变频技术论文范例6篇

前言:中文期刊网精心挑选了变频技术论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

变频技术论文

变频技术论文范文1

我国对先进工业技术的开发有法律保障,在《中华人民共和国节约能源法》、《高耗能特种设备节能监督管理办法》中明确规定:在工业生产应用中,大力支持节能减排技术的研发、创造、展示以及推广,为了降低能源的耗损比率;大力推广企业用高效率、高能源利用率的、锅炉、电动机、窑炉、泵类等工业设备,争取开创更加先进的工业检测和工业控制技术。然而,在具体实施过程中我们需要了解面临的挑战:

1.1对机械设备的危害与干扰

从机器自身结构来看,大部分空压机生产简单有明显的技术缺陷:输入的压力数大于一定值时,变频空压机会自动打开导致电动机空转,严重浪费电力资源并且损害机器本身,继而导致异步电动机的频繁启动和频繁暂停,降低电动机的使用寿命。变频空压机启动时需要很大的电流,对电网冲击较大,而且严重磨损了电器本身的转动轴承设备。电动机在运作的时候会产生很严重的噪音污染,电动机周围的工作环境比较恶劣,也对工作人员的健康产生不利影响,且以人为调节法来调节电动机的输出压力,运转效率低,严重浪费人力资源。

1.2对机械设备相关电器的危害

对变压器的危害表现在:加大铜损和铁损,使得变压器的温度升高,影响绝缘;引起电动机附加零件的发热,引发机器本身温度的额外升高;导致电容器组温度过热,增加中介电质的感应能力,严重的情况下可以损坏电力电容器组;对开关设备的危害,启动瞬间开关将会产生较大的电流变化,达到电压保险值直至绝缘体的破坏;在保护电气的时候,改变电器固有属性,引发电器动作紊乱;引发测量仪表的数据显示误差,降低数据精确度。

2变频技术在机电控制方面的策略

2.1基本思路

在世纪工业过程中对变频技术进行较为尖端的的软件和硬件设计,先根据传统空压机电动机的特点,全方位分析其耗能原因和工作特性,从而设计出变频技术调速、空气技术压缩、压力传感技术提升等控制方式,根据控制电路进行变频器的确定以及电器初始化的设计,控制方式要用矢量控制,详细分析矢量控制原理,对变频矢量进行仿真检查,科学地改变变频器的运行参数。另一方面,变换变频器的控斜参数。通过复合信号控制变频器的输入与输出,可以在容器的进口处增加电器使用流量信号记录,容器上增加电器压力信号,这样可以减少对机械设备的危害。

2.2具体策略

首先在系统线路中建立安装滤波器,过滤掉高次谐波的干扰信号。其次是屏蔽干扰源,这是抵御干扰行之有效的方法之一,具体做法是用钢管来屏蔽输出线路。再次是将电机正确接地,接地时要与其他的动力电器设备接地点分开。然后是对线路进行合理布局,电动机设备的信号线和电源线应该尽量避开变频器的输入和输出线,而其他设备的电源线和信号线也同样要避开变频器的输入和输出线,进行平行铺设。最后是合理使用电抗器,交流电抗器中的串联电路减弱了输入电路中电流对变频器的打击,而直流电抗器减弱了输入电流中的高次谐波。在设置之前,电动机电网中的高次谐波含量已达到40%,而安装了滤波器之后,高次谐波的含量降到了20.6%,特别是三到八次过后,已经低于标准含量值了。在变频器选择方面,需要学会优先考虑谐波含量低且携带滤波器和电抗器的变频工具。变压机电动机安装时,控制信号电缆和本身的动力电缆要有属于各自的架构线路的电缆结构,做好及屏蔽措施,禁止线路交叉或者架构紊乱,安装时两者要保持距离以及设立必要的防护措施,综合达到既发展工业经济又节能减耗的“双赢”效果。值得我们借鉴的是,国际上针对变频空压机电动机重新设计了空压机,将电机由传统意义上的单相电改为三相交流电,并且具有良好的调速性能。我国目前大量生产和应用的空压机电动机,如果要持续发展就必须要开发出单相电机的变频器。最后对改造之后的空压机电动机进行相关的数据计算,并进行成本分析,验证是否能够让改造后的空压机更加有效地节省能源。

3结束语

变频技术论文范文2

纺丝粘胶计量泵电机转速,每秒采集1个数据,表2为连续30s计量泵电机转速的统计结果。从表2可以看出,纺制2.5/2型竹节丝时,计量泵电机转速CV值较大,其随运行时间的波动幅度也较大且节奏明显。而纺制2.5/1、4.0/1型竹节丝时,计量泵电机转速随运行时间的波动节奏不明显。另外,纺制竹节丝时,计量泵电机转速平均值都比设定的基准值偏小,而最大值和最小值与设定的基准值相差很大,且两者较为接近。

2竹节丝性能及单丝截面参数

2.1丝条物理机械性能

从表3可以看出,三种粘胶竹节丝的变频技术平均线密度都比设计基准值低,这与计量泵电机转速达不到设计基准值有关;丝条强度低于常规丝,伸长率特别是湿伸率较高,说明其纤维素大分子结构不紧密,分子间作用力较小。竹节丝物理指标的均匀性明显比常规丝差,这表明其纤维结构不均匀。从表4看出,当竹节倍数(C)一定时,随着节长(L)的增加,丝条线密度、伸长增加,强度下降,各CV值增加;当节长(L)一定时,随着竹节倍数(C)的增加,丝条线密度、强度、伸长都下降,各CV值增加。说明分别提高竹节倍数与节长,都有利于竹节丝结构特点的体现,但提高节长效果显得更加明显。

2.2单丝纤度和直径

从表5的测试结果可以看出,竹节丝轴向单丝纤度CV值随着竹节倍数与节长的增加而加大,但其极值远没有达到设计要求。这是由于竹节丝在纺丝成形时单丝的纤度存在“均化效应”。产生“均化效应”的原因主要有以下几个方面:(1)计量泵自身的脉冲与变频产生的脉冲的叠加;(2)机械传动部分的间隙造成的反应滞后与转速传递效率的损失;(3)粘胶细流的粘弹性;(4)计量泵之后粘胶管道的阻力作用。随着竹节倍数与节长的增加,竹节丝轴向单丝纤度波动幅度加大,进一步说明这是计量泵自身脉冲叠加作用的结果;当竹节倍数一定时,竹节周期变化基本与设计相吻合,并随着节长的增加竹节丝“时粗时细”的结构特点表现得更加鲜明;当节长一定时,随着竹节倍数的增加单丝纤度提高、节长延长,说明“均化效应”较强。从表6的测试结果可以看出,竹节丝轴向单丝直径基本与单丝纤度相吻合,且轴向单丝直径波动幅度随着竹节倍数与节长增加而加大。

