前言:中文期刊网精心挑选了检测系统论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
检测系统论文范文1
关键词入侵检测系统;CIDF;网络安全;防火墙
0引言
近年来,随着信息和网络技术的高速发展以及政治、经济或者军事利益的驱动,计算机和网络基础设施,特别是各种官方机构的网站,成为黑客攻击的热门目标。近年来对电子商务的热切需求,更加激化了这种入侵事件的增长趋势。由于防火墙只防外不防内,并且很容易被绕过,所以仅仅依赖防火墙的计算机系统已经不能对付日益猖獗的入侵行为,对付入侵行为的第二道防线——入侵检测系统就被启用了。
1入侵检测系统(IDS)概念
1980年,JamesP.Anderson第一次系统阐述了入侵检测的概念,并将入侵行为分为外部滲透、内部滲透和不法行为三种,还提出了利用审计数据监视入侵活动的思想[1]。即其之后,1986年DorothyE.Denning提出实时异常检测的概念[2]并建立了第一个实时入侵检测模型,命名为入侵检测专家系统(IDES),1990年,L.T.Heberlein等设计出监视网络数据流的入侵检测系统,NSM(NetworkSecurityMonitor)。自此之后,入侵检测系统才真正发展起来。
Anderson将入侵尝试或威胁定义为:潜在的、有预谋的、未经授权的访问信息、操作信息、致使系统不可靠或无法使用的企图。而入侵检测的定义为[4]:发现非授权使用计算机的个体(如“黑客”)或计算机系统的合法用户滥用其访问系统的权利以及企图实施上述行为的个体。执行入侵检测任务的程序即是入侵检测系统。入侵检测系统也可以定义为:检测企图破坏计算机资源的完整性,真实性和可用性的行为的软件。
入侵检测系统执行的主要任务包括[3]:监视、分析用户及系统活动;审计系统构造和弱点;识别、反映已知进攻的活动模式,向相关人士报警;统计分析异常行为模式;评估重要系统和数据文件的完整性;审计、跟踪管理操作系统,识别用户违反安全策略的行为。入侵检测一般分为三个步骤:信息收集、数据分析、响应。
入侵检测的目的:(1)识别入侵者;(2)识别入侵行为;(3)检测和监视以实施的入侵行为;(4)为对抗入侵提供信息,阻止入侵的发生和事态的扩大;
2入侵检测系统模型
美国斯坦福国际研究所(SRI)的D.E.Denning于1986年首次提出一种入侵检测模型[2],该模型的检测方法就是建立用户正常行为的描述模型,并以此同当前用户活动的审计记录进行比较,如果有较大偏差,则表示有异常活动发生。这是一种基于统计的检测方法。随着技术的发展,后来人们又提出了基于规则的检测方法。结合这两种方法的优点,人们设计出很多入侵检测的模型。通用入侵检测构架(CommonIntrusionDetectionFramework简称CIDF)组织,试图将现有的入侵检测系统标准化,CIDF阐述了一个入侵检测系统的通用模型(一般称为CIDF模型)。它将一个入侵检测系统分为以下四个组件:
事件产生器(EventGenerators)
事件分析器(Eventanalyzers)
响应单元(Responseunits)
事件数据库(Eventdatabases)
它将需要分析的数据通称为事件,事件可以是基于网络的数据包也可以是基于主机的系统日志中的信息。事件产生器的目的是从整个计算机环境中获得事件,并向系统其它部分提供此事件。事件分析器分析得到的事件并产生分析结果。响应单元则是对分析结果做出反应的功能单元,它可以做出切断连接、修改文件属性等强烈反应。事件数据库是存放各种中间和最终数据的地方的通称,它可以是复杂的数据库也可以是简单的文本文件。
3入侵检测系统的分类:
现有的IDS的分类,大都基于信息源和分析方法。为了体现对IDS从布局、采集、分析、响应等各个层次及系统性研究方面的问题,在这里采用五类标准:控制策略、同步技术、信息源、分析方法、响应方式。
按照控制策略分类
控制策略描述了IDS的各元素是如何控制的,以及IDS的输入和输出是如何管理的。按照控制策略IDS可以划分为,集中式IDS、部分分布式IDS和全部分布式IDS。在集中式IDS中,一个中央节点控制系统中所有的监视、检测和报告。在部分分布式IDS中,监控和探测是由本地的一个控制点控制,层次似的将报告发向一个或多个中心站。在全分布式IDS中,监控和探测是使用一种叫“”的方法,进行分析并做出响应决策。
