信号自动化论文范例6篇

前言:中文期刊网精心挑选了信号自动化论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

信号自动化论文

信号自动化论文范文1

【关键词】 射频指标 仪器通信 自动化测试

一、引言

随着通信产业的发展,产品系列的多样化,组网的复杂性,以及用户对产品质量的高标准要求,设备测试的重要性愈发凸显。

传统射频指标测试,质检和测试人员对系统(设备)的测试只能使用频谱仪、信号源及辅助工具进行手动测试,对测试结果的判断完全凭借肉眼读取仪表上的显示结果,对设备参数的调整往往是使用设备软件工具手动调整。在设备量产时需要进行大量的重复性工作,测试结果也仅凭借手工记录,工作压力陡增。

测试速度慢、精度差、效率低,而且对于仪表的占用率非常高,在一定程度上造成仪表资源的相对缺乏,人力投入的增加。

射频指标自动化测试系统对通信覆盖系统(产品)和模块射频指标进行全面的测试,提高测试效率、节约测试设备和人力资源的投入、规范了测试流程、提高测试效率和测试结果准确性,从而提高产品的质量。

该系统将测试过程中大量重复、复杂性高的人工操作集合提取出来由程序模拟,在PC端使用VISA仪器控制驱动及SCPI命令控制仪器,来实现对信号源、频谱仪的远程控制以及对被测系统的监控。

二、通信设备现状

2.1 系统结构复杂

现代移动通信运营商为了实现对不同应用场景灵活组网,往往采用多级网络架构。比较常见的移动通信覆盖网络架构包括信号接入单元、组网交换单元及覆盖单元。在人工测试的时,需要手动调节测试每个网络节点的各种射频参数,操作复杂,工序繁琐且准确性差。

2.2 产品质量控制难

通常,为了保证设备能够正常入网,通信设备生产商在交付产品之前,都必须经过严格的质量检测。

通信系统射频指标项目繁多,一般涉及系统输出功率、增益、衰减、ALC、带内波动、带外抑制、杂散等几十种测试项目。每个射频指标参数的优劣会影响整个通信系统运行质量,往往需要多次调节参数信息来保证产品在系统应用中达到最佳状态。

在质量检测过程中,如此庞大的工作量,精细的调节工作倘若只依靠人工来完成将很难保证产品的质量。

三、系统设计方案

3.1 系统架构

本文结合通信覆盖类产品射频指标测试的实际需求,搭建自动化测试系统,其物理结构如下图1所示。射频自动化测试系统由计算机、频谱仪、信号源、设备(被测系统)、路由器(或交换机)、网线、射频线缆组成。

通过LAN口、串口以及RF接口将PC、仪器(频谱仪和信号源被测设备(或模块)组成三维一体的物理结构。其中,信号源实现被测设备对应信源信号的输入;频谱仪完成进由被测设备输出信号的测量工作,并将测量数据交由PC机处理,PC机提供用户操作平台,完成测试数据分析判断和被测设备的参数调整、结果保存等工作。

3.2 系统功能实现

射频指标自动化测试系统设计架构图如下图2所示。系统由表示层、控制层、数据层、及通信层四部分组成。表示层实现与用户的交互,控制层进行具体运算、数据处理和命令打包,数据层完成数据存储,通信层则实现PC机(自动化测试软件运行平台)与仪器设备之间的信息传输。

自动化测试应用软件是唯一人机交互接口,考虑到界面的可操作性,信息显示的直观性,设计时运用了JavaFX客户端开发技术进行开发。自动化测试软件主要包括设备参数自动化测试系统和执行测试模块两部分组成。其中设备参数自动化测试系统主要包括测试指标显示与定制,结果显示和数据导出,设备校正,系统设置及PF先衰减补偿等功能;执行测试模块主要包括数据获取和分析、设备参数校准,仪器命令组包、设备参数组包等功能。

数据库的主要功能是存储数据信息,供应用程序调用。由于产品调试过程中系统参数修改频繁,为实现数据存储调用的便捷,数据库采用XML数据库技术实现,便于数据信息查询和修改,以及承载用例标准数据源、测试结果、SCPI指令集、系统配置参数等应用数据。

通信层主要由路由器(或者交换机)及各种线缆为系统与仪表设备之间通信提供物理链路, VISA(Virtual Instrument System Architecture,虚拟仪器系统框架)驱动函数库也属于通信层,它是基于可编程仪器设备的I/o接口库,实现了仪器控制命令开发,使得测试设备可与PC机可通过SCPI控制指令实现实时通信。