2.3单丝截面积

从表7所示竹节丝的单丝截面积比较可以看出,粘胶竹节丝的单丝截面积明显不均匀,随着竹节倍数与节长的增加,单丝截面积的极值差异加大,说明竹节结构特点表现得愈发突出;2.5/2规格的竹节丝单丝截面积的CV值为最大。

3结论

变频技术论文范文3

深圳华能公司是我国从频技术最早的企业之一。许多负载第一次应用变频技术都有深圳华能公司的参与,如输油泵(87年大庆采油二厂集输站11套)、20吨桥式起重机(89年独山子石化公司炼油厂)、焦化桥式吊车(91年茂名石化公司)、20吨转炉倾动及氧枪升降(93年承德钢厂三套)、腈纶纺丝生产线(94年大庆化纤厂)、2.8m×44m回转窑(90年株州有色金属冶炼厂)、3.6m×30m煅烧炉(92年唐山碱厂)、大型辊道(93年鞍钢中型厂后送工序改造采用变频50多台)、海上平台电源(92年南海石油西部公司装备部)、150HZ/160V200KW电源(89年邵阳化纤厂9套、吉林化纤厂28套、湖北化纤厂14套、九江化纤厂12套、宜宾化纤厂8套)、1250KW/6000V电场引风机(98大庆新华电厂二套)、高压氨泵(97年长岭炼油厂、辽河化肥厂)等。在化纤行业,其业绩多多,下面逐一说明。

2腈纶生产线

纺丝的工艺复杂,工位多,要求张力控制,有的要求位置控制。大庆腈纶厂95年对其引进美国CHEMTEX公司采用美国ACC工艺技术的年产5万吨腈纶生产线进行了变频PLC改造。我们采用了“同步运行方式”,设置“无张力控制环节”、“松紧架同步装置”、“总线速度控制方式”、“转矩矢量控制”等技术,使整条生产线20个丝束处理单元同步运行,平稳可靠,牵伸倍率由1.04到1.4,年增产达382吨,故障降低、节省维修费57.5万元,年提高产品质量、提高等级合格率经济效益达325万元,年节电58万kW。97年该项目通过中国石化总公司鉴定,专家结论达到90年代国际先进水平。

兰化化学纤维厂是我国1965年从英国考陶尔茨(Courtaulds)引进的第一套8000t/a腈纶生产装置,生产工艺采用硫氰酸钠一步法。

腈纶生产过程是一种相当精细的生产过程,调速精度要求非常高。除纤维的成型和后处理以及毛条加工直接依赖调速外,纺前准备和原液系统的液位、压力、流量控制以及生产的平稳性、丝束质量、能耗、物耗等都与调速性能有直接或间接的关系。该纺丝生产线长达170m,各道工序丝束的运行速度都是根据工艺要求来设定的。原设计速度控制系统全部采用滑差电机、直流电机及与其配套的电子系统来实现,但由于原英国装置已运行20多年,设备严重老化、故障率高,加上设备本身复杂,维修量大,生产上往往一处波动都会引起全线波动,甚至造成全线停车,生产稳定性差,非计划停车次数多,产品质量难以保证。

1995年对纺丝生产线的调速系统及主要调速设备进行了全面改造。三条纺丝生产线共安装变频调速器113台,全部淘汰了滑差电机和直流电机,生产稳定性明显提高,非计划停车次数逐步减少,废丝、废胶量明显降低,产品质量有了显著的提高。

采用变频调速技术后,1995年产量达到16000t/a,把原设计能力翻了一番。这一成绩的取得,除设备改造更新后,积极大胆广泛地采用变频调速技术也是关键因素,仅增加产量一项,每年即可创效益近500万元以上。

变频调速技术因其稳定性好,可靠性高,大大提高了设备的运行周期,使过去由于电气仪表原因造成的非计划停车次数大幅度下降,每年可增加产量近150吨,增加效益近百万元。产品质量有了明显提高,废丝、废胶率逐年下降,NaSCN等原料的单耗亦下降,生产成本降低。

1995年与1993年相比,减少废丝294.004吨,废胶450.151吨,增加利润89.49万元;节约NaSCN320.16吨,增加利润192.096万元,节约材料费近30万元。合计增加效益311.50万元。

从表1可知,节电效果显著,经实测,当用变频调速器协调控制时,电机使用功率平均比原来下降50%以上。

该厂目前有200台电动机使用了变频调速器,其使用变频器前电动机功率总和为828.4kW,使用后功率总和为467.61kW。每台电动机按设计一年运行8000小时,(实际上大于8000小时)则每年可节电288万kW.h,每度电按0.21元计,每年可节约60万元左右。200台变频器投资约300万元,综合效益1000万元。

3涤纶前纺生产线

仪征化纤联合公司涤纶一厂前纺变频控制系统是80年代引进西德AEG公司技术,由国内组装的SCR逆变器,由于系统是分立器件,可靠性低,由于SCR不能自关断、要是使其关断,增加强迫关断电路,使设备体积增大。由计量泵和卷绕机构组成一条生产线,计量泵有24台、由1台变频器控制,卷绕由7辊、5辊和喂入轮组成。7辊有7台电机,由1台变频器控制;5辊有5台电机,由1台变频器控制,喂入轮1台电机由单台变频器控制。为了保证精度,从计量泵到卷绕机构共计37台电机全部采用永磁或永磁反应式同步电机,卷绕7辊、5辊和喂入轮严格按工艺给定的比例运行,保证微张力牵伸。并要求在低速伸头完成后,卷绕各辊按比例和固定的斜率升到高速生产。原系统为4备1(或2备1)系统,即有4条常用生产线,1条线后备,主回路由电磁接触器联锁切换,控制信号的逻辑电路由中间继电器构成并完成切换,而模拟电路(如设定信号、比例信号)的切换,靠更换接插头电缆完成,切换很频繁,与中央控制的逻辑联系靠很多中间继电器来完成。由于控制落后,严重影响了生产,已造成必然。1993年深圳华能公司和涤纶一厂工同设计了由富士变频器和可编程控制器组成的前纺电气传动控制系统。该系统频率设定电路采用数字设定方法,不仅达到工艺要求的高精度要求,设定分辨率达到0.01Hz,而且从根本上解决了模拟设定电路的温度漂移问题。在调试和生产运行中证明了这一点。

