进了医学的发展。

2.3 经济领域

经济的快速有效增长是基于人们对市场规律良好的掌握和运用以及对经济活动中的风险评估,及时应对和解决,这样才能保障经济活动的快速发展。人工神经网络应用于经济领域,主要有预测市场价格和评估经济风险两个方面。

1)预测市场价格的波动情况

商品的价格主要是由市场的供求关系和国家宏观调控来变化的。国家的宏观调控是客观存在的,我们可以在遵循国家宏观调控的前提之下分析市场的供求关系,从而预测商品的市场价格。在传统的统计学方法中,在预测价格波动时因其自身的局限性,难以做出科学的判断。人工神经网络可以有效处理不完整数据和规律性不强的数据,它是传统统计方法所不能达到的。人工神经网络系统基于市场价格的确定机制,综合分析影响商品价格的因素,比如城市化水平、人均工资水平、贷款情况等,将这些复杂的因素综合起来,建立一个模型,通过模型中的数据显示,科学预测商品的市场价格波动情况,有效利用商品的价格优势。

2)评估经济风险

经济风险,即Economic Exposure,它指的是由于经济前景的一些不确定因素,导致经济实体出现重大的经济损失。在处理经济风险的时候,做好的措施就是防患于未然,做好评估和预测,将经济风险扼杀在萌芽时期。人为的主观判断经济风险具有一定的可靠性,但是也存在很多的不足。将人工神经网络系统应用于评估经济风险,可以有效弥补人为判断风险的不足。人工神经网络先提取具体风险来源,然后在此基础上构建出一个模型,这个模型一般要符合实际情况,通过对模型的研究,得出风险评价系数,最终确定有效的解决方案。

2.4 控制领域

随着人工神经网络的不断发展,人们开始研究其在控制领域的应用。比如现在的机器人的摄像机控制、飞机控制等。它主要是通过控制图像传感器,再结合图像表面的非线性关系,进行计算和分析,另外,它还可以将图像传感器瞄准到处于运动状态中的目标物上。

2.5 交通运输

交通问题具有高度的非线性特点,它的数据处理是非常庞大和复杂的,这与人工神经网络有很大的吻合性。就目前来讲,人工神经网络应用到交通领域有模拟驾驶员的行为、分析交通的模式等等。

2.6 心理学

人工神经网络是对人脑神经元的信息处理能力的模拟,本身就带有一定的抽象性,它可以训练很多的认知过程,比如感觉、记忆、情绪等。人们通过对人工神经系统的不断研究,多个角度分析了其认知功能。就目前来看,人工神经网络可以分析人的认知,同时对认知方面有缺陷的病人进行模拟,取得了很大的进步。当然,人工神经网络应用于心理学领域也存在很多的问题,比如结果精确度不高、模拟算法的速度不够等,这些都需要人们持之以恒的研究。突破这些难题,促使人工神经网络有效应用于心理学领域。

3 结束语

综上所述,随着人工神经网络的不断发展,它特有的非线性适应能力和自身的模拟结构都有效推动了其应用范围。我们应该不断运用新技术,不断完善人工神经网络的功能,拓宽其应用范围,促进其智能化、功能化方向发展。

参考文献:

[1] 毛健,赵红东,姚婧婧.人工神经网络的发展及应用[J].电子设计工程,2011(12).

[2] 林和平,张秉正,乔幸娟.回归分析人工神经网络[J].吉林大学学报:信息科学版,2010(3).

[3] 李雷雷.人工神经网络在建筑工程估算中的应用研究[D].华北电力大学,2012.

人工神经网络范文3

关键词 人工神经网络模型,人工语法学习,自动联系者,序列学习,简单循环网络。

分类号 B842

1 引言

人工神经网络模型(Artificial Neural Network Model,简称ANN),顾名思义,就是用人造的程序、机械或设备来模拟人脑神经网络的模型。人工神经网络模型的用途有二:(1)发明基于神经网络的人工智能系统,来模拟人的学习、记忆、推理等智能活动,以服务于人类的现实生活;(2)构建各种心理活动和心理过程的模型,以为各种心理学理论提供支持。前者是自动化、通信、制造、经济领域关注的,我们平时所见的语音识别、经济领域使用的股票走势预测等智能系统大多是基于人工神经网络模型研制出来的。而后者则是心理学家所关注的领域。至今,人工神经网络模型已被用来模拟诸如知觉、记忆、学习、判断等各种心理活动,以解释矛盾的实验数据,为有关的心理学理论提供丰富的证据。

和其他领域的研究者们一样,内隐学习领域的研究者们也注意到了这一行之有效的工具。Cleeremans(1993)指出根据已有的内隐学习理论构造人工神经网络模型,将模型的输出数据与人类被试的实验数据进行比较,能为原有的理论观点提供证据[1]。Dienes和Perner(1996)也有类似的看法[2]。然而,在发挥人工神经网络模型在内隐学习研究上的功效之前,必须解决如下问题:人工神经网络模型是否正如Cleeremans等所言适用于内隐学习研究?如果是,用哪类人工神经网络模型来模拟内隐学习?