按照同步技术分类
同步技术是指被监控的事件以及对这些事件的分析在同一时间进行。按照同步技术划分,IDS划分为间隔批任务处理型IDS和实时连续性IDS。在间隔批任务处理型IDS中,信息源是以文件的形式传给分析器,一次只处理特定时间段内产生的信息,并在入侵发生时将结果反馈给用户。很多早期的基于主机的IDS都采用这种方案。在实时连续型IDS中,事件一发生,信息源就传给分析引擎,并且立刻得到处理和反映。实时IDS是基于网络IDS首选的方案。
按照信息源分类
按照信息源分类是目前最通用的划分方法,它分为基于主机的IDS、基于网络的IDS和分布式IDS。基于主机的IDS通过分析来自单个的计算机系统的系统审计踪迹和系统日志来检测攻击。基于主机的IDS是在关键的网段或交换部位通过捕获并分析网络数据包来检测攻击。分布式IDS,能够同时分析来自主机系统日志和网络数据流,系统由多个部件组成,采用分布式结构。
按照分析方法分类
按照分析方法IDS划分为滥用检测型IDS和异常检测型IDS。滥用检测型的IDS中,首先建立一个对过去各种入侵方法和系统缺陷知识的数据库,当收集到的信息与库中的原型相符合时则报警。任何不符合特定条件的活动将会被认为合法,因此这样的系统虚警率很低。异常检测型IDS是建立在如下假设的基础之上的,即任何一种入侵行为都能由于其偏离正常或者所期望的系统和用户活动规律而被检测出来。所以它需要一个记录合法活动的数据库,由于库的有限性使得虚警率比较高。
按照响应方式分类
按照响应方式IDS划分为主动响应IDS和被动响应IDS。当特定的入侵被检测到时,主动IDS会采用以下三种响应:收集辅助信息;改变环境以堵住导致入侵发生的漏洞;对攻击者采取行动(这是一种不被推荐的做法,因为行为有点过激)。被动响应IDS则是将信息提供给系统用户,依靠管理员在这一信息的基础上采取进一步的行动。
4IDS的评价标准
目前的入侵检测技术发展迅速,应用的技术也很广泛,如何来评价IDS的优缺点就显得非常重要。评价IDS的优劣主要有这样几个方面[5]:(1)准确性。准确性是指IDS不会标记环境中的一个合法行为为异常或入侵。(2)性能。IDS的性能是指处理审计事件的速度。对一个实时IDS来说,必须要求性能良好。(3)完整性。完整性是指IDS能检测出所有的攻击。(4)故障容错(faulttolerance)。当被保护系统遭到攻击和毁坏时,能迅速恢复系统原有的数据和功能。(5)自身抵抗攻击能力。这一点很重要,尤其是“拒绝服务”攻击。因为多数对目标系统的攻击都是采用首先用“拒绝服务”攻击摧毁IDS,再实施对系统的攻击。(6)及时性(Timeliness)。一个IDS必须尽快地执行和传送它的分析结果,以便在系统造成严重危害之前能及时做出反应,阻止攻击者破坏审计数据或IDS本身。
除了上述几个主要方面,还应该考虑以下几个方面:(1)IDS运行时,额外的计算机资源的开销;(2)误警报率/漏警报率的程度;(3)适应性和扩展性;(4)灵活性;(5)管理的开销;(6)是否便于使用和配置。
5IDS的发展趋
随着入侵检测技术的发展,成型的产品已陆续应用到实践中。入侵检测系统的典型代表是ISS(国际互联网安全系统公司)公司的RealSecure。目前较为著名的商用入侵检测产品还有:NAI公司的CyberCopMonitor、Axent公司的NetProwler、CISCO公司的Netranger、CA公司的Sessionwall-3等。国内的该类产品较少,但发展很快,已有总参北方所、中科网威、启明星辰等公司推出产品。
人们在完善原有技术的基础上,又在研究新的检测方法,如数据融合技术,主动的自主方法,智能技术以及免疫学原理的应用等。其主要的发展方向可概括为:
(1)大规模分布式入侵检测。传统的入侵检测技术一般只局限于单一的主机或网络框架,显然不能适应大规模网络的监测,不同的入侵检测系统之间也不能协同工作。因此,必须发展大规模的分布式入侵检测技术。