3.3 系统执行流程

1、系统功能

射频指标自动化测试系统为用户提供了友好操作界面。操作界面实现功能有:配置管理、仪器校准、上下行指标自动化测试、测试结果处理、设备出厂参数的导出备份。配置信息主要包括串口波特率的选择、频谱仪和信号源的IP地址、被测系统(设备)的测试项目配置。RF线校准完成信号源信号输出射频线衰减补偿和频谱仪信号输入射频线衰减补偿。

2、操作流程

自动化测试系统在本地计算机上运行,可实现仪器的远程自动化控制、测试结果的自动化分析、设备参数的自动化调整。具体实现步骤如图3所示。

在PC机启动自动化测试系统,用户在窗口界面中设置串口、波特率、仪器及设备IP后,选择待测试设备所属通信制式并加载该制式的测试用例。PC机根据用户设置参数发出SCPI指令来设置信号源,信号源将相应信号传送到待测设备。待信号源加载射频信号完成后,频谱仪截取待测设备输出信号并将数据回传给PC机,PC机对回传数据进行分析,判断测试值是否满足相应指标要求,若不满足,则通过与产品对应的系统和模块通信协议进行调整,并循环进行判断、调整,直到符合相应要求。若待测项目在可控范围内不能调整到正确的值,说明是非软件设置导致射频指标参数错误,需要检查该产品的硬件模块或电路元器件。

3.4 系统优势

射频指标自动化测试系通过简化设备测试操作工序,用智能化的检测系统代替传统的工作测试,有效地缩短人工劳作时长,降低设备制造成本。此外,自动测试系统具有友好的人机交互界面,质检和测试人员容易上手,且自动化测试软件提供统一标准指标参数,能够有效的减少人为误差,能够保证测试准确度、效率及产品质量。

四、结束语

射频指标自动测试系统的引入大大提高了测试效率,测试时间大幅度缩短,并减少了人为引入的误差。该系统的设计思路具有一定的代表性,同样适用于其它通信设备自动测试系统的开发与实现,具有很高的实用价值和应用前景。

参 考 文 献

信号自动化论文范文2

关键词:DSP;变压器;继电保护;测控装置

1引言

目前,电力自动化的应用可以分为变电站自动化、调度自动化、配电自动化、电能计量自动化和电力市场等。03年以来,我国的电力供应紧张,根据国家电网的统计,电力自动化行业呈现不断增长的趋势。由此,继电保护产品的需求也急剧增长,而且对于继电保护产品的性能、新技术的应用等方面也提出了更高的要求。而变压器是电力系统自动化控制设备中普遍使用的一款电气设备,变压器的继电测控保护对于电力系统的安全可靠运行具有重要意义。

本论文主要借助于新型的DSP处理芯片,对基于DSP的变压器继电保护测控装置进行设计研究,以期从中能够找到合理可靠的变压器继电测控保护装置应用,并以此和广大同行分享。

2继电保护测控装置总体设计

(1) 继电保护装置的功能设计

① 自动、迅速、有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,并保证其它无故障元件迅速恢复正常运行。

② 反应电气元件不正常运行情况,并根据不正常运行情况的种类和电气元件维护条件,发出信号,由运行人员进行处理或自动地进行调整或将那些继续运行会引起事故的电气元件予以切除。反应不正常运行情况的继电保护装置允许带有一定的延时动作。

③ 继电保护装置还可以和电力系统中其他自动化装置配合,在条件允许时,采取预定措施,缩短事故停电时间,尽快恢复供电,从而提高电力系统运行的可靠性。

综上所述,继电保护在电力系统中的主要作用是通过预防事故或缩小事故范围来提高系统运行的可靠性。继电保护装置是电力系统中重要的组成部分,是保证电力系统安全和可靠运行的重要技术措施之一。在现代化的电力系统中,如果没有继电保护装置,就无法维持电力系统的正常运行。

(2) 变压器继电保护装置

电力变压器是电力系统中大量使用的重要电气设备,它在电力系统的发电、输电、配电等各个环节广泛使用。因而其安全运行与否是整个电力系统能否连续稳定工作的关键,是电力系统可靠工作的必要条件。

根据变压器的不正常运行状态,变压器一般应装设以下一些继电保护装置[6]:

① 为反应变压器油箱内部各种故障和油面降低,对于0.8MVA及以上的油浸式变压器及户内0.4MVA以上变压器应装设瓦斯保护。

② 为反应变压器绕组和引出线的相间短路及中性点直接接地侧绕组和引出线的接地短路以及绕组匝间短路,应装设纵联差动保护或电流速断保护;对于6.3MVA及以上并列运行变压器和10MVA及以上单独运行变压器,以及6.3MVA及以上的厂用变压器,应装设纵差保护;对于10MVA以下变压器且过流时限大于0.5s时,应装设顶流速断保护;对于2MVA以上变压器,当电流速断保护的灵敏系数还不满足要求时,则宜装设纵差动保护。