2 人工神经网络模型的工作原理及其研究内隐学习的适用性

人工神经网络模型之所以适用于内隐学习,是因为它的基本工作原理和内隐学习的两个本质特征有着惊人的相似。

2.1 人工神经网络模型的工作原理

早在20世纪40年代,便有研究者对人工神经网络模型的工作原理做了最初的尝试。1943年,McCulloch和Pitts用类似“开关”的阈限逻辑单元(Threshold Logic Unit)**来模拟神经元,并将多个这样的单元以相等的强度(权重)连接起来,形成网络,这就是著名的MP模型[3]。1949年,Hebb在论述条件反射的形成时,无意间提到了神经元间连接强度更新的重要法则,即两个彼此相连的神经元同时激活或同时抑制,都能增加神经元间的连接强度,后人称此为Hebb法则[4]。然而,MP模型和Hebb法则都不能构成真正意义**上的神经网络模型,虽然,MP模型已经具备将多个神经元连接起来,形成网络的雏形,但是由于不同单元间的连接强度相等,且恒定不可变化,MP模型不具备人工神经网络的基本特征――学习性;而Hebb虽然提出了权重变化的一条有效法则,但却未将其应用到人工神经网络中来。真正将神经元连接成网络的思想与借助于权重更新使网络具有学习性的思想综合在一起的要属Rosenblatt。

Rosenblatt(1958)提出了第一个真正意义上的人工神经网络模型――感知器(Perceptron)[5]。其基本工作原理为:整个感知器由多个不同层次的加工单元组成,每个加工单元的功能类似于单个神经元或一组神经元,它能接收来自前一层的几个加工单元的激活,并综合这些激活,对此进行简单运算(例如:判断总激活量是否达到某一阈限),然后将运算的结果传递给下一层的加工单元。第一层单元的激活模式反映了外部刺激状态,即模型的输入,而最后一层单元的激活模式则为模型的输出反应。某个单元对下一层的另一个单元的影响取决于两个单元之间连接的强度(权重)。为了在给定输入的情况下,使模型获得类似于人类被试的输出反应,必须不停地调节单元与单元间的连接权重。所以,在构建合适的人工神经网络模型时,研究者往往会先设置一系列初始权重,然后不断地给予模型不同的输入模式,在每个特定输入后,比较模型输出与正确输出间的差异,并据此调整单元间的连接权重,这一过程不断进行,直到模型输出和正确输出间的差异达到最小值,此时,模型便完成了整个学习过程。图1为一个典型感知器的例子,它旨在判断呈现于视网膜的光条是垂直的还是水平的。整个感知器由3个加工单元层组成,第一层为网膜层,即将整个视网膜分割为10×10的网格,用每个网膜单元对应于一个网格,共100个单元,当光条落

图1 感知器例子(资料来源:文献[3])

在视网膜的某几个网格上时,这些网格所对应的网膜单元被激活。第二层为联系层,其中的每个单元总是和某些网膜单元间存在兴奋或抑制连接,不论兴奋还是抑制连接,强度都是恒定的1或-1,当与联系单元连接的网膜单元的总激活量达到联系单元的激活阈限时,联系单元被激活,例如图1,Aj的接收到的总激活量为1+1+1-1=2,如果Aj的阈限为2,那么2=2,Aj被激活。第三层为反应层,其中只包括一个反应单元,它与所有的联系单元连接,连接权重为Wj,其中,j表示第j个联系单元。反应单元将综合来自联系单元的激活信息,即将每个联系单元的激活量乘以它们之间的连接权重,然后简单求和,得出总激活量,并判断激活是否达到阈限,公式表示如下:

aR为反应单元的激活水平,aj为联系单元的激活水平,θ为阈限值。如果,总激活量达到反应单元的阈限,反应单元被激活(激活量为1),感知器决定光条为垂直,否则,反应单元不被激活(激活量为0),感知器反应光条为水平。当然,感知器必须经过一个漫长的学习阶段,才能完成这一简单的判断任务。在学习阶段,感知器接受各种不同的水平和垂直光条刺激,并一一做出反应,当反应正确时,连接权重不做任何调整,一旦反应错误,感知器会自动调整联系单元与反应单元间的权重,比如:当反应单元的激活量为0时,而实际光条为垂直,说明反应单元所接收到的总激活量小于阈限,此时,则应增大那些被激活的联系单元与反应单元间的连接权重,以提高总激活量,使其更有可能达到阈限,致使在下次刺激呈现时,感知器更易做出正确反应。当然,Rosenblatt的感知器除了能调整权重外,还会调整反应单元阈限。这种通过逐步调整连接权重和阈限,以减少感知器反应和正确反应间的差距的方法就是著名的感知器收敛法则(perceptron convergence rule)。不过,调整阈限的方法对于拥有多个反应单元的模型来说过于复杂,所以未被以后的人工神经网络模型采纳。