系统的所有操作,即变频器的启动、停止,包括现场的低速、高速信号和系统间的连锁信号与仪表系统的信号控制、主台与备台的切换逻辑连锁,全部用1台PLC来实现,大大简化了外部接线,省去了所有的中间继电器,从而大大提高了系统的可靠性,因为PLC的所有输入、输出均有指示,也为系统的维护带来很多便利条件。

以主台与备台的切换举例,原系统在主备台切换时,有专用的切换控制柜,在切换柜上完成主回路的切换,有一批中间继电器完成相应的逻辑连锁。变频器的模拟设定等信号要靠接插件改变连接来实现,而现在的系统只要一只转换开关,就可将主回路的切换和控制回路、设定电路的所有信号的切换工作完成,中间逻辑、连锁逻辑完全由PLC的软件来实现,从而大大简化了切换操作,提高了切换速度,降低了故障率。

4切断机

仪征化纤工业联合公司涤纶四厂纺丝车间切断机为20世纪80年代引进德国产品,属双闭环直流调速控制,投产以来,逐渐暴露一点问题,不能适应“安、稳、长、满、优”的要求,其问题是:

(1)系统振荡。控制系统属于双闭环直流调速,对速度环,电流环和反馈等参数的调整配合要求相当高。稍有参数调整不当,反馈信号干扰,就会产生切断机刀盘振荡,造成切丝长度不等,机械齿轮磨损等,严重影响纺丝的正常运行。

(1)插卡故障高。由于该系统由两组可控硅实现正、反转,现场操作正、反转频繁,系统经常在两个象限间变化,因而封锁逻辑功能负担很重。在使用过程中,曾出现封锁逻辑损坏现象。

(3)制动抱闸卡死。系统制动部分采用电磁抱闸原理。实际运行中,启停车相当频繁,而制动单元摩擦片极易损坏并卡死,现场条件又使得换卸工作相当不便,这种类型故障往往需相当长时间才能修复,严重影响生产。

(4)电机碳刷磨损快、火花大。直流电机及测速发电机碳刷磨损快,经常造成火花增大,从而使系统稳定性、可靠性降低,并增加了日常工作的维护量。

为此,1993年在深圳华能的配合下,对该设备进行了改造,设计方案的特点如下:

4.1新系统的特点

(1)在新系统中,核心环节变频单元,选择了具有90年代水平日本富士公司生产的FRN5000G7S系列变频器,该变频器控制器采用了双16位CPU,并具有高速转矩限定,转差率补偿控制等特殊功能。对中心环节-信号处理单元,选择了具有90年代先进水平的可编程控制器。

(2)新系统中采用了微处理机,增加了全工艺流程显示功能,一旦出现故障,马上能采取相应的处理手段,充分利用富士变频器的优点,对输出电流、输出频率(输出转速)都做了限定(并对其数据进行加权处理),从而提供了系统的可靠性。

(3)利用国产交流电机与系统配套,采用原系统中的产量显示功能,可靠并降低了成本。

(4)由于富士变频控制器、微处理机都具有计算机通讯接口,便于今后系统扩充,系统联网。实践证明,新设计的系统是十分成功的。

4.2新系统的运行效果

新系统于1993年3月制造完成,4月调试空运成功。7月上机运行,经过5个月的运行,证明其性能优异,完全满足工艺生产要求。运行稳定、可靠,无任何故障出现,具有很强的实用性,完全达到原系统的指标,经试用证明,新系统的运行效果如下:

(1)该系统控制性能,产品适应范围(调速范围)达到并超过了原德国设计系统,切断速度在原设计50~350m/min之内系统控制稳定,并根据工艺要求可调。

(2)新系统保护功能强(13种),并具有故障记忆、自诊断、显示功能。对分析故障及解决问题提供了强有力的手段。

(3)调试简单。新系统所有参数的设定及修改均由面板的主键盘来完成。与以前的系统相比,大大缩短了时间,简化了调整方法,使其更易掌握。

(4)新系统中采用的变频器具有很多独特的、有实用价值的功能。如高速转矩的计算、转矩的限定、电流限定等功能。这些特性保证了新系统的性能优异。

(5)新系统功率因数高,谐波成分小。因为系统中变频器整流侧采用的二极管桥,因此实测功率因数都很高,均在0.95以上,而原设计系统功率因数值仅在0.45~0.8之间。

(6)新系统有比较优越的价格性能比,而且体积小,重量轻,更换方便。

(7)系统可靠性高。由于该系统采用交流电机,无滑环和炭刷、不可能打火和更换,提高了设备可靠性。

(8)提高生产效益。原切断机投产以来,累计故障停产50次,每次平均1.5天。

(9)电控系统比较如表2所示。

5长丝高速纺

天津石油化工厂高速纺螺杆挤压机调速系统是80年代由日本引进的。经过几年来(特别是近年来)的运行,逐渐暴露出了问题。

(1)不适应符合品种大范围变化的需求,生产过程中时有跳闸现象出现(先天存在)。据开车6年来统计,每年均在十次以上(90、91年多达40次/年以上),严重影响了纺机的正常运行。

(1)由于现场环境不良等原因,造成PG测速反馈环节故障而导致的螺杆挤压机停车现象也屡有发生(开车以来发生16起)。

(3)原装置功率因数低,谐波成分高,对电网污染大。

(4)原装置本身由于元器件等问题,近年来也偶有故障发生,然而备件供应困难、周期长(要2年左右),价格高(一套控制板要13万元人民币左右),因此这一环节也直接影响了生产的稳定。

5.1螺杆挤压机的变频改造

由于上述问题的存在,从90年代开始,被迫在部分螺杆挤压机上采取了减位生产等措施。仅此一项每年就使该厂损失利税数百万元以上。

据此原因,该厂会同深圳华能公司对POY螺杆挤压机调速系统进行改造。

(1)在新系统中,核心环节-变频单元,我们选择了90年代水平,日本富士公司生产的FRN5000G7-4系列变频器。该变频器控制回路采用双十六位CPU,控制采用磁通控制SPWM模式,并具有高速转矩限定、转差频率补偿控制等特殊功能。