③ 为反应外部相间短路引起的过电流和作为瓦斯、纵差保护(或电流速断保护)的后备保护,应装设电流保护。例如。复合电压起动的过电流保护或负序电流保护,适用于升压变压器;过流保护适用于降压变压器。

④ 为反应中性点直接接地电网中,外部接地短路的零序电流保护。

⑤ 为反应对称过负荷的应装设过负荷保护。

⑥ 为反应变压器过励磁的应装设过励磁保护。

3基于DSP的变压器继电保护测控装置设计

3.1 测控装置硬件架构设计

本文从紧凑型和多功能两方面入手,设计了一款基于新型DSP芯片的测控保护装置。DSP芯片需要完成电压、电流等输入信号的采集和处理,并且根据一定的保护逻辑驱动继电器动作,另外,还需要处理人机接口任务和通信任务。根据这些任务的不同优先级,DSP芯片还需要分配不同时间片的进程以满足各项任务合理有序地执行。

硬件设计的总体框架如图1所示,输入信号包括电流、电压、频率和开关量,而输出则通过继电器来实现。其中电流信号包括三相保护电流和一路零序电流,电压信号包括三相测量电压和一路辅助电压。主控制器采集并处理这些信号,分别用于显示和实现保护逻辑判断等功能。本装置的测量数据、设备信息、事件记录信息、保护定值和保护配置信息等内容都是通过菜单的方式进行显示,装置还提供了按键用于接线方式、保护功能等基本设置功能的实现。设备提供了基本的串行通信功能,可完成装置和服务器之间的报文传输,实现遥信、遥测、遥调、遥控等功能。同时还提供了GPRS模块、方便远距离无线通信功能的实现。

3.2 继电保护测控装置抗干扰设计

微机继电保护装置是一个电路和结构都非常复杂的装置,其主要电路部件均采用中大规模和超大规模的集成电路器件,虽然这些器件在其它领域中的大量实践已表明其损坏率是很低的,但由于继电保护装置是在强电磁环境中长期连续工作,并且责任重大,对万一出现的元器件损坏仍需考虑对策;而且除了起主要作用的数字部件外,还有为数不少的模拟元器件,所以提高元器件可靠性的措施应考虑数字部件和模拟元器件两个方面。

微机保护装置特有的工作方式和很强的处理能力为实现自动检测提供了方便。对装置中平时工作在“静态”的部件,如出口驱动电路、出口继电器等,由于微机保护中这部分的电路比较简单,制造时容易保证其较高的可靠性,同时还可以利用微机的超强处理功能对其进行定时功能检查;对装置中平时工作在“动态”的核心部件,如DSP、MCU、A/D转换器、Flash、FRAM、CPLD等等,无论电力系统有无故障,这些硬件都处在同样的工作状态中,也就是说,总在不停地进行数据采集、传递、运算和判断,因此元器件损坏会及时表现出来;同时,由于有了DSP和MCU这些“智能”部件,可以“主动地”去查找和发现问题,使得微机保护装置可以具有完善的自动检测功能。

4结语

信号自动化论文范文3

关键词:电厂高炉 温度调节 自动控制

中图分类号:TM31 文献标识码:A 文章编号:1674-098X(2013)02(b)-0063-01

电厂作为电力供应的生产者,其电力制造的质量和生产过程的安全直接关系到千家万户的切身利益,因此对于电厂现场机电装备的自动化控制的要求十分严格。随着现场总线技术的飞速发展和广泛应用,以现场总线技术为典型应用的自动化控制系统已经逐渐深入到工矿自动化的多个领域,在一些自动化控制水平较高的电厂,已经初步实现了电厂机电装备的自动化控制。高炉是火力电厂生产过程中不可缺少的机电装备,其温度控制要求十分严格,如何实现高炉温度自动调节与控制,一直是很多火力电厂技术工程师都着力重点解决的技术难题之一。本论文主要结合现场总线技术,结合电厂高炉温度的控制要求,对其温度自动控制系统进行系统的研究与探讨,以期能够找到面向火力电厂高炉的温度自动控制技术,并以此和广大同行分享。