可见,Rosenblatt的贡献是卓越的,他给出了人工神经网络的基本工作原理,基于感知器收敛法则发展而来的delta法则与斜率递减(gradient descent)法已成为如今人工神经网络最主要的算法,本文第3点中将对此做详细介绍。然而,值得注意的一点是感知器仅在联系层和反应层间使用了权重概念,学习过程也仅发生在这两层之间,所以从本质上讲,感知器只属于包含一个输入层和一个输出层的单层网络(single layer network),这种单层网络在解决某些实际问题时,遇到了障碍。Minsky等(1969)指出感知器甚至无法模拟诸如XOR(异或)等简单运算[3]。因此,在接下来的将近20年中,人工神经网络的发展一度进入低迷期。直到80年代中期,逆向传导法(back propagation)[6]、自动联系者(atuoassociator)[7]、循环模型(recurrent model)[8,9]一一提出,多层网络广泛应用智能模拟任务中,人工神经网络才得以迅速发展。然而,这些算法和模型的基本工作原理与最初的感知器却并无两样。

2.2 人工神经网络模型研究内隐学习的适用性

如上述,人工神经网络的工作原理为通过调整权重逐步学会正确反应。那么,这些基于调整权重来学习正确反应的人工神经网络模型是否适于研究内隐学习呢?内隐学习这一概念强调的是两个特征:第一,它是学习的一种形式;第二,这种学习是内隐的、无需意识努力的。人工神经网络的工作原理极好地匹配了这两个特征。首先,要建立针对某一心理活动的合适的网络模型,必须要经过长期的训练和学习过程,即向模型呈现许多刺激,要求其做出反应,并将模型反应与要求的正确反应进行比较,据此逐步调整内部结构,使模型在以后的刺激情景中,更易做出正确反应。这种学习过程和人类的学习有着惊人的相似,人类在幼年时,虽然脑神经已发展完全,但是他们仍然不能执行各种认知任务,这时候的人脑就好比初始状态的神经网络模型,虽然,已对模型基本结构做了设定(比如,模型由几个加工单元层组成,每层有几个单元,哪些单元和哪些单元间存在联系),但是由于所有的连接权重都是随机设置的,模型不知道刺激与反应间的联系,常常会给出错误反应,而当经过几年的学习之后,人类婴孩不断地从外界接收刺激,做出反应,并接收来自外界的反馈,将之与自己的反应做比较,逐步通过内部结构的改变,来调整自己的行为,从而能够知觉事物、理解言语、控制自身的机体运动,这就好比初始状态的网络模型,能够通过调整权重,达到稳定状态,对刺激模式做出正确反应。可见,人工神经网络模型很好地匹配了内隐学习地第一个特征――两者都是学习过程。其次,内隐学习强调学习是内隐地进行的。由于无法直接探索学习过程是否是内隐的,研究者往往通过验证学习中所获得的知识是内隐的来间接推断学习过程是内隐的,当被试在分类或选择任务中的表现高于随机,却不知道自己是依据何种知识做出正确判断时,习得的知识被认为是内隐的,从而进一步推断学习过程也是内隐的[10~12]。人工神经网络模型也一样,从根据输出结构来调整权重的过程来看,根本无法判断学习过程是否是内隐的,而类似的,人工神经网络的知识表征形式显示神经网络模型所获得的知识很有可能是内隐的。当人工神经网络能做到正确反应时,指导模型该如何反应的知识似乎是存在于单元的组织结构和他们之间的连接权重上,根本无法直接从这种无序而杂乱的结构和权重上看出什么规则,例如:上述判断光条垂直和水平的感知器,我们并无法从直观上判断哪些单元表征垂直光条,哪些单元表征水平光条,这种知识表征形式很有可能是内隐的。这种知识的表征形式被称为分布式表征(distributed representation),它和传统的局部表征(local representation)很不一样,局部表征中,每个用不同的单元表征不同的事物,例如:单元1表征事物1,单元2表征事物2……,在知识提取时,就好比查字典一样,根据不同的事物,找到表征的位置,便可以获悉有关事物的各种知识。而分布表征可以将不同的事物表征在同一组单元中,比如垂直光条和水平光条,在知识提取时,往往只需输入新刺激的内容,比如光条激活了视网膜的哪些区域,便能根据内容找到合适的反应。

3 广泛应用于内隐学习领域的两种人工神经网络模型

人工神经网络模型很好地匹配内隐学习的两大基本特征。因此,许多研究者针对不同的内隐学习任务,选择不同的人工神经网络模型来拟合内隐学习过程,以探讨内隐学习的本质和机制[13~17]。

纵观近40年来的内隐学习研究,虽然不同的研究者开发了许多不同的任务形式,获得了许多可喜的研究成果,但是这些任务都离不开两种根本的任务形式――人工语法学习和序列学习。相应地,根据两个任务的不同特点,研究者选择了两种不同的模型――自动联系者和简单循环网络(simple recurrent network,简称SRN)――分别对之加以模拟。

3.1 人工语法学习与自动联系者

人工语法学习任务通常是:在学习阶段,要求被试在不知道内在规则的情况下记忆一大堆合法字符串,然后,在测试阶段,向被试呈现一批新的合法和非法字符串,并告知前面学习的字符串是一类符合语法规则的合法字符串,要求被试根据前面的学习,判断新的字符串是否合法[10]。从测试阶段的要求、学习阶段的要求和所学习的知识这三个不同的角度来看,人工语法学习具有三个主要特征:

第一,测试阶段要求被试进行的是一项典型的分类任务。相应地,检索1943年以来,人工神经网络模型发展的这段历史,便可以发现只有模式联系者(pattern associator)是专门针对模式识别和分类而开发出来的模型。模式联系者的诞生源自于条件反射的思想,即建立刺激和反应间的联系。用模式联系者的话说,就是对于特定的输入刺激模式,给出相应的反应模式。有趣的是,当用一组单元表示输入模式,另一组单元表示输出模式,它们两两连接在一起(如图2),并使用Hebb法则Wij=εαiαi更新权重时(其中,ΔWij为输入单元j和输出单元i之间权重的变化量,ε为学习速率,是常数,aWi为输出单元的激活量,aWj为输入单元的激活量),模式联系者便能在同一个模型中存储不同的输入模式,将反应模式相同的输入模式归于同一类,并且当模式中的某些量缺失时,比如某个输入单元损坏,模型仍能正常运行[3]。可见,模式联系者能够有效地模拟分类任务,甚至是某些脑神经受损病人(相当于某些输入或输出单元受损)的分类活动。然而,人工语法学习并不仅是单纯的分类任务,它还具有其他特征,因此,只模拟测试阶段的分类任务是远远不够的。

第二,人工语法学习的另一个特征是,学习阶段要求被试在没有任何指导(反馈)的情况下学习字符串,即并没有在被试学习某一字符串的同时,告诉他们这一字符串属于哪一类,合法还是非法。投射到模式联系者中,就是在学习对特定刺激模式的分类时,不伴随相应的反应模式,即没有输出单元。事实上,人类的许多学习过程都是在没有外部指导的情况下进行的。比方说,当孩子看到麻雀和燕子(刺激模式)时,家长告诉他这是鸟(反应模式),但很多时候,家长并不在身边,比如,当孩子看到鸽子时,没有外在反应模式指导,孩子仍能反应为鸟,人类似乎能够在没有外在的反应模式引导教育的情况下,学会分类。人工语法学习也是一样,虽然在学习时,没有被告知哪些合法,哪些不合法,但是被试仍能学会分类规则。这些事实提示研究者:必须开发一种没有外在引导者的自适应模型。于是,McClelland 和Rumelhart(1985)在对模式联系者稍做调整的基础上,提出了模式联系者的一个自适应特例――自动联系者[7]。由于没有外部引导,任何自适应模型必须具备自我反馈的功能,自动联系者也一样,如图3所示,每个单元除了接收外部输入(e)以外,还必须接收来自其他单元的内部输入(i),这种存在内部反馈的模型被称为循环模型。为了达到分类的目的,自动联系者旨在再现单元的外部输入模式,就好像人工语法学

图3 含有8个单元的自动联系者(资料来源:文献[7])

习中,记忆字符串一样。而为了达到这一点,必须调节连接权重,使单元的内部输入能匹配外部输入,用公式表示为:

aWj为单元j的激活量。虽然,自动联系者模型没有可比对的反应模式,但是,上述算法的核心仍是用内部状态去匹配外部状态,尽量减少两者间的差异,因此,上述公式仍可看成delta法则*的变式。当然,除了使用delta法则来训练自动联系者外,也有研究者(例如,文献[14])使用类似模式联系者的Hebb法则训练该模型。和模式联系者一样,自动联系者也能习得不同的外部输入模式,并对此做出分类。可见,自动联系者能够很好地模拟人工语法学习任务学习和测试阶段的表面属性――无外部引导的分类学习任务。然而,它是否能模拟语法学习这一内部属性呢?

第三,人工语法学习的本质特征在于所获得的是有关语法的知识。虽然,如前所述,自动联系者获得的是一种无法外显的分布性表征的知识,但是,有意思的是这种表征似乎代表了某一类别的原型。而原型或许就好比语法的抽象表示方法。McClelland 和Rumelhart(1985)曾构建了一个由24个单元组成的自动联系者,将一些有关狗的信息输入这24个单元[7],其中前8个单元输入的是狗的名字信息,后16个单元输入的是狗的外貌信息,结果发现经过训练后,模型的权重矩阵呈现出特殊的构造,即前8个单元之间及前3个单元与后16个单元间的权重处于随机水平,而后16个单元间的权重却出现某种固定的模式,McClelland和Rumelhart认为这种固定的模式就是狗视觉表象的原型。虽然,无法从这种固定的权重模式中,看出典型的狗应该具有哪些特征,但是至少可以认为,如果两个单元间的连接权重比较大,那么当这两个单元同时被激活时,模型有可能将目标判断为狗。也就是说,原型所表征的是每个视觉特征间的联系。这就好比,人工语法学习中的语法知识,语法或许是由字母间的联系所表征的。所以,从这点意义上来,自动联系者习得的原型或许就是语法知识。