(2)新系统中压力调节部分仍采用了原装置中的智能化压力调节器(型号:SLCD-120*B〈日本YEW公司产〉)。

(3)利用FRNIC5000G/P7系统变频器特有的转差补偿控制功能,去掉PG测速反馈环节,进一步简化了系统。

(4)该系统控制性能,产品适应范围(调速范围)达到并超过了原日方设计的系统。该系统在生产250dtex(最大规格品种)poy丝时,喉部压力可保证在+(-)0.5Mpa之内。这小于工艺允许压力偏差值,而调速范围可达原系统的数倍以上。

(5)新系统保护功能强(13种)并具有故障记忆及自诊断功能。一旦变频器出现问题,这对分析故障及解决问题提供了强有力的手段。

(6)调试简单:新系统所有参数的设定及修改均由面板上的键盘来完成。较以前的系统,大大缩短了调整时间,简化了调整方法,使一般人更易掌握。

(7)新系统中采用的变频器具有很多独特的、有实用价值的功能。如:高速转矩计算、转矩限定、转差补偿控制、电流限定等功能。这些特性,保证了新系统的优异性能。

(8)新系统功率因数高,谐波成分小。因为系统中变频器整流侧采用的二极管桥,因此实测功率因数很高,均在0.97以上,而日方设计系统cosφ值在0.4-0.8之间。表3是3台螺杆机实测值:

(9)新系统有比较优越的价格性能比,且体积小、重量轻、更换方便。

(10)系统可靠性高。由于系统采用GTR元件只有一个功率控制级,因此可靠性能大大提高(原系统有整流、逆变两个功率控制级)。

-)1Mpa≤+(-)0.5Mpa

5控制电路型式数-模混合双CPU全数字化

6控制功能实现硬件编码设定(软件)

7电流波形阶梯波接近正弦波

8速度环有无

9转矩限定功能无有

10调整方式电位器键盘输入

11保护功能5种13种(故障记忆)

12通讯功能无RS232C串行接口

13扩展不方便5种标准选择、方便

14电流检测CT霍耳元件

15显示LED灯显示数显

16容量44KVA60KVA

17价格(万元)726.1

6卷绕机

天津石化公司长丝厂1985年引进全套日本帝人公司POY纺丝设备,电气调速系统采用变频器集中控制,其中卷绕机使用FRNIC-1000可控硅电压型变频器。

6.1原系统的主要特点:

(1)主件开关速度慢

(2)输出波形不好

(3)变频器设计复杂,故障率较高

(4)用集中控制,一台变频器带几十台卷绕机,若某一台卷绕机出现故障或操作不当都可能使变频器跳闸,易使故障扩大,这种故障每年发生10次左右,并逐年增加。

(5)卷绕机使用的电动机是特殊电机,起动电流是运行电流的15倍左右,频繁起动容易烧毁电机。

(6)锯齿波发生器是模拟量控制,控制精度低、温漂大、抗干扰差。

基于以上原因,1996年初决定对原集中变频系统进行改造,双方工程技术人员经过试验分析,选用了在国际上较先进的日本明电舍VT210S具有卷绕机要求的摆频功能系列变频器。

6.2变频改造后的系统特点

(1)频率精度较高,数字设定±0.01%,适合纺丝生产要求;

(2)抗干扰能力较强,而对其他电气设备干扰小;

(3)故障诊断功能强:23种代码分别代表过流、过压、欠压、过热、过载、I/O、接地、CPU等等。对故障状态下的电流、频率都有记载,便于故障分析和处理。

(4)内部输入/输出信号,既有RY接点继电器输出,又有集电极开路输出;

(5)变频器具有往复运行方式功能,适合纺织机械要求横动速度反复变化的需要,不用另加锯齿波信号源:

改造后的变频器的负载运行测试数据如表5所示。

注:FR为磨擦辊电机,TR为横动电动机。

以上数据看出采用明电舍210S型变频器做卷绕机单台控制后电动机起动电流明显减小,实现了所谓的“软”起动,与改造前起动电流50A比较,冲击电流见效80%。

设备投入运行以来,没有一台卷绕机电动机烧毁,过去平均每月要烧毁电动机1.5-2台。

改造后摆频部分的工艺参数可以用数字量精确控制,使产品质量和产量大幅度提高。

48台卷绕机变频系统由“集中”变频控制改造成“单台”变频控制后,稳定了工艺,不到一年即收回改造投资,改造非常成功,为该厂提高产品质量和增加产品产量打下基础。

7聚酯生产线

聚酯生产是连续的过程,我国的聚酯生产装置最初是从国外成套引进,最近几年由于扩容,多数由国内设计并购国内设备来完成增容改造。我公司参加并完成如辽化聚酯厂和浙化联聚酯装置的改造,由于均选用进口变频器,低压开关,接触器等。既保证了设备可靠性,又降低了设备成本。

聚酯生产中,有调速要求的有浆料输送泵电机、预聚反应器搅拌器电机、预聚物输送泵电机、后缩聚反应器搅拌器入口电机、后缩聚反应器搅拌器出口电机、熔体输送泵电机、消光剂输送泵电机等。聚酯生产过程是一个连续的、自动化的过程,装置由DCS(集散控制系统)系统集中监控,各个传动部位接收来自DCS的控制指令并回馈相应的运行状态信号给DCS系统。

一般情况下不允许其中某个环节突然中断,一旦发生较长时间的中断可能导致巨额的经济损失。因此,在有可能的部位,管道设计成两个通路,每个通路设有传动装置,可以互为备用,也可同时工作。后缩聚反应器搅拌器出入口电机对连续工作的要求更高,由于该部位电机本身无法备份,对变频器的可靠性要求就大大提高,因此一般要求变频器设置二套互为备用,在运行变频器出现故障情况下备用变频器应能尽快投入运行,保证连续生产的需要。

由于聚酯生产装置对传动系统可靠性要求较高,满足电机的在线启动,重载启动功能及较强的通讯扩展功能,我们采用德国西门子变频器及日本富士变频器。

聚酯变频器调速系统的一次回路构成如图1所示。

由于一套装置中采用了较多的变频器,因此变频器产生的谐波问题就比较突出。为此在变频器输入侧和输出侧均安装了交流电抗器。输入电抗器主要起抑制谐波对电网的污染并有效地改善功率因数的作用。输出侧电抗器则主要起抑制高次谐波的作用。变频器输出电压中包含的高次谐波有两个不利的影响:一是干扰弱电控制系统,二是在较长的电缆中产生漏电流,这个漏电流有时足以使变频器和计算机无法工作。在没有输出滤波电抗器情况下,电机与变频器之间的最大允许导线长度在100米左右,而使用输出滤波电抗器时这个长度可以达到600~800米。由于聚酯生产装置往往比较庞大,电机与变频器之间的距离都比较远,所以为了保险起见需加装电抗器。另外,输出电抗器对保护电机绝缘也有好处。