1.高炉温度自动控制概述

(1)高炉温度调节控制功能需求。火力电厂采用高炉主要是实现燃煤产电,为了实现能源的复合利用,提高经济效益,往往还通过高炉生产一些副产品,这就要求对于高炉内的温度和压力都有着严格的控制要求。在实际生产过程中,高炉温度的调节往往是采用人工调节的方式实现,这种调节方式效率低,精度差,可靠性差,因此逐渐提出了高炉温度自动调节的控制要求。要达到高炉温度无人值守控制的效果,就必须要能够实时自动监测高炉内的温度参数,并通过计算实时控制气阀或者进料阀,以实现对高炉内温度的自动控制与调节。

(2)现场总线技术的应用特点。由于技术的发展和设备的日益复杂,过去集中式自动化控制模式在实际应用中已经逐渐暴露出了诸多问题与不足,如控制中心负载过大,信息传输效率较低,系统兼容性较差等等;而现场总线技术的出现则很好的克服了上述问题,现场总线能够结合具体的被控对象合理设计自动化控制系统,对现场的智能仪表、数据传输、数据处理和终端均有着可靠的集成性和兼容性,因此将现场总线技术应用于火力发电厂高炉温度的自动调节控制,是完全可行的。

2.基于现场总线的高炉温度自动调节控制技术应用探讨

2.1系统功能设计

基于现场总线技术的高炉温度自动调节系统,具体来说,其功能主要包含以下几个方面:(1)在线监测。(2)数据查询。(3)生成报表与统计分析。(4)超限报警与联动控制。

2.2系统层次架构

高炉温度的自动调节控制系统主要由以下四个系统层构成。

(1)传感仪表层。为了实现高炉温度的自动监测与控制,必须选用合适的传感器对高炉内的温度进行实时监测,温度传感器采用4-20 mA电流信号作为传输介质,将模拟量信号传输到数据采集模块中。

(2)数据采集层。数据采集模块接收传感器传送过来的模拟量信号,通过现场总线实现模拟量数据信号的远程传输,直至传输到中央控制室的PC终端。

(3)PC终端。PC终端通过专用的组态软件实现对高炉的温度变量的实时显示,并提供友好的人机交互界面,完成数据的查询、存储和报表统计等管理功能。

(4)驱动执行层。当被监测的高炉温度过低或过高或者异常超限时,由PC终端发出相应的控制指令,经过驱动机构层实现控制指令的放大和执行,输出到动作执行器,实现相关的报警动作或联动控制动作。动作执行器主要由气阀和进料阀构成,气阀的开度可以降低高炉内的温度,进料阀的开度可以提高高炉内的温度,它们通过接收来自PC终端发出的控制指令,经过驱动放大转变为阀门调节的开度大小,从而实现对高炉温度的自动调节与控制。

2.3系统软件设计

基于现场总线的高炉温度自动调节与控制系统,采用组态软件实现对高炉温度参数的实时显示,以提高人机交互系统的直观性。该组态软件可以采用当前市场上主流的组态软件,例如wINCC,组态王等专业工控自动化组态软件,也可以采用VB、VC等高级语言进行开发。由于该自动控制系统仅仅是对高炉的温度参数进行实时监测与显示,因此软件开发的工作量并不是很大,下面结合组态软件的开发分析软件系统的设计基本流程。

(1)系统界面设计。一个好的软件系统必然有着良好的人机交互性,而这离不开系统的界面设计,因此要结合高炉的温度控制选取合适的图像图形,提高软件的可观性。

(2)系统导航设计。由于软件系统既要显示温度数据,还要提供数据报表、历史曲线等其他数据管理功能,就需要提供良好的页面之间的导航切换功能。

(3)系统数据设计。组态软件或者说自动化控制系统软件都离不开数据库的开发,可以选用软件自带的数据库系统,也可以采用第三方数据库管理系统,但是都必须要能够为系统提供可靠的数据源。

(4)系统管理设计。出于对系统管理的安全性考虑,必须要对系统进行管理涉及,包括用户认证,数据权限管理等等,这些都需要进行系统的管理功能的界定与设计。

信号自动化论文范文4

关键词:变电站;自动化监测系统;SQL SERVER2000

中图分类号:TP311.52 文献标识码:A 文章编号:1007-9599 (2012) 11-0000-02

随着我国经济的高速发展,电压等级和电网的规模日益增加,特别是随着计算机技术和通讯技术的飞速发展,为变电站自动化技术提供了相应的理论基础。变电站自动化监测系统为变电站和电网中一些问题的解决提供新的思路和解决方案,开拓和推动电力系统自动化技术的发展。