3.2 序列学习和简单循环网络

序列学习任务要求被试对一系列规则序列进行选择反应,其假设为:如果被试习得了序列间存在的固定规则,则他们可以依据前面呈现的序列来预测下一个项目是什么,成功的预测将会缩短被试的反应时[11]。序列学习和人工语法学习之间的本质区别在于:它是一项预测任务,而非分类任务,被试对某一项目的反应依赖于前面的项目。

1990年,Elman开发了简单循环网络,专门用来模拟这类预测任务[9]。简单循环网络的目的是根据当前输入的项目来预测下一个项目,它的基本结构如图4所示,由4个加工单元层组成,它们分别是输入单元层、隐含单元层、上下文单元层和输出单元层。输入单元层用于表征当前输入的项目,输出单元层用于表征模型所预测的项目,上下文单元层用于表征在当前项目之前出现的项目序列,而隐含单元层负责在输入、输出和上下文单元层间的信息传递。简单循环网络的工作原理为:在接收第一

图4 简单循环网络的基本结构(资料来源:文献[16])

个项目时,输入层中的某些单元被激活,并将激活传递给隐含层中的单元,隐含层除了将激活进一步传递给输出层,由输出层预测第二个项目外,还将自己的激活水平复制于上下文层,当接收第二个项目时,隐含层除了收到来自输入层的激活外,还将收到来自上下文层的激活,因此,它向输出层传递的激活则包含了第一和第二两个项目的信息,依此类推,输出层所做出的预测是基于包含当前项目之内的所有项目的信息。当然,和其他许多人工神经网络模型一样,简单循环模型依据delta法则来调整权重的,即将模型给出的预测与真实出现的后续项目进行比较,来调整权重。不过,简单循环网络所使用的delta法则和自动联系者有两点差异:(1)权重调整是通过斜率递减法进行的,即寻求预测反应和真实项目之间误差方差的最小值,用公式表示为:

其中,tout为真实的正确输出,aout为模型的预测输出;(2)不同于自动联系者,简单循环网络是多层模型,当调整输出层单元和隐含层单元间的权重时,计算预测和真实项目间的误差方差是可以直接计算获得的,然而当要调整隐含层单元与输入层单元或上下文层单元间的权重时,由于不存在真实的正确反应,误差方差则无从计算,所以Rumelhart和McClelland(1986)提出可以用输出层单元的误差来估计隐含层单元的误差,即某一隐含单元的误差为所有与之连接的输出层单元的误差与它们之间权重乘积求和的函数[6]

然后,同样用斜率递减法求出权重的变化量,这种误差计算的法则和简单循环网络中原有的信息流方向正好相反,所以又被称为逆向推导。

简单循环网络能有效地模拟序列学习中的预测机制,因此,它刚提出不久,就被用于模拟内隐序列学习,用来研究序列学习的抽象性等问题[13,15,16]。

总之,针对不同的内隐学习任务,为了得到更佳的模拟效果,研究者往往倾向于选择不同人工神经网络模型加以模拟。然而,就像是任务之间的划分并不绝对一样(比如:Cleeremans等就曾将人工语法和序列学习结合在同一个任务中),神经网络模型和内隐学习任务间的匹配也并不绝对,比如:Boucher等(2003)就层用简单循环网络来模拟序列学习[17]。

4 小结

基于权重调整来学习正确反应的人工神经网络模型和内隐学习的两大本质特征间有着极优的匹配,人工神经网络模型在内隐学习领域的适用性毋庸置疑。在这样的背景下,出于深入探讨内隐学习的目的,研究者纷纷根据不同的内隐学习任务,选用不同的人工神经网络模型对之加以模拟[18]。到目前为止,针对两种较为普遍的内隐学习任务,也相应地出现了两种使用较为广泛的神经网络模型――自动联系者和简单循环网络。在实际研究中,合理地使用这两个模型,必将为内隐学习的理论和人工模拟提供更有力的证据。

参考文献

[1] Cleeremans A. Mechanisms of Implicit Learning: Connectionist Models of Sequence Processing. In: Jeffrey L E ed. Neural Network Modeling and Connectionism. London: MIT Press, 1993

[2] Dienes Z, Perner J. Implicit knowledge in people and connectionist networks. In: Underwood G.. Implicit cognition. Oxford: Oxford University Press, 1996

[3] McLeod P, Plunkett K, Rolls E T. Introduction to Connectionist Modelling of Cognitive Processes. Oxford: Oxford University Press, 1998

[4] Milner P. A Brief History of the Hebbian Learning Rule. Canadian Psychology, 2003, 44(1): 5~9

[5] Rosenblatt F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Reviews, 1958, 65: 386~408

[6] Rumelhart D, McClelland J. Parallel distributed processing (vol. 1). Cambridge: MIT press, 1986a

[7] McClelland J, Rumelhart D. Distributed Memory and the Represantation of General and Specific Information. Journal of Experimental Psychology: General, 1985, 114(2): 159~188

[8] Jordan M. An introduction to linear algebra in parallel distributed processing. In: Rumelhart D, McClelland J ed. Parallel distributed processing (vol. 1). Cambridge: MIT press, 1986a. 365~422