(2)宽带高速网络的实时入侵检测技术。大量高速网络的不断涌现,各种宽带接入手段层出不穷,如何实现高速网络下的实时入侵检测成为一个现实的问题。
(3)入侵检测的数据融合技术。目前的IDS还存在着很多缺陷。首先,目前的技术还不能对付训练有素的黑客的复杂的攻击。其次,系统的虚警率太高。最后,系统对大量的数据处理,非但无助于解决问题,还降低了处理能力。数据融合技术是解决这一系列问题的好方法。
(4)与网络安全技术相结合。结合防火墙,病毒防护以及电子商务技术,提供完整的网络安全保障。
6结束语
在目前的计算机安全状态下,基于防火墙、加密技术的安全防护固然重要,但是,要根本改善系统的安全现状,必须要发展入侵检测技术,它已经成为计算机安全策略中的核心技术之一。IDS作为一种主动的安全防护技术,提供了对内部攻击、外部攻击和误操作的实时保护。随着网络通信技术安全性的要求越来越高,入侵检测技术必将受到人们的高度重视。
参考文献:
[1]putersecuritythreatmonitoringandsurveillance[P].PA19034,USA,1980.4
[2]DenningDE.AnIntrusion-DetectionModel[A].IEEESymponSecurity&Privacy[C],1986.118-131
[3]张杰,戴英侠,入侵检测系统技术现状及其发展趋势[J],计算机与通信,2002.6:28-32
检测系统论文范文2
在今天,我国科学技术蓬勃发展带动了各个领域有不同程度的进步和发展。煤矿行业之所以能够有很大程度的进步,与科学技术的有效运用分不开。目前应用于煤矿开采中的煤矿安全监控系统就是最好的证明,其合理而有效的运用,大大提高了煤矿开采的安全性。但煤矿安全监控系统并没有达到非常完美的程度,其也存在多想不可忽视的问题。具体表现为。
1.1传感器质量和性能较差
传感器作为安全监测监控系统的重要组成部分,保证其质量和性能是高效运用安全监控检测系统的关键之一。但事实上,目前我国大多数煤矿开采中所应用的安全监测监控系统就存在传感器质量和性能较差的情况,传感器质量和性能较差具体表现为载体催化元件的应用效果差,容易影响传感器的正常使用;传感器制作工艺技术比较落后,会降低传感器的使用性等。因各种因素而促使传感器的质量和性能降低是安全监测监控系统当前存在的问题之一,需要通过有效的措施来调整和优化,才能够保证传感器合理而有效的应用。
1.2通信协议不规范
所谓的安全监测监控系统通信协议不规范是指其缺乏符合矿井电气防爆等特殊要求的总线标准,所以现有生产厂家的监控系统的通信协议几乎都采用各自专用的,互不兼容。此种情况的存在使得我国安全监测监控系统的通信协议表现出不规范这一特点。而通信协议不规范的情况将会无法实现资源贡献,相应的安全监测监控系统的更新和升级就会受到一定的影响和阻碍,安全监测监控系统的应用效果受到一定程度的抑制。所以说,煤矿安全监测监控系统通信协议不规范也是导致此系统无法高效运用的因素之一。
2增强煤矿安全监控监测系统运行效果的有效措施
煤矿开采是一项危险性较大的工作,在进行煤矿开采作业的过程中存在很多危险因素,一旦危险因素未得到有效的控制,很容易导致安全事故发生,不仅影响煤矿正常开采,还会导致人身受损。安全监测监控系统合理而有效的运用能够大大改善此种现状,当然是是以保证安全监测监控系统高效运用为前提。如何才能够实现煤矿安全监测监控系统高效运用?作者结合相关的资料,提出以下几点建议。
2.1研发高质量、高性能的传感器
传感器作为煤矿安全监控监测系统的重要组成部分之一,其合理而有效的应用能够提高安全监测监控系统的运行效果。而我国目前所应用的安全监测监控系统的传感器质量和性能不佳,直接影响安全监测监控系统的合理应用。针对此种情况,作者建议应当充分利用不断创新的科学技术来研发高质量,高性能的传感器,将其安装在安全监测监控系统中,以此来提高监控系统的应用性,为安全高效的煤矿开采创造条件。
2.2统一化规范化通信协议