一、相关技术介绍

本文采用基于JAVA编程语言和SQL SERVER 2000数据库来进行变电站自动化监测系统的设计与实现。SQL SERVER 2000数据库充分地吸取了SQL SERVER7.0数据库的成功经验,并结合最新的计算机成果,很好地考虑了数据库应用背景的变化。SQL SERVER 2000数据库要实现的主要功能,包括三个方面:(1) 信息的统计、汇总等;(2) 信息的修改、添加和删除;(3) 信息浏览和查询。

本文采用模型-视图-控制结构(MVC),模型-视图-控制结构(MVC)是交互式应用程序广泛使用的一种体系结构,它有效地在存储和展示数据的对象中区分功能模块以降低它们之间的连接度。

JSP是Java Server Pages的缩写,是由SUN公司倡导,许多公司参与,于1999年推出的一种动态网页标准。JSP以Java技术为基础,具有动态页面与静态页面分离,能够脱离软件平台的束缚和编译后运行等优点,克服了ASP脚本级执行的缺点,因而逐渐成为Internet上的主流开发工具。

二、系统功能需求分析

变电站自动化监测系统架构图如图1所示。

\ 变电站自动化监测系统可以分为以下三个部分(1)前端监控点。前端监控点主要由视频服务器、摄像机(含快速球形摄像机等)、等主要设备组成。主要完成音、视频信号采集、视频信号处理和报警信号及环境量采集和控制工作。(2)传输网络。对于变电站自动化监测系统采用以太网传输方式:各变电站到监控中心的信道直接为以太网接口,光纤或微波传输设备直接提供以太网接口,各变电站的图像数据信号经过各级交换机、路由器和HUB上传至监控中心。(3)监控中心。主要由视频监控系统服务器、图像存储系统、监控客户终端等组成。主要完成现场图像接收和显示,用户登录管理和权限管理,摄像机和云台的控制,视频图像的存储、检索、回放、备份等。

三、系统功能实现

(一)实时数据采集及处理功能

通过间隔单元,变电站自动化检测系统采集来自CT、PT、配电装置保护、直流系统、所用电系统等生产过程的模拟量、数字量、脉冲量及温度量等,对所采集的输入量进行数字滤波、有效性检查、工程转换、故障判断、信号接点抖动消除、电度计算等加工,从而产生可供使用的电流、电压、有功功率、无功功率、电度、功率因数等各种实时数据,供数据库更新。

(二)图形处理功能

变电站自动化检测系统人机系统画面所显示的图形可以无级嵌套缩放、平移;当图形太大时,导航功能可以快速定位到某一点。回放功能可以以事件记录作为触发条件,去显示历史某一时刻的工况及状态。与工业电视(摄像)图像系统的链接,使无人操作变电站的功能得到了进一步的加强。

系统使用界面如图2所示。

\ 由图2可知,系统功能齐全,集成度高,具有动态IP功能;企业内部的所有电脑都可以看到图像,只要获得授权密码;公司领导出差在外时可以通过Internet观看视频图像;E-KAM网络摄像机可外接多型号的探测器,进行监控探测;全嵌入式硬件前端设备,不需要员工懂得或操作电脑上网,实现免维护;支持多种动态域名解析功能;可在本地端或远程端由网站提供的升级软件自行更新,在网络上就可以完成升级任务。

四、结束语

通过参考国内的CSC2000变电站综合自动化系统、BSJ-2200变电站计算机监控系统和RCS-9600变电站综合自动化系统,本文采用基于JAVA编程语言和SQL SERVER 2000数据库来进行变电站自动化监测系统的设计与实现。采用系统论的方法,构建了一个在变电站监测方面稳定、可靠、安全的系统,在数据分析上具有更好的科学性、高效性与智能性。

参考文献:

[1]孙毅.用VB, Matlab, SQL Server实现大气污染监测数据的判别分析[D].辽宁师范大学,2007

[2]王凯.大型钢厂能耗数据实时监测及查询系统[D].北京交通大学,2008

[3]马少平.变电站在线监测系统GPRS远程终端的设计与实现[D].国防科学技术大学,2005

信号自动化论文范文5

关键词:调度自动化;智能告警;量测类型;处理机制;启动信号 文献标识码:A

中图分类号:TP27 文章编号:1009-2374(2017)02-0122-02 DOI:10.13535/ki.11-4406/n.2017.02.058

1 概述

近年来,随着电网调控一体化工作的推进,越来越高电压等级的变电站实现了无人值班,调度自动化系统推送到调度监控人员面前的告警信息也越来越多,给他们带来了越来越强的工作压力,特别是在极端条件下(如台风等),大量的告警信息同时出现,会造成由于漏看信息而扩大电网事故的范围的风险,为此,近段时间,各种以精减告警信号数量为目标的智能告警模块在调度自动化系统中不断出现。这些模块由于没有统一的规则,在使用时存在漏报或误报告警的情况。本论文针对电网10~220kV电压等级的线路、主变、母线、电容器等设备的告警信号开展了研究,通过研究制定告警智能处理规则,拟达到按该规则处理后的告警信号在内容上与原告警信息保持不变,而在数量上达到尽量减少的目标。