上述一次线路构成适用于浆料输送泵、预聚物输送泵、熔体输送泵、消光剂输送泵、预聚反应器搅拌器电机等的变频驱动。对于后缩聚反应器搅拌器出/入口电机的变频驱动来说,由于电机无法备用设置,为了提高可靠性,采用两套变频器互为备用的方式,其一次线路图如图2。

这样设计的调速系统,在辽化、浙化联运行的都很成功,达到了工艺要求和增容的目标。同国外进口的聚酯装置相比,有如下的特点:

(1)可靠性、实用性高于原进口设备。由于是国内设计,目的性明确,且设备均选用国外最先进的变频器和低压电器,因而在可靠性、实用性方面都要优于原进口设备。

(2)工艺连续性优于原进口设备。原进口设备的不足之处,实用后做了改进,在我们改造中体现出来,更为实用。

(3)造价仅为原进口的1/3。

8粘胶长丝静变频电源

粘胶长丝是以棉籽等做原料的非常受欢迎的化纤产品,出口很多。

粘胶纤维行业纺丝设备多数是高速电机,众多的纺锭电机为150Hz/160V。长期以来,国内粘胶行业一直使用电动-发电机组中频电源供电,称动变频。由于这种方法弊病太多,而逐步采用交流变频电源供电,称静变频。我公司首先为邵阳化纤厂提供8套150HZ/160V160KW静变频电源;接着为吉林化纤厂提供25套150HZ/160V200kW;湖北化纤厂14套;九江化纤厂12套;宜宾化纤厂7套;维坊巨龙化纤厂16套静变频电源,均采用日本富士变频器。邵阳化纤厂是我国粘胶行业最早自行应用静变频的厂家,8台160kW变频器分二组供电(每组一台备用)。自1992年12月生产以来,比动变频有明显优势。

(1)可靠。运行多年,未发生故障跳闸。

(2)运行稳定,电压、频率波动极小。

(3)调频方便,为工厂生产不同捻度的丝饼创造了条件。

(4)噪音小,改善了操作人员的环境

(5)提高了产品质量。该厂一期工程(采用动变频供电),粘胶长丝合格率仅55.1%,一等品合格率为零,二等品合格率20%。而二期工程(采用静变频供电)平均合格率98.12%,一等品合格率为88.7%。

(6)增加了产量。一期工程设计能力2000吨/年,试生产半年,产量仅365.53吨,而二期工程设计能力1000吨/年,试生产半年,生产长丝685.25吨,大大超过设计能力。

(7)节电13%。

由于静变频电源给企业带来颇丰的利益,优质、增产、节能、降耗、降噪声。全国15家粘胶长丝生产厂,基本上淘汰了动变频设备,而选择了静变频电源。

参考文献

[1]王占奎等.变频调速应用百例[M].北京:科学出版社,1999.

[2]胡建忠,陈滨岛,杨恒之.长丝高速纺挤压机变频调速系统研制情况报告[C].CECE''''94184P.

[3]戴思斌.交流变频调速技术在腈纶生产中的应用[C].CECE''''9681P.

[4]丁永汀,杨波,吴建锋.聚酯装置变频调速系统[J].电气传动,2002年增刊32卷351P.

变频技术论文范文4

提升实际训练的兴趣和具体动手能力,全方位的知识与技能训练的积累为学生今后毕业分配工作、发展职业生涯奠定了基础。为今后走向自动化程度高、要求标准高的工作岗位增强了适应能力。例如,在教学过程中教师感到学生对于他们从来没有接触过的变频器毫无感性认识,很难接受这个新兴自动化设备的应用,感觉无从下手。这就要求教师通过具体的实物、形象的语言、视频、演示、多媒体等方式,详细介绍变频器的历史由来、在自动化设备上的作用、工作原理、如何应用等问题,启迪学生获得感性认识。例如:在讲解变频器的作用时,教师要通过实际操作完成变频器与电动机的实际接线后,进行实际演示让学生亲眼看到变频器对三相异步电动机的调速控制过程,并且打开变频器的外盖对各个部位进行详细说明,增强学生对变频器的兴趣。在变频技术一体化课程教学过程中不光是简单实际操作教学,还要开展学生对自动化专业相关设备的广泛了解,提高学生对企业自动化设备的认识,培养学生的认知能力。例如:在进行变频器的面板电动机调速控制学习任务时,首先让学生分析变频器面板的结构特点,熟知面板上各个按键的基本作用及基本操作,告诉学生变频器面板控制是变频器应用的基础训练,如果对面板上的按键不熟悉,后续操作是无法完成的。学生在领悟了它的重要性后,就会在任务执行前,首先对面板按键进行集中学习,从而引导学生按照正确的方法训练。这种方法可以应用于变频技术一体化课程的入门教学,后面一些更复杂的教学任务课题训练也可以依据这种方法进行,再加进去自己的一些创新教法,非常有利于学生更好更快地掌握变频器的应用。从教学结果分析,这种方法产生的效果很好,这样才能培养学生的分析能力、拓展能力,在学习的过程中专业教师就是学生未来职业的榜样,无形中带给他们很深的影响力。

2提高教学质量提高教学效果

理论教师注重理论知识讲解,实验教师注重实际训练,但在操作前还是要讲解相关的理论知识,理论教学与实践教学脱节,不但给学生的学习造成很大困难,也造成重复教学和资源浪费,更影响了教学质量的提高和应用性、技能型人才的培养。为了使理论与实践更好地衔接,将理论教学和实践教学融为一体,开展一体化教学模式。即从以教师为中心如何“教给”学生,向以学生为中心如何“教会”学生转变,从以教材为中心向教学大纲的培养目标为中心转变,从以课堂为中心向以实训为中心转变。由此可见,变频技术一体化课程教学对教师的要求更高了,教师的压力、工作量大了,同时也锻炼、培养了教师,促使教师努力钻研业务,苦练操作技能,提高教学水平,能做到理论与实操互补。在教学过程中,加深学生的感性认识和理性认识,做到理论联系实际。作为职业教育自动化专业新兴学科,变频技术一体化课程教学也必须与时俱进,不断充实、不断完善,才能发挥其积极作用,培养出适应社会需要的高素质、高标准人才。