上文中已经充分说明当下我国煤矿安全监测监控系统通信协议不规范,通信协议不规范将造成设备重复购置、系统补套受制于人和不能随意进行软硬件升级改造等后果。为了尽量避免此种情况出现在安全监测监控系统中,应当对安全监测监控系统通信协议进行调整和约束,促使其规范化和统一化,从而保证我国所应用的安全监测监控系统能够实现资源共享,升级安全监控检测系统,使其合理而有效的应用。当然,实现通信协议统一化和规范化并不是非常容易的,需要我国推出很多规范性规程和标准对通信协议进行规范化处理。只有推出统一的。规范的通信协议,才能够保证安全监测监控系统能够采用统一的数据库、统一的数据格式、统一的升级模式、统一的系统资源,促使煤矿安全监测监控系统能够更加高效的应用。
2.3专家诊断、决策系统的优化
尽管目前应用于煤矿开采中的安全监测监控系统具有良好的应用性,但同时它也存在不可忽视的问题,只有有效的处理安全监测监控系统存在的问题,才能够真正意义上实现系统的优化,促使其性能更强,应用效果更好。如何才能够实现煤矿安全监测监控系统的优化?作者建议有此方面的专家对安全监测监控系统进行详细的、深入的、全面的诊断,准确的诊断出煤矿安全监控监测系统存在的质量问题,并针对煤矿安全监测监控系统存在的问题进行详细的分析,制定合理的改善措施,改变系统功能单一、简单的情况,使其性能、质量等方面得到良好的优化,更加合理的应用于煤矿开采中。
3结束语
检测系统论文范文3
农村的光缆线路障碍点难以排查,就要在安装之初建立准确完整的原始材料,在光缆续接监测时,记录测试端至每个接头点,位置的光纤累计长度及中继段光纤总和减值。准确记录各种光缆余数,详细记录每个接头坑,终端盒、ODF架等部位光纤盘留长度,以便在换养故障点路由长度时予以扣除。
天气变化对有线电视网路的影响
这一方面主要从雷雨天气分析。进入夏秋之交的九月,阴雨天气也开始增加,遭遇雷击的可能性增大。在农村有线电视系统中,众所周知,雷电是自然现象,雷击释放能量很大,直接遭雷击,在放电通道上毁坏性巨大,也增加了弄寻有线电视线路检修的难度。在干线较长的农村有线电视系统中,需要注意防雷,防水和监测。这3个方面具体表现在:
1)防雷:要保证有线电视的“村村通,长期通”,防雷是必不可少的监测点之一。一般说来,有线电视的被损部位有前端放大器、架空电缆的分支、分配器被击毁等。最简单的防雷措施在于材料的安全选择上,如电缆要带有防雷的安全保护,在传输网中,进入前端的电缆安置分流雷电的避雷器,金属外皮就近接地,可有效地避免光缆遭受雷击;
2)防水:有线电视系统电缆传输中接头进水是个很普遍的问题。主要包括接头进水导致电缆部分进水和进水导致的接头氧化两种情况。在平常的收看电视过程中,高端信号变差,雪花点变多是进水常见的问题之一。对干线表现为放大器输出电平斜率很小或为负值。从而使供电出现故障,影响整个农村接收端的放大器正常工作,同时伴随斜率变大,信号质量恶化;
3)监测。各有线电视台在建台时往往经过上级广播电视主管部门的验收,验收基本上是以抽样测试点,对部分项目和指标进行夏初、冬初的两次考核。包括对主干线的线性分布的监测,用户接收端分支器,分配器的监测等。抓好常规维护,可以及时查出线路是否有故障或即将有故障的发生迹象,从而防患于未然,大大减少故障率。
常规维修监测技巧
前面我们讲过,因为农村地广人稀、农户居住先对分散,再加上通讯技术道路交通相对城市而言的薄弱,使得农村有线电视系统的监测和技术维护方面存在着更大的挑战。一般情况下,整个系统的无信号,故障在前端、主干线及供电部分;整个系统收不到某一频道信号,故障在信号源或调制器;部分用户无信号,故障在支干线或分配系统;个别用户无信号,故障在串接一分支或分支、分配器以及用户盒、用户线等用户器材上。只要仔细查找,故障就不难排除。
主观原因
检测系统论文范文4
1.1一般资料
2001年8月至2013年2月新乐市医院收治的泌尿系统感染患者100例。按照随机数字表法,将100例患者分为观察组和对照组,每组患者50例。观察组患者中,男23例、女27例,年龄23-74岁,平均(49.6±10.2)岁。对照组患者中,男24例、女26例,年龄25-78岁,平均(52.2±10.4)岁。两组患者基本资料比较差异无统计学意义(P>0.05),具有可比性。
1.2方法