2 智能告警功能目前存在的问题

目前,由于没有统一的智能告警规则,各地采用的规则不尽相同,应用智能告警功能时一般都存在以下三方面问题:

2.1 智能告警窗口信息不完整

一直以来,EMS系统中智能告警模块产生的结果只是作为SCADA告警窗的辅助内容,它一般建立独立的窗口显示智能告警结果,当进行逻辑运算的告警信息能够产生结果时,它才把结果显示在该窗口,如逻辑运算的条件没能到达,也就是说逻辑运算结果为非时,则不显示任何内容,因此该窗口显示的只是告警信号的部分内容,而不是电网的全部告警信息,为了不漏掉告警信号,调度监控人员在监视该窗口时,还要监视SCADA告警窗,这样不仅没减轻他们的工作,反而增加了他们的负担,因此智能告警功能一直未得到推广和有效应用。

2.2 智能告警启动信号不全面

智能告警辑运算参与信号的范围一般是取启动信号出现前5秒和出现后15秒内的信号,当然大多数智能告警模块的时间是可设定的。现在智能告警模块都是只以开关分闸启动信号,只对造成开关跳闸的事故进行智能处理,而对可能出现的只有保护动作或备自投动作,开关拒动这种危险情况没有作判断,存在严重的信号漏报安全隐患。

2.3 缺少统一的规则

到目前为止,国内对智能告警逻辑运算的规则还没有统一的规范,各应用单位都是处于摸索阶段,尽管有些单位取得了一些效果,但由于没有统一的规则,在应用推广上受到了限制。

3 智能告警处理机制

3.1 启动信号扫捕机制

在启动信号扫捕到前,系统缓存一段时间(一般为5秒钟)事件信息,一旦扫捕到启动信号,立即收集此后一段时间(一般为15秒)事件信息,合并缓存信息,形成告警信息组,并按规则进行智能处理,缓存时间和收集时间应具备可设定功能。制定规则时建议规定保护动作、备自投动作和开关分闸三类信号可作为启动信号。

缓存信息在未扫捕到启动信号前,如果超过了设定缓存时间还未扫捕到启动信号,则根据先进先出的原则,溢出信息在智能告警窗显示告警信息。告警信息组的信息在逻辑运算处理完成前,暂不显示在智能告警窗,处理完成后按显示逻辑运算结果和未被屏蔽的信号。

3.2 逻辑运算顺序

在对告警信息组进行逻辑运算时,由于可能同时存在三种启动信号,如不对逻辑运算的顺序做规定会出现误判,例如,同时出现某间隔保护动作、备自投动作和开关分闸三个告警信号,其判断结果是“事故分闸、备自投不成功”还是“备自投分闸、开关拒动”,因此必须规定逻辑运算的顺序,制定规则时规定以告警信息组内出现的启动信号作为运算级别的判断依据,从高到低排序分别为保护动作、备自投动作和开关分,也就是说,如果出现某间隔保护动作告警信号,要先进行包含该间隔保护动作要素的所有逻辑运算后,如果组内还有该间隔备自投动作信号,则再按顺序进行包含该间隔备自投动作要素的所有逻辑运算,同理,如果组内还有该间隔,开关分信号未参与运算,则再进行包含该间隔开关分要素的所有逻辑运算。

3.3 选用标志机制

在进行逻辑运算时,为了保证告警信息组的每条信息在同一条逻辑运算式中只能被选用一次参与运算,防止一个信号重复参与运算,需要对参与该条逻辑运算式的每条(类)信息标志选用标志。这样即使一条逻辑运算式需要某信号出现两次,如告警信息组该信息只有一条,则逻辑运算结果将不成立。例如:

逻辑式:(间隔.10kV线路保护动作#动作&&间隔.开关#分闸&&间隔.重合闸动作#动作&&间隔.开关#合闸&&间隔.开关#分闸)

以上逻辑式“间隔.开关#分闸”出现两次,也就是说,告警信息组内需要有两条“间隔.开关#分闸”信息,逻辑运算结果才能成立。其结论为“$厂站$设备事故跳闸,重合闸动作,重合不成功(合后重跳)”。如果告警信息组内只有一条“间隔.开关#分闸”信息,由于第一次选用后被打上选用标志,第二次寻找信息时,它不列入被选范围,该逻辑式运算结果将不成立。