3变频技术一体化课程教学的实施过程

变频技术是以自动化专业为主的新课程,在机电产品发展过程中相互交叉、相互渗透而形成的一门新兴边缘性技术交叉学科课程。对于学生而言,由于变频技术课程综合多门学科,因此,所涉及的概念、专业名词较多,并且内容抽象,学生很难在有限课时内完全掌握。而对于从事该门课程教学的教师,由于课程涉及知识面广、容量大、课前需要做相当充分的准备,一是要准备大量案例,二是要将深奥的道理通俗化,尤其是一些新的概念、思想和技术。因为过于抽象,学生理解具有一定难度。针对以上教学中存在的普遍问题,在变频技术一体化课程教学中从教材定位、教师要求、教学方法、教学手段、教学安排、考核方式等方面尝试进行改革。

3.1教材的定位

现有的变频技术课程教材重视理论知识,缺乏学生动手实操训练,而对于多数学生来说他们只希望动手,不喜欢理论。多数落后生学习差的主要原因在于基础差,变频器自动化程度高,理解相对困难。为此教师必须下大力气,给他们更多的辅导与帮助,在鼓足他们勇气的同时,为他们的进步创造条件。调动一切有效手段,针对本校学生的学习情况和进度,开发变频技术一体化课程教学校本教材、工作页等,变化教学方法、采用图文并茂的讲解方法,有效地促进学生整体素质的全面提高。

3.2教师要求

通过调查,一些学生反映,部分教师课上教授的变频技术只讲授原理、公式等,学习内容比较枯燥,学生不爱听,所以教学效果不好。而多数学生却只希望动手实践操作,不喜欢烦琐的公式理论,所以建设一支既能胜任理论教学又能指导实践操作的“双师型”教师队伍是实施变频技术一体化课程教学的关键。一体化教学要求教师不仅有丰富的专业知识讲授先进的专业理论课,而且有熟练的操作技能指导学生实践操作完成任务,成为能“文”能“武”的“双师型”教师。作为从事一体化教学的教师应该不断地进行“充电”,因为“学然后知不足,教然后知因”。

3.3教学方法

在变频技术一体化课程教学中,还要根据学生的特点,具体情况具体分析。我们在授课中,全面地考虑到各类学生,设计的问题随学生的层次的不同而有所区别。对于班级中基础较好、动手能力较强的优秀学生,我们在实施中设计的起点高一些,问题难度大一些,使他们的聪明才智得到充分的发挥,从而享受到挑战的快乐。对于班里中等学生,则按照教学大纲要求,以学生达到相应要求为目的,使学生掌握一些最基本的知识和技能,这种方法适用于班里大部分学生学习。对于班里较差的学生,我们在教学过程中,问题设计的起点低一些,问题的难度小一点,思维的步骤铺垫得细一些,使他们感受到成功的快乐,从而提高学习兴趣。除了在课堂上完成理论教学外,还要重视教学过程中实践环节的辅助教学,采用开放式的实践形式,引导学生充分利用课余时间完成一些生活中常见的变频机电产品的调研任务,这样既可以将课堂内容延伸到课堂外,强化学生观察能力和独立分析问题、解决问题的能力,同时又可以弥补课时的限制,保证后续课堂教学的正常进行。让学生将问题带进课堂,大家一起讨论,分析,带着问题学习。在教学中,为了检验学生对变频技术的认识程度,要求学生以常见变频产品设备为例,让学生参与讲课,然后一起进行小组讨论,学生在讨论过程中,列举了生活中常见的变频机电产品,例如:变频空调、变频洗衣机、变频冰箱等,通过讨论,发现学生对变频技术原理、接线、设计、产品可靠性、安全性都具有了一定认识并提出一些相应的改善意见。实践表明:在一体化课程教学中,让学生参与讲课,分组进行讨论这种体验型互动教学方法,提高了学生综合能力,达到了较好的教学效果。

3.4教学过程安排

授课时间上的安排分为3个阶段,第一阶段为知识了解阶段,学生主要学习理论知识,教师把变频技术理论知识讲解给学生,让学生掌握一定的理论基础。第二阶段为技能训练阶段,重点是学生的动手能力训练,学生把在理论课中学到的知识与课题任务进行实际操作,学生操作时,教师加以指导和深入的讲解纠正,并回答学生随时提出的问题。第三阶段为提高阶段,让学生将所学的理论与实践技能有机结合,检查学生课题任务的完成情况,并加以评价,以达到巩固知识的目的。

3.5考核方式

考试是对学生进行课程考核的手段,通常都采用闭卷或开卷的考试形式。但由于该课程涉及的概念、理论方法及系统设计需要查阅大量资料,如采用常规考试方法,一是受时间限制,学生在很短的时间内难以对系统的设计给出完善的解答。二难以体现出学生真正掌握知识的程度。针对变频技术一体化课程特点,采取闭卷和开卷的形式都不是很适合,因此,本课程的考核依据平时课后作业和最后综合典型课题任务报告完成情况进行考核。帮助学生树立课题概念、设计思维、流程导向及解决问题的能力,让学生明显感觉到平时学习的知识学有所用,也是为理论学习和实践操作有机结合进行一个探索。

4结束语

变频技术论文范文5

关键词:伦茨变频器,常见故障,维护

 

伦茨变频器的应用十分广泛。科技论文。选择变频器首先要了解各类变频器的性能和质量,并应熟悉驱动设备的负载性质。使用变频器时,应了解并掌握其各类常遇故障的产生原因、判断方法和相关处理措施。下面在详细介绍上述两方面的技术基础上,对变频器的维护技术也进行了简要介绍。

LENZE变频器在使用中还是会碰到一些这样那样的故障,以下我们就较粗率地介绍了一些常见故障及分析,LENZE变频器的一些常见故障做一些探讨,LENZE变频器在性能上还是很有特点,像位置控制,同步控制都是它的优势所在,所以在应用上值得我们去研究的。此外从维修角度来说,LENZE变频器线路相对还是比较复杂,且PCB板有多层布线,对于维修人员的要求也就更高了,也希望变频器维修的同行们能够多多交流,解决更多的实际问题。