采用无菌、干燥塑料杯采集所有受试对象清晨首次尿液标本,混合均匀后倒入已编号的玻璃试管中。对照组尿液标本采用干化学法进行检测。观察组尿液标本采用UF1000i型尿沉渣分析仪(日本Sysmex公司)检测白细胞数量(参考区间:小于20个/微升)。所有标本均进行微生物培养。上述检测方法均参照文献。
1.3统计学处理
采用SPSS20.0软件进行数据处理和统计学分析。计数资料以百分率表示,组间比较采用卡方检验。P<0.05为比较差异有统计学意义。
2结果
2.1尿白细胞检测结果
观察组患者尿白细胞数量分布为小于20个/微升25例、大于或等于20个/微升25例,所占比例分别为50.0%、50.0%%。对照组患者尿白细胞数量分布为小于20个/微升35例、大于或等于20-100个/微升15例,所占比例分别为70.0%、30.0%。观察组患者中,尿白细胞数量超过参考区间上限的患者所占比例大于对照组,组间比较差异有统计学意义(P<0.05)。
2.2尿微生物培养检测结果
观察组患者尿微生物培养阴性13例,阴性率为26.0%;微生物培养阳性24例,阳性率为48.0%;微生物培养可疑阳性3例,可疑率为6.0%。对照组患者尿微生物培养阴性21例,阴性率为42.0%;微生物培养阳性12例,阳性率为24.0%;微生物培养可疑阳性2例,可疑率为4.0%。观察组患者尿微生物培养阳性率明显高于对照组(P<0.05)。
3讨论
3.1尿沉渣检验及其优越性 在住院患者临床常规检查项目中,尿液生化检验具有极为重要作用和临床意义,能够通过测定尿液的理化性质和有形成分,有效诊断和鉴别诊断泌尿生殖系统、肝脏等脏器及系统的病变,同时也有助于判断疾病的预后。尿沉渣检测通常采用显微镜和流式细胞技术对尿液中的有形成分进行定性和定量检测。生理情况下,尿液中的有形成分,例如红细胞、白细胞、管型、细菌、结晶等均极为少见。多数泌尿系统疾病患者尿沉渣检测可检出结晶和上皮细胞,因此尿沉渣检测可用于疾病的初步诊断。尿沉渣检测主要是对尿液中的有形成分进行检验。载玻片法属于尿沉渣检测的传统方法,但存在操作标准难以统一、影响因素较多等不足,因此检测结果无法真实、客观地反映真实情况,检测结果见的可比性也相对较差。定量分析板法是用于尿沉渣检测的新方法,具有标准化及规范化程度高、操作简单、可重复性强及准确度高等优点,同时还能够对检测结果进行一次性处理,数据结果也具有较高的量化程度。
3.2泌尿系统感染尿沉渣检测应注意的问题
健康者尿液中没有红细胞或数量极少。当连续数次尿液高倍镜观察均检出1-2个红细胞时,可判为镜下血尿;肉眼观察即可发现尿液呈赭红色或洗肉水样,可判为肉眼血尿。一旦出现肉眼血尿,说明泌尿系统疾病的病情已十分严重,患者需接受进一步检查,以发现病因和明确诊断。在对泌尿系统感染患者进行尿沉渣检测时,应注意规范操作,以保证标本染色效果、防止标本污染,同时应采用标准的检查器材。在尿沉渣检测的临床应用中,通常采用晨尿标本,因为晨尿具有较高的浓缩度,能够更好地反映尿液中有形成分的实际情况。一般而言,尿沉渣检测应在标本采集后1H内进行,从而避免长时间保存标本对检测结果的影响,提高检测结果的准确性。
3.3泌尿系统感染尿沉渣检测的优点
泌尿系统感染患者的尿液中通常存在一定量的病原体和白细胞,因此对患者尿液中的细菌及白细胞进行检测对泌尿系统感染的临床诊断极为重要,也有助于判断疾病的病程。Sysmex公司UF1000i型尿沉渣分析仪同时采用了流式细胞技术及荧光染色法,因此检测白细胞、红细胞等有形成分的线性范围较大,准确度、灵敏度和检测效率也较高,有效避免了干化学法尿沉渣检测的不足,适用于泌尿系统感染患者早期诊断。本研究结果表明,与干化学法相比,采用UF1000i型尿沉渣分析仪对泌尿系统感染患者进行尿沉渣检测,可明显提高异常检出率(P<0.05)。
4结语
检测系统论文范文5
关键词:nRF9E5;无线局域网络;通讯协议;无线监测
当今,无线技术正快速应用于许多产品之中,与有线技术相比,无线技术主要具有成本低、携带方便、省去布线烦恼等优点。特别适用于工业数据采集系统、无线遥控系统、小型无线网络、无线RS485/232数据通信系统等。本文给出了一种用于监测有毒气体的无线局域网络系统方案设计方案。
1系统的功能及组成