每条逻辑规则运算后,如果其运算结果成立,所有参与该运算的信息保留选用标志,不再参与其他运算,否则就去掉选用标志,待其他规则运算时选用。

3.4 屏蔽标志机制

参与逻辑运算所有告警信息,都需要打上屏蔽标志。当逻辑运算结果成立时,打上屏蔽标志的信息将被屏蔽,不在智能告警窗显示,否则清除其屏蔽标志,在智能告警窗显示原信息。

3.5 多启动信号处理机制

当同一时间段内出现多个无相关独立的启动信号时,需要进行独立处理,并分别以启动时间为原点形成多个信息组进行运算。

3.6 重复信息汇总显示机制

当一组内出现两条或以上相同的非参与运算的信息时,需启动重复事件统计功能,把本组统计数合并到当天该信息重复总数,以一条信息后带数字方式显示,重复总数每天清零。

3.7 运算信息筛选机制

制定规则时应对参与逻辑运算的信号类型进行定义,不属于定义范围内的信息,如刀闸状态、预告等信息将不参与逻辑运算,直接在智能告警窗显示原信号,有重复信息时,按重复统计功能统计显示。

4 逻辑规则库编制方法

逻辑规则库需要根据各自动化主站系统所采集的信息量,面向个对象而编制,以不被漏掉任何告警信息为前提,可对具备条件的部分对象编制规则,也可以对某些对象的某部分信息进行编制。一般的编制方法有量测类型筛选法和信号描述匹配法。以下对量测类型筛选法进行探讨:

4.1 量测类型定义

采用量测类型筛选法的首要任务是制定信息类型的统一划分标准,是要严格定义每条信息的类型,目前自动化主站系统一般定义的量测类型有保护动作、开关状态、重合闸动作、刀闸状态、备自投动作等。

4.2 关联信号选择

在告警信息组形成的过程中,信息的选择以启动信号为核心,扫捕到启动信号后,根据其相逻辑运算规则,与其相关联的信号保留在信息M内,其他信号排除在该组之外,并按缓存时间段保存。对于某些类型的信号,如不参与任何规则的运算,则不需要进入缓存区,如刀闸状态类型信号,因此制定规则时要求设定非关联信号类型功能,用户可根据情况设定这类信号。

4.3 责任区继承

制定规则时应规定智能告警运算产生的结果继承其启动信号的责任区标志值,这样可使运算结果的显示区域与原信号的相一致。同一规则如包含多个启动信号,其结果则应继承所有启动信号的责任区。

4.4 完整性规则

为了防止电网告警信息漏报,制定规则时需考虑一次设备本身缺陷产生的后果,如保护动作后,由于开关故障出现拒动发生,这时,信息组内有保护动作信号而无开关分闸信号,对于这种情况逻辑运算结果应为“XXX开关拒动”。

5 结语

调度自动化系统智能告警规则的制定是智能告警模块实施的重要组成部分,本论文从其制定的方法和处理机制两方面进行探讨,旨在保证智能告警产生结果的完整性,在不漏掉任何有价值的告警信息的前提下,尽量减少告警信号的条数,在实际应用中,规则的编制可根据各自动化主站系统信号采集的具体情况分步实施。

参考文献

[1] 张宏斌,黄颖祺,张蕾,王鹏,崔波.电力系统智能告警的二次回路信号建模与应用[J].华东电力,2014,42(3).

[2] 谢宇哲,邬秀玲,项中明,张志雄.基于调控一体化的地区电网智能监控与辅助决策系统[J].浙江电力,2014,(2).

[3] 高强,金啸虎,吴利锋.浙江电网省地县一体化集中监控管理体系建设[J].浙江电力,2015,(4).

[4] 杜刚,孟勇亮,彭晖,赵家庆,戴则梅,翟明玉.地区电网智能调度控制系统实践与展望[J].电力系统自动化,2015,(1).

[5] 熊璐.电力系统火灾智能报警系统的优化研究[J].电气应用,2015,(15).

[6] 黄劲.电力调度监控一体化系统的信息告警优化研究[J].中国高新技术企业,2016,(7).