(1)伦茨变频器维修故障中的 OC5 故障 OC5 故障应该是我们在 8220/8240 系列变频器里面经常碰到一种故障现象。 OC5 为变频器过载,过载检测一般都是由传感器来完成的,通过检测 UV 两相的电流,再由两输入或门 COMOS 电路来判断变频器是否过载。

(2)伦茨变频器维修故障中的输出缺相 输出缺相也是我们经常会碰到的故障之一。我们都知道在缺相状态下是无法拖动三相交流异步电机的,在拖动电机的情况下还会出现过流报警,脱开电机后测量 3 相输出电压,往往是 3 相输出电压相差比较大。在 LENZE 8240 系列变频器中经常会碰到现象是驱动电路无电压。

(3)伦茨变频器维修故障中的开关电源故障 在 8200系列通用变频器的维修中我们会经常碰到开关电源损坏。故障点主要有开关电源控制电路的损坏,控制电路出现故障后修复相对比较复杂,此类型机器的控制电路元器件都是集成于绝缘陶瓷片上,不易更换,需要有一定的经验以及维修技巧。

(4)伦茨变频器散热引起的故障 散热板分离散热技术也是 LENNZE变频器的一个很大卖点,大家都知道常规变频器都是有冷却风扇散热,但有些场合使用了散热风扇后常常成为变频器的一个常见故障点。科技论文。这种现象主要在纺织工厂比较多见。纺织工厂空气中的棉絮和化纤常常堵塞风扇,引起变频器故障报警。而 LENZE变频器的散热板分离散热技术恰恰解决了这个问题。但我们也会碰到客户在使用一段时间后出现变频器带不起重载的现象,从我们的经验分析也有可能是由于变频器的散热问题引起的。

下面以PB2028-TH设备的伦茨变频器维修故障定实例来叙述其处理过程:

当操作面板上显示如下信息时( 变频器上绿灯灭红灯每秒闪一次)按照故障信息进行运行故障诊断并排除.

 

变频技术论文范文6

微电子论文2000字(一):浅谈一种新型的25Hz相敏轨道电路微电子接收器论文

摘要随着电子技术的发展,相敏轨道电路接收信号处理装置已逐步实現电子化,以电子接收器代替以前的机械式二元二位继电器,彻底解决了原继电器接点卡阻、抗电气化干扰能力不强、返还系数低等问题。目前广泛使用的微电子接收器都是使用单片机来处理信息,对输入信号采用升压方式进行采样处理,虽提高了信号强度,但是不利于防止输入高压损坏接收器;且每个接收器仅采用单一信号处理通道进行信号分析处理,并由其输出信号驱动轨道继电器动作,接收器的安全性、可靠性和抗干扰能力有待提高;另外,现有接收器故障后相关电气参数不能实时监测;前述不足以影响到轨道电路的整体可靠性和可用性。因此,本文提出了一种基于DSP的新型微电子接收器,以提高微电子接收器的可用性、可靠性及安全性。

关键词电子技术;25Hz轨道电路;接收器

1系统原理

1.1接收器冗余结构

图1新型微电子接收器(0.5+0.5方案)的冗余结构图

接收器的冗余结构图,每台接收器同时进行两个轨道区段(区段A和区段B)的轨道电路信号和局部电源信号的处理,相邻两个轨道区段可共用两台接收器,这两台接收器中的任一正常工作,均可正常处理这两个轨道区段信号,并驱动这两个轨道区段的后级轨道继电器动作。如图1所示,相对于目前的接收器冗余方案,新型微电子接收器的冗余方案可使每个轨道区段节省一个接收器,从而降低建设成本。在接收器冗余结构图中,当接收器1和接收器2中的某一个发生故障时,若另一个接收器能够正常工作即可确保轨道区段信号的正常处理;同时可以通过接收器的自检功能发出报警,提醒维护人员及时更换故障接收器,从而提高轨道电路的整体可用性。

1.2接收器二取二原理

接收器系统内部采用独立的双套硬件和双套软件,实现一路信号,两路处理,最终通过安全与门判决,输出判决结果。当无论是接收器哪一套硬件或软件出现问题,两路处理结果不一致时,系统输出判决都是导向安全的结果。且仅当两路信号处理的结果完全一致时,安全与门输出相同结果。

2系统构成

如图2所示,新型接收器核心处理部分采用双DSP芯片构成二取二安全结构。主从DSP同时处理轨道电路信号和局部电源信号,分别输出判决信号;将主从DSP的判决结果进行与运算,如果主从DSP的判决信号不一致,接收器输出信号将保持轨道继电器处在落下状态;只有当主从DSP的判决信号一致且满足轨道区段空闲条件时,接收器才会输出驱动轨道继电器吸起的信号,显示轨道区段处于空闲状态;主从DSP任一故障,接收器均不能输出驱动轨道继电器吸起的信号,从而提高接收器安全性。

新型接收器电路模块包括:局部输入隔离电路、轨道输入防雷电路、输入信号采集电路、数据处理电路(DSP芯片)、安全与门电路、输出控制电路、电源电路、通信电路和显示与告警电路。

输入隔离:采用电流互感器将轨道信号和局部信号与后级信号处理模块进行电磁隔离,隔离变压器采用降压方式,当输入的信号出现大的冲击或干扰时,通过变压器进行衰减,加载在后级信号处理电路上的信号将被衰减,对后级信号处理电路起到防护作用。

轨道输入防雷电路:采取大功率双向瞬态防雷管,实现对输入雷电和浪涌的防护。

输入采集电路:将输入交流信号的负半周信号抬高到零电平以上,满足后级单电源工作运放的输入要求,单电源工作可减小器件功耗。

数据处理电路:把输入的25Hz轨道和局部模拟信号通过芯片自带的A/D模数转换器转换为数字信号,对转换后的数字信号进行分析处理,测出轨道输入的25Hz信号幅值及轨道信号与局部信号的相位差,在主处理器采集从处理器的输出信号和后级输出控制电路的输出信号并经其判断接收器正常后,再由主处理器控制显示告警电路,并由主处理器将相关数据通过接收器的通讯电路送监测分机。