在石华工业中,为了有效监测空气中H2S、CL2等有毒气体的浓度,把隐患消灭于萌芽状态,通常需要设计许多无线网络检测系统。图1所示就是一种多任务无线通讯局域网示意图。该系统是由一台中央监控设备CMS(centermoniteringsystem)和多台远程终端节点RTN(remoteterminalnodes)组成的多任务无线通信网络。其中的中央监控设备CMS主要由无线收发模块Nrf9e5、报警装置和上位机组成,能够接收远程各节点信息,监控节点运行情况,并能根据上位机要求发送命令字到指定节点。各节点RTN主要由有毒气体传感部分和无线接收模块Nrf9e5组成,能够采样并发送数据到CMS,接收并执行CMS发送来的指令,并且可作为中转站间接传输数据。
在CMS工作信号覆盖范围内,各节点和CMS直接通讯,如图中RTN100、RTN200和CMS之间可以直接通讯。在CMS工作信号覆盖范围外,各远程终端节点其上级相应节点和CMS间接通讯,如图中RTN121、RTN122依次通过RTN120、RTN100和CMS来进行间接通讯。采用这种方法,可将系统扩展成一个非常大的无线居域网络。
2硬件设计
2.1硬件电路连接
中央监控设备(CMS)电路主要包括监控计算机、接收模块nRF9E5及报菟装置,具体电路如图2所示。图中,把nRF9E5的P0.1、P0.2口配置成SCI模式,外接MAX232转换电路,和上位机进行串行通讯;P0.3配置成普通端口,外接报警装置。
该系统中的远程终端节点(RTN)电路主要由射频模块nRF9E5和气体变送器GT-130/H2S-1组成。ADC模块选用内部参考电压,气体传感装置能够输出4~20mA电流,经75Ω电阻转换为0.3~1.5V电压信号,来作为ADC模拟量输入信号。电路连接和图2基本相似,区别是断开图2中的P0.1-P0.3端口,将变送器输出端和nRF9E5的AIN0引脚相连接。
2.2无线收发模块nRF9E5
nRF9E5是挪威Nordic公司的产品。该芯片采用+3VDC供电,面积为5mm×5mm,共有32个外部引脚,包括UART和SPI等功能。内部集成了nRF9E5射频模块、8051微控制器及A/D转换模块,具有433/868/915MHz三波段载波频率。采用GFSK调制,抗扰能力强;支持多点通讯,数据传输速率高达0.1Mbps。具有特有的ShockBurst信号发射模式和发射信号载波监测功能,可有效降低功耗电流、避免数据冲突。内部寄存器为用户提供了基础的通讯协议,便于用户扩展,缩短了开发周期。电路连接极为简单,只需要一个晶体管和一个电阻,nRF9E5输出端ANT1、ANT2外接50Ω单天线终端装置,信号有效发射距离无遮挡时可达800m以上,有建筑物等遮挡时可达350m左右。
3软件设计
3.1通讯协议
CMS可与在其信号覆盖范围内的RINT进行直接通讯,在其工作信号覆盖范围之外的RIN通过其它节点转载信号实现与CMS的间接通讯。同时,CMS能够根据接收的数据内容判断信号来自哪一个RTN节点。为此,需把系统通讯协议设置为下列格式:
Prea-mbleAddPayloadCRC
JidMidYidXData
Preamble为引导字节;Add为接收机地址;Payload为有效加载数据(包括接收机识别码Jid、目的机识别码Mid、源信号机识别码Yid及Data字:状态字X=1时Data为命令字,X=0时Data为浓度数据);CRC为校验码。
nRF9E5处于发射模式时,Add和Payload由微控制器按顺序送入射频模块nRF9E5,Preamble和CRC由nRF9E5自动加载。接收模块时,nRF9E5先接收一数据包,分别验证Preamble、Add和CRC正确后,再将Payload数据送入微控制器处理;当接收机微处理器判断Payload中的Payload中的Jid和本机识别码号一致时,继续处理后继数据,否则放弃该数据包。
要实现上述数据通讯功能,需进行nRF9E5初始化配置和用户程序设计。
3.2nRF9E5子系统初始化配置
在nRF9E5模块中,特殊寄存器RF-Register包含10个字节,其配置字内容可决定射频模块nRF9E5的工作特性,表1列出本设计殊寄存器RF-Register需要配置的基本参数(文中未述及的参选用默认值)。