信号自动化论文范文6

[关键词]捣固焦炉;变频器;PLC;自动化;驱动技术

中图分类号:TQ520.5 文献标识码:A 文章编号:1009-914X(2014)35-0258-01

1.捣固装煤车

捣固装煤车主要有钢结构车架、车架底部的走行机构、车架上部的装煤装置、控制各机构的电气系统,装煤装置有设置在车架纵向的装煤机构链轮传动机构、与传动机构连接的托煤板、设置在托煤板两侧及上方并与车架连接的煤槽;链轮传动机构前端主动链轮通过轴承座设置在前端横梁凹缺,轴承座之间连有连扳,轴承座之间连有的底扳沿着凹缺连续与横梁焊接,做为横梁的加强肋板。最好前拖架与煤槽底梁及链轮轴承座之间连扳相互连接,前拖架还与钢结构车体的上支体相互连接。

2.捣固装煤车控制系统

2.1 人机界面系统

触摸屏采用西门子K―TPl78触摸屏K―TPl78触摸屏是西门子专门针对中小型自化产品用户需求而设计的全新触摸屏。通过点对点连接(PPI或者MPI)完成与S7―400控制器的连接,整个系统具有良好的稳定性和抗干扰性。主要作用是:①可实时显示设备和系统的运行状态。②通过触摸向PLC发出指令和数据,再通过PLC完成对系统或设备的控制。③可做成多幅多种监控画面,替代了传统的电气操作盘及显示记录仪表等,且功能更加强大。

操作层简单,界面友好,功能比较齐全,岗位人员很直观地去监控机构的动作和相应的准要参数,维护人员很轻松地从该界面上读取故障信息,在很短的时间内把故障定位在具体的点上。

在该界面中包括装煤机构的操作方式、有运行方式和信号显示以及各机构操作界面切换,操作方式有手动、自动和紧急,运行方式为锁闭联锁和解除、装煤联锁和解除,显示这块包括装煤机构电流显示和行程显示,托煤板行程控制器信号显示和保护限位显示以及减速状态显示,锁闭、前挡板和密封罩状态信号显示。

走行机构界面显示母线电压、变频器运行电流和频率,还有走行电机过载和变频器故障显示、有防撞信号的显示以及走行机构运行的联锁条件显示,另外有捣固锁车和接煤板状态的信息。走行机构简洁清晰,不论是岗位操作人员,还是设备维护人员,能够实时掌握走行机构的状态信息,对设备的维护保养方面给相关人员提供有利信息,使维护工作更有时效性,同时缩短了故障排查的时间,能够防止故障的扩大化。

2.2 控制系统

以西门子S7―400H系列PLC作为控制单元,是整个系统的控制核心,其主要作用是:①完成对系统各种数据的采集以及数字量与模拟量的相互转换。②完成对整个系统的逻辑控制的运算。③向触摸屏提供所采集及处理的数据,并执行触摸屏发出的各种指令。④将运算的数据结果转换成指令,作为控制信号去控制机构动作 。

该控制系统为双CPU冗余系统,I/O接口模块和DP/PA-LINK模块用PROFIBUS总线与CPU连接,DP/PA-LINK模块直接连接三台变频器。其中所有采集的现场信号经过中间继电器到输入输入模块,机构动作指令经输出模块去驱动中间继电器控制相应机构动作。PLC对变频器的控制可以自由切换,变频器的运行驱动利用其自身的端子进行控制, PLC通过变频器通讯接口采集变频器电压、电流和频率,这些参数作为变频器运行状态的参考显示在触摸屏上。

捣固装煤车的控制器是双CPU冗余系统,系统运行过程中,一旦主CPU故障,就立即获取主控制权而成为主控CPU,因此,主CPU必须将自己的信息随时传递给热备CPU,而热备CPU必须跟踪主CPU的变化,与主CPU保持同步,在两块CPU模块进行控制权的转移时,实现无扰动切换。两块CPU同时在线运行,一块处于主控制模式,另一块处于热备模式。拥有主控制权的CPU具有输出控制权,而热备CPU同时采集数据和保持通讯连接,但输出被禁止。CPU的无扰动切换,使系统一直受控,确保了安全,同时,使装煤车工序生产线一直处于正常运行的良好工况中,系统的可靠性得到了保证,平均无故障时间得到了延长。

3. 结束语

该系统采用PLC控制器双冗余CPU自动控制系统,实现了捣固装煤车各机构驱动控制,使用西门子S7-400 412H双CPU冗余控制的软件方式实现是一种经济、有效的方法,它成本支出不大,却能使系统的可靠性大大提高。同时,由于采用变频器对电动机实行软起动,减少了设备损耗,延长了电动机的使用寿命,且节电效果比较明显。触摸屏的应用,简化了工艺操作的流程,提高了整个被控系统以及企业的自动化程度和硬件水平。

参考文献