[9] Elman J. Finding structure in time. Cognitive Science, 1990, 14(2): 179~212

[10] Reber A S. Implicit learning of artificial grammars. Journal of Verbal Learning and Verbal Behavior, 1967, 6(2): 317~327

[11] Nissen M J, Bullemer P. Attentional requirement of learning: Evidence from performance measures. Cognitive Psychology, 1987, 19(1): 1~32

[13] 郭秀艳, 邹玉梅, 李强等. 中学生颜色内隐学习特征的实验研究. 心理与行为研究, 2003, 1(2): 122~127

[14] Cleeremans A, McClelland J L. Learning the Structure of Event Sequence. Journal of Experimental Psychology: General, 1991, 120(3): 235~253

[15] Dienes Z. Connectionist and Memory-Array Models of Artificial Grammar Learning. Cognitive Science, 1992, 16(1): 41~79

[16] Jiménez L, Méndez C, Cleeremans A. Comparing Direct and Indirect Measures of Sequence Learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 1996, 22(4): 948~969

[17] Dienes Z, Altmann G, Gao S J. Mapping across Domains Without Feedback: A Neural Network Model of Transfer of Implicit Knowledge. Cognitive Science, 1999, 23(1): 53~82

人工神经网络范文4

关键词:神经网络;MATALB仿真;新BP算法

中图分类号:TP183 文献标识码:A 文章编号:1009-3044(2009)05-1197-02

BP Artificial Neural Network's New Algorithm

SONG Shao-yun, ZHONG-tao

(Yuxi Normal University, School of Information Technology and Engineering, Yuxi 653100, China)

Abstract: The BP neural networks algorithm presented in this paper is based on the existing algorithm, which basic principle is choosing a freedom weight, by solving the linear equations to achieve hidden layer, combination freedom weight, then obtain weight is necessary weight. This algorithm hasn't the traditional method such as the local minimum and the slower rate of convergence in BP neural networks algorithm.

Key words: neural network; MATALB simulation; new BP algorithm

1 引言

BP人工神经网络实际上是通过梯度下降法来修正各层神经元之间的权值,使误差不断下降以达到期望的精度。从本质上讲,这种计算过程是一种迭代过程,迭代算法一般都与初值的选择密切相关,如初值选择的好,则收敛速度快,如初值选择不好,则收敛速度慢或根本不收敛。当采用梯度下降算法调整权值时,不可避免地存在陷入局部极小的问题。尽管很多文献都报道了各种各样的改进方法来加快收敛速度,如变学习率,加惯性项(也称动量项)等方法。然而,由于这些方法都由于迭代及优化的基本思想,不可能从根本上解决对初值的依赖性及局部极小问题。

2 BP网络结构及参数假设

人工神经网络范文5

人工神经网络属于一种对人脑结构及功能进行反映的数学抽象模型,对人的思维以及存储知识等功能进行模拟,从而完成某项工作。对于岩土工程来说,主要包括岩体和土体两项内容,且这两项内容均具备很高的复杂性。在岩土工程研究过程中,有必要借助人工神经网络,从而使岩土工程的研究得到有效进步发展。本文在分析人工神经网络的基础上,进一步对人工神经网络在岩土工程中的应用进行分析,以期为岩土工程研究的进展提供一些具有价值的参考建议。

关键词:

人工神经网络;岩土工程;应用

岩土工程的研究对象分为两大类:其一为岩体;其二为土体。岩土工程涉及的介质存在两大特性,即模糊性和随机性,这两大特性又统称为不确定性。近年来,不少学者在岩土工程研究过程中,提出了人工神经网络这一概念,即利用人工神经网络,将其应用到岩土工程研究领域当中,从而为深入了解岩土工程的某些介质特征奠定有效基础[1]。从岩土工程研究的优化及完善角度考虑,本文对“人工神经网络在岩土工程中的应用”进行分析意义重大。

1人工神经网络分析

1.1人工神经网络概念

对于人工神经网络来说,是一种对人脑结构与功能进行反映的数学抽象模型;主要通过数理策略,经信息处理,进一步对人脑神经网络构建某种简化模型,进一步采取大量神经元节点互连,从而形成复杂网络,最终完成人类思维及储存知识的能力的模拟。神经网络无需构建反映系统物理规律的数学模型,与别的方法比较,在噪声容忍度方面更强[2]。与此同时,还拥有很强的非线性映射功能,对于大量非结构性以及非精准性规律存在自适应能力,具备超强的计算能力,可完成信息的记忆以及相关知识的推理,且其自身还具备自主学习能力;与常规算法相比,优势、特点突出。

1.2BP网络简述

从研究现状来看,基于实际应用过程中,人工神经网络模型大多数采取BP网络。BP网络即指的是多层前馈网络,因多层前馈网络的训练通常使用误差反向传播算法,所以将BP网络称之为属于一类误差反向传播的多层前馈网络。对于其网络而言,具备输入节点和输出节点,同时还具备一层隐层节点与多层隐层节点,基于同层节点当中不存在耦合状态。其中的输入信号从输出层节点依次传过各个隐层节点,进一步传输至输出节点,每一层节点的输出只对下一层的节点输出产生影响。