表1RF-Register寄存器部分字节配置说明
名称设定值(二进制)说明
CH-NO001110101载波频率为868.2MHz
HRFEQ-PLL1设定PLL工作模式
PA-PWR11输出功率为10dBm
RX-PW001接收地址字长为1byte
RX-PW00100000接收有效字节长度8bytes
TX-PW00100000发射有效字节长度8bytes
PX-ADDRESS11100111接收地址名0xE7h
UP-CLK-EN0外部时钟禁止
XOF011晶体振荡器16MHz频率
CRC-EN1使能CRC校验功能
CRC-MODE0使用8位CRC校验码
系统通讯时,各模块处于正常接收状态:收发使能位TRX-CE=1且方式选择位TX-EN=0。在运行过程中,可由用户编程修改TX-EN=1使各字节工作于发射状态。
本系统设定CMS和所有RTN的地址ADD均为0xE7h,这样,系统内CMS和所有RTN之间可以互相通讯,从而避免了其它系统的干扰。各节点识别码长度根据网络节点级数和容量配置,继承关系分配地址;通讯时,通过对目的机代码Mid和接收机代码Jid的比较和识别,不断修改接收机代码Jid,直至Jid=Mid为止,实现节点间的自动双向寻址。以图1中系统3级路径为例,所有模块识别码长度均配置为12位,CMS识别码配置为0x000h。各节点识别码按照上下级路径。继承关系分配地址:第一级节点识别码以高四位区分,其余位均为0,如节点0x100h与0x200h;第二级节点识别码高四位继承其上一级节点高四位识别码,以中间四位区分,如RTN100的下级节点0x110h与0x120h;第三级节点继承其上一级节点的前八位识别码,以低四位区分,如0x120h的下级节点0x121h与0x122h。通讯时,即按照这种上下级路径关系传输数据。采用上述方法,三级路径最大可以配置四千多个节点,能组成一个比较大的无线局域网络。
4微处理器用户程序
该系统的处理器用户程序包括CMS用户程序和RTN用户程序,而它们又分别包括主程序和中断子程序两部分。
4.1CMS用户程序
a.CMS主程序
(1)当Flagi=1时,CMS对接收到的数据进行存储和排序记录,并在气体深度超标时,使报菟输出端P0.3=1;最后将Flagi清0。
(2)当Sleep=1时,由CMS发送命令字(X=1)到指定节点,最后将Sleep清0。
此时,Mid为目的机识别码,Yid=0x000h,接收机识别码Jid可由CPU根据Mid高四位自动产生。
b.CMS中断子程序
(1)串行通信口接收计算机命令信号,置Sleep=1。中断优先级为最高。
(2)RD1=1时中断CPU,接收某节点RTNi信号,置标志字Flagi=1。中断优无级为次高。
(3)用定时器2监控各节点通讯记录:若在定时器2的一个定时周期T2内判断出某节点一直没有发送信号,则会记录相应警告信息,直至手动清除。其中,T2为系统中各节点和CMS通讯一次的最大迟滞时间,中断优先级为次低。
(4)定时器1定时中断CPU,将内存数据送上位计算机显示处理,中断优先级为最低。
4.2RTN用户程序
a.RTN主程序
当Flagi=1时,CPU对Payload作如下处理后,最后将Flagi清0。
图2
(1)若接收的数据包中,Mid=0x000h,Yid为RTNj识别码,则数据来自下级节点RTNj,需净数据继续向CMS方向转发。
在转发数据包中,Jid内容由CPU对本机识别码的四位识别位清0获得,其它数据不变。
(2)若接收的数据包中,Mid为下级节点识别码,Yid=0x000h,则数据来自CMS,需将数据继续向下级路径转发。
在此转发数据包中,Jid内容由CPU将本机识别码和目的机识别码比较获得。
(3)若接收机的数据包中,Mid为本机识别码,判断X=1时执行命令字,作相应处理。
b.RTN中断子程序
(1)ADC转换结束标志EOC=1时产生中断,提醒CPU将Add、Jid、Mid、Yid、X=0和气体浓度Data依次送入nRF905模块,准备发射。最后将EOC清0,并重新启动ADC转换器。中断优先级为低。
(2)在RTNi中,RD1=1时产生中断,CPU读取nRF9E5的数据,若Payload中Jid为本节点识别码,存储数据并置Flagi=1;否则将Payload丢弃,Flagi不变。中断优先级为高。
此时,Add=0xFFh,Mid=0x000h,Yid为本机识别码。Jid内容由CPU对本机识别码的四位识别位置0获得。
检测系统论文范文6
通过RS-485总线将智能水位计、智能流量计、墒情传感器与信息采集板相连,构成信息采集单元。它采用低功耗Cortex-M3为控制核心,实现数据的采集与存储。本地通过USB接口或RS-232接口与上位机通信;远程通过GPRS网络或短信方式实时发送数据到数据库服务器,并将数据存储到数据库中。监测系统网络结构图如图1所示。
2系统硬件设计
农作物生长参数监测系统硬件设计由信息采集单元、供电单元、无线传输单元组成。信息采集单元主要完成雨量数据、土壤墒情数据和地下水位数据的采集、处理与存储,同时控制无线传输单元完成数据的发送与信息指令的接收;供电单元为整个系统提供工作电压;无线传输单元完成数据包的发送与控制指令的接收。
2.1信息采集单元硬件设计
信息采集单元主要由智能传感器、STM32F103、FLASH芯片S29AL032D、SRAM芯片IS62WV25616、LCD、触发器HEF4521BT、总线驱动器74HC245PW、232转换芯片MAX3222、带隔离的485收发器ADM2483、供电单元接口电路和MC323接口电路等组成。信息采集单元结构图如图2所示。
2.2供电单元硬件设计
供电单元由单晶太阳能电池板、可编程控制的2A充电电路、12V65AH免维护铅酸蓄电池及LDO压控转换电路等组成。太阳能电池板为铅酸蓄电池充电,同时为系统提供12V的输入电源。当太阳能电池板不工作时,铅酸蓄电池为系统提供12V的外部输入电源,12V的输入电压通过LDO转换电路,实现系统工作需要的+3、+4、+2.5、+5V。其中,+3V为全局电压,保证电路板大部分电路正常工作,包括监测系统上电后的工作电压、系统睡眠状态下的工作电压、时钟工作电压等;+4V是MC323无线通信模块的工作电压;+2.5V是AD转换电路的基准源;+5V是模拟参考电压,为运算放大器和AD电路提供工作电压;同时,输入的12V电压通过稳压电路为智能传感器提供工作电压。供电单元硬件设计结构图如图3所示。
2.3无线传输单元
选用MC323模块作为无线传输单元。该模块集成了基带处理器、射频处理器、MCP存储器和电源管理芯片等功能,同时内嵌TCP/IP协议和支持800MHz的工作频段,能够提供语音传输和短消息发送。将stm32f103的UART3与该模块的串口相连,同时外接SIM卡电路,实现雨量数据、墒情数据、地下水位数据和控制指令的无线发送。无线传输单元结构图如图4所示。
3系统软件设计
3.1采集单元软件设计
采集单元软件设计包括传感器事件、定时事件和命令事件。传感器事件即通过土壤墒情传感器、智能水位计、智能水质传感器和翻斗式雨量计等采集农作物生长环境参数;定时事件指系统将采集到的数据、系统状态、蓄电池电压和设备工作温度等参数定时自记和发送;命令事件指通过上位机软件或LCD液晶屏配置系统工作状态、传感器类型等。当3个事件中的某一事件处理完毕后,判断有无其他事件发生;若有,则进入相应事件处理程序;若没有,则进行现场保护,系统进入待机状态。采集单元软件设计流程图如图5所示。
3.2监测单元软件设计
监测单元通过电话呼叫或短信方式对信息采集单元进行远程唤醒,触发其上电。采集单元上电工作后,响应监测单元命令或按彼此协商好的时间定时上电,定时等待监测单元的命令。当采集的水位、雨量等参数超过设定的阈值时,向数据库服务器发送实时水位等数据或按设定的周期定时发送最新的水位数据、设备状态数据等。系统正常工作时,监测单元各状态之间的转换流程图如图6所示。
4系统测试
采集后的数据经过解析、整编和入库后,通过浏览器可以实时访问数据,而且还能进行历史数据和设备状态的查询。通过该系统,即使在远离观测现场的异地,也能实现对雨量、土壤墒情和地下水位数据的实时采集、存储与发送,真正实现对农作物生长环境参数的远程实时监测。系统测试效果图如图7所示。
5结语