2人工神经网络在岩土工程中的应用分析

在上述分析过程中,对人工神经网络的概念有一定的了解,由于其模型算法的优越性,可将其应用到岩土工程研究领域当中,从而为解决岩土工程问题提供有效凭据。从现状来看,人工神经网络在岩土工程中的应用主要体现在以下几大方面。

2.1在岩石力学工程中的应用

岩石力学工程是岩土工程中尤为重要的一部分,将神经网络应用到岩石力学工程当中,主要对岩石非线性系统加以识别,同时还能够为工程岩体分类提供有效帮助,此外在爆破效应预测方面也具备一定的应用价值。对于人工神经网络来说,存在从有限数据中获取系统近似关系的优良特性,而岩石当中的各项参数之间又存在很复杂的关系,并且难以获取完整的参数集。在这样的情况下,使用人工神经网络技术,便能够使岩石非线性系统识别问题得到有效解决[3]。此外,有研究者将岩石抗压强度、抗拉强度以及弹性能量指数等作为岩爆预测的评判指标,进一步对岩爆预测的神经网络模型进行构建,然后预测了岩爆的发生与烈度。通过计算得出结论:采取人工神经网络方法进行岩爆预测行之有效,值得采纳借鉴。

2.2在边坡工程中的应用

对于岩土工程中的边坡工程来说,边坡失稳状况突出,且是由多因素造成的,比如边坡失稳的地质形成条件、诱发因素的复杂性以及随机性等。与此同时,由于边坡动态监测技术从目前来看尚且不够成熟,因此边坡失稳在岩土工程研究领域一直视为是一项难以解决的工程项目。而对于神经网络方法来说,因其具备非常好的预测功能,因此相关岩土工程研究工作者通常会采取人工神经网络对岩土工程中的边坡工程问题进行求解。并且,从现有研究成果来看,将人工神经网络应用于岩土工程的成果突出。有学者对影响岩质边坡的稳定性的相关因素进行了分析,包括地形因素、岩体因素以及外部环境因素等,并构建了边坡稳定性分析的BP网络模型[4]。此外,还有学者将大量水电边坡工程的稳定状况作为学习训练样本及预测样本,对以人工神经网络技术的边坡岩体的稳定性进行了研究,结果显示,采取人工神经网络对边坡岩体的稳定状况进行预测可行性高。

2.3在基坑工程中的应用

采取人工神经网络对基坑变形进行预测主要分为两种情况:其一,对会影响基坑变形的各大因素及位移的神经网络模型加以构建;其二,把变形监测数据作为一个时间序列,以历史数据为依据,将系统演变规律查找出来,进一步完成系统未来发展趋势的分析及预测。有学者针对基坑变形利用了人工神经网络方法进行预测,结果表明:对前期实测结果加以应用,使用此方法能够对后续阶段的基坑变形实时预测出来,并且预测结果和实测结果保持一致性。此外,还有学者根据具体工程项目,采取人工神经网络,对深基坑施工中地下连续墙的位移进行了深入分析及预测,结果显示:使用人工神经网络方法进行分析及预测,在精准度上非常高,值得在深基坑工程相关预测项目中使用[5]。

2.4在地铁隧道工程中的应用

在地铁隧道施工过程中,存在地表变形和隧道围岩变形等状况,为了深入了解这些状况,可将人工神经网络应用其中。有学者在对地层的影响因素进行分析过程中,列出了可能的影响因素:盾构施工参数、盾构物理参数以及地质环境条件,进一步利用人工神经网络,构建了人工神经网络模型,进一步针对盾构施工期间的地层移动进行实时动态预测,最终得到了不错的预测成果。此外,还有学者对BP网络算法进行改进,然后对某地铁工程中隧道上方的地表变形进行了未来趋势预测,结果表明:和其他地表变形预测方法相比,人工神经网络预测方法的应用价值更为显著。

3结语

通过本文的探究,认识到基于人工神经网络模型的算法具备很高的优越性,由于岩土工程地质条件复杂,为了深入研究岩土工程,可将人工神经网络应用其中。结合现状研究成果可知,人工神经网络在岩石力学工程、边坡工程、基坑工程以及地铁隧道工程中均具备显著应用价值。例如:将人工神经网络应用于岩石力学工程当中,能够预测岩爆的发生与烈度;应用于边坡工程当中,能够边坡工程的稳定性进行精准预测;应用于基坑工程当中,实现对基坑工程变形的实时动态监测;应用于地铁隧道工程当中,能够进一步了解地铁工程中隧道上方的地表变形情况。

总而言之,人工神经网络在岩土工程中的应用价值高,值得相关工作者采纳应用。

作者:张洪飞 单位:山东正元建设工程有限责任公司

参考文献

[1]郑惠娜.章超桦.秦小明.肖秀春,等.人工神经网络在食品生物工程中的应用[J].食品工程,2012(01):16-19.

[2]邹义怀.江成玉.李春辉,等.人工神经网络在边坡稳定性预测中的应用[J].矿冶,2011(04):38-41.

[3]曹建智.张健.人工神经网络在白洋淀水质评价中的应用[J].电子技术与软件工程,2016(08):261-262.

人工神经网络范文6

旅游市场趋势预测是旅游业发展战略和旅游规划与开发工作的重要基础依据,一直是旅游市场研究中最重要的内容之一。根据市场趋势预测的结果,旅游相关部门才可以制定合理的旅游规划,进行旅游资源的优化配置。旅游市场趋势预测是在对影响市场的诸因素进行系统调查和研究的基础上,运用科学的方法,对未来旅游市场的发展趋势以及有关的各种因素的变化,进行分析、预见、估计和判断。

近年来,旅游研究者对旅游市场趋势预测的方法进行了探索。目前主要有时间序列法、回归分析法、指数预测法、人工神经网络法。由于旅游市场的变化受到诸多因素的影响,导致旅游市场的趋势预测难度较大,但我们对预测精度的要求却越来越高。

本文是基于人工神经网络方法,提出使用遗传算法对人工神经网络进行优化,探索更精确、更适用于旅游市场预测现实状况的预测方法。

1 方法概述

人工神经网络是近年来的热点研究领域,是人类智能研究的重要组成部分,已经成为神经科学、计算机科学、认知科学、数学和物理学等多学科关注的热点。其应用领域包括:分类、预测、模式识别、信号处理和图像处理等,并继续向其他领域延伸。

1.1 BP神经网络

BP神经网络是一种多层前馈神经网络,该网络的主要特点是信号前向传递,误差反向传播。在前向传递中,输入信号从输入层经隐含层逐层处理,直至输出层。每一层的神经状态只影响下一层神经元状态。如果输出层得不到期望输出,则转入反向传播,根据预测误差调整网络权值和阈值,从而使BP神经网络预测输出不断逼近期望输出。

图中,X1,X2,…,Xn是BP神经网络的输入值,Y1,Y2,…,Ym是BP神经网络的预测值,wij和wjk为BP神经网络权值。从图可以看出,BP神经网络可以看成一个非线性函数,网络输入值和预测值分别为该函数的自变量和因变量。当输入节点数为n,输出节点数为m时,BP神经网络就表达了从n个自变量到m个因变量的函数映射关系。

1.2 遗传算法

遗传算法(Genetic Algorithms)是1962年由美国Michigan大学Holland教授提出的模拟自然界遗传机制和重托进货论而成的一种并行随机搜索最优化方法。它把自然界“优胜劣汰,适者生存”的生物进化原理引入优化参数形成的编码串联群体中,按照所选择的适应度函数并通过遗传中的选择、交叉和变异对个体进行筛选,使适应度值好的个体被保留,适应度差的个体被淘汰,新的群体既继承了上一代的信息,又优于上一代。这样反复循环,直至满足条件。

1.3 遗传算法优化BP神经网络的流程

遗传算法优化BP神经网络分为BP神经网络结构确定、遗传算法优化和BP神经网络预测3个部分。其中,BP神经网络结构确定部分根据按拟合函数输入输出参数个数确定BP神经网络结构,进而确定遗传算法个体的长度。遗传算法优化使用遗传算法优化BP神经网络的权值和阈值,种群中的每个个体都包含了一个网络所有权值和阈值,个体通过适应度函数计算个体适应度。遗传算法通过选择、交叉和变异操作找到最优适应度值对应个体。BP神经网络预测用遗传算法得到最优个体对网络初始权值和阈值赋值,网络经训练后预测函数输出。

遗传算法优化BP神经网络是用遗传算法来优化BP神经网络的初始权值和阈值,使优化后的BP神经网络能够更好地预测函数输出。遗传算法优化BP神经网络的要素包括种群初始化、适应度函数、选择操作、交叉操作和变异操作。

1)种群初始化

个体编码方法为实数编码,每个个体均为一个实数串,由输入层与隐含层连接权值、隐含层阈值、隐含层与输出层连接权值以及输出层阈值4部分组成。个体包含了神经网络全部权值和阈值,在网络结构已知的情况下,就可以构成一个结构、权值、阈值确定的神经网络。

2)适应度函数

2 实证分析

旅游客流量与当地旅游硬件及软件设施建设、各种交通设备的完善程度有着密切的关系。一个旅游地的交通设施完善程度决定了该景区的可进入性以及客源地到旅游地的时间距离,直接影响该景区游客量。此外,景区建设情况及旅游接待设施的建设情况决定着景区的吸引力。需要指出的是,由于信息传达的特性,游客数量对景区旅游相关条件改善的反应具有延迟性的特点。本文中,采用2000 年以来北京旅客周转量、人均GDP、全国交通、A级及以上景区个数、北京公共交通运营线路长度、北京市基础投资,预测北京市旅游人数。

通过查询中国国家统计局及北京市统计局相关资料,得到全国人均GDP、全国交通、北京市旅客周转量、北京市A级及以上景区个数、北京市公共交通运营线路长度、北京市基础投资数据,如表1所示。

根据遗传算法和BP 神经网络理论,在MATLAB 软件中编程实现基于遗传算法优化的BP神经网络进行预测。预测误差及真实值与预测值对比如图2、图3所示。

3 模型的评价