安全与门电路:比较主从DSP输出信号,经安全与门判决二者一致方能向后级输出控制电路送出有效信号。

输出控制电路:采用开关电源方式输出驱动轨道继电器的直流电压信号。

通信电路:采用总线方式,向集中监测分机传送25Hz相敏轨道电路接收器采集到的轨道交流电压值、相位角和接收器的工作状态等信息。

显示与告警电路:显示接收器自身工作状态及接收器所处理轨道区段的占用与空闲状态,显示接收器DC24V工作电源及局部电源的正常或故障状态。

3结束语

新型接收器将实现接收器工作状态和轨道电路电气参数的实时在线监测,提高运营维护效率,降低维护人员劳动强度,同时,根据新型25Hz相敏轨道电路接收器的功能和特点,可减少现有接收器和轨道架的数量,大量地减少室内配线,初步分析可节约建设成本约20%。

微电子毕业论文范文模板(二):微电子控制机电设备在工业中的具体应用论文

摘要:在科学技术快速进步的背景下,工业自动化水平取得了比较明显的提升,在机械制造方面表现的更加明显,基于各种因素的影响,微电子技术得到了相对广泛的应用。基于此,本文详细分析了微电子控制机电设备在工业中的应用,希望能够为实际提供良好的借鉴意义,以供参考。

关键词:微电子;机电设备;工业;应用探讨

信息技术的发展以及先进电子设备的产生催生了机电一体化时代的到来,所谓的机电一体化技术是把电工电子技术、机械技术、信息技术、微电子技术、接口技术、传感器技术、信号变换技术等一系列技术结合,再综合应用于实际的综合技术,现代化自动生产设备可以说为机电一体化的设备。微型计算机在机电一体化系统的作用能够总结成如下三点:第一,直接控制机械工业生产过程;第二,机械工业生产期间加强各物理参数的自动测试,进行测试结果的显示记录,在计算、存储、分析判定并处理测量参数或指标;第三,进行机械生产过程的管理与监督。机电一体化系统里微电子控制机电设备怎样进行适宜计算机选择,怎样设计硬件系统,怎样组织软件开发,怎样对现有计算机系统等进行维护与使用是相当关键的,也是值得探索的

课题。

1微电子控制机电设备系统的组成和原理

在某微电子控制机电系统当中,主要是由PLC、管路压力变送器、变频器等多种设备组成的。在控制系统当中,管路压力变送器主要是检测控制辅助冲量、管路水压、蒸发量等三个变量,接着将数据信号向PLC当中传送,并且通过PLC进行分析和计算,将信号发送信号控制器,通过信号控制器来控制水泵运转,在设计系统的過程中需要与实际情况合理的进行结合,并且对变频器的输出频率进行确认,输出频率在整个系统设计过程中具有非常重要的意义,和系统的控制息息相关,在确定系统输出频率是需要综合性的分析和考虑用水量以及扬程参数等。在整个系统当中控制流程的用水量变化,主要是通过压力变送器向PLC传送的通过PLC进行分析和计算,可以有效的调节循环泵的频率,合理的分配能源,让工作的效率提高,起到节约资源的作用。

2微电子控制机电设备在工业中的具体应用

1)可编程序控制器(PLC)的应用。从PLC的角度进行分析,其主要优势在于具有很强的控制能力,而且稳定性较高,机身体积相对较小,可以有效的和其他的配件进行组合。在工业生产的过程中,因为机电设备往往会占据一定的面积,如果想让其厂房中的占比较高,就一定要注意让厂房的空余面积加大,尽量让控制器的数量减少,让机电设备的数量增多,与此同时还需要注意PLC的节能性较高相比,其他的控制系统可以节约资源,让工业生产的成本支出降低,让企业的经济效益增加,由于PLC设备可以有效的和其他设备之间进行组合,可以灵活方便的在厂房当中进行布设,让一机多用。可以实现让厂房的设备结构进一步得到简化,对设备维护中耗费的人力物力进行控制,减少人力输出,可以将人力有效的分配到工业生产当中,让生产资料的利用效率提高。PLC的另一大优势在于可以通过现场总线和生产设备之间

进行连接,有效的监控工业生产,可以动态化的监控生产的全过程,确保在生产过程中,第一时间解决生产时产生的故障,避免由于机械故障而导致生产进度停滞,让设备的维护开支得到控制,PLC的计算速度很快,可以轻松的对生产时的任何变动进行管理和控制,有效的防止由于设备变化控制器无法及时应对而产生的问题,PLC还可以进行相关的升级,伴随当前经济快速发展,就算生产线当中的产品产生了变动,只需要正确的调整,控制程序也可以符合新产品生产的具体需求。

相比于其他编程操作,PLC控制器在编程的过程中较为方便,员工通过短时间的训练就可以熟练的掌握编程的技巧,在实际操作的过程中工作步骤相对较为简单,可以很容易的掌握设备的维修安装以及操作,由于PLC自带程序编辑器只需要工作人员了解梯形语言,就可以对其进行熟练的掌握。对控制器的工作语言进行了解,当出现故障的时候可以及时的调整和处理控制器。

2)变频器调速器的作用。变频器工作状态分作自动与手动两类,手动工作状态即在PLC结束工作后展开的人工操作行为,经电位器调节能对变频器输出频率进行给定。自动工作状态实质是PLC输出信号为变频器输出频率展开控制。和传统调节阀控制方式相比,PLC控制可节电,更好进行水泵磨损控制,在延长设备寿命与实现系统自动化水平提升中发挥了重要作用。

第一,和传统正弦波控制技术相比,因变频器用到了电压空间矢量控制技术,先进性和独特性在性能上得到充分凸显,同时因其特有的低速转矩大、运行稳定性强、谐波成分小等特征,这对我国电网而言输出电压自动调整功能能充分进行优势发挥。第二,变频器具备外部端子、键盘电位器与多功能段子等一系列操作方式,功能完善,可输入多种模拟信号(如电流、电压、频率等效范围检测,转速追踪等);并且变频器可实现摆频运行与程序运行等一系列模式。第三,因变频器全系列元件应用的是西门子产品,有极强的保护性能,可靠稳定,能很好的避免过流、短路、过压等问题,确保本机能正常运行。并且变频器有良好的绝缘耐压性,产品质量好,设定简单等使得其有更强的适用性。

3)电路发挥的作用。在安装PLC和变频器的时候,保证电路的稳定是保障工作的必要。电路在安装过程中,应该采取边安装边测电的方式,这样更能使电流稳定,这同样属于工作期间需引起重视的关键环节。在电路安装完毕之后,不要急着通电,应该先再次检查电路是否安装正确,查看是否有少安装或者多安装的情况。另外,测量一下接触元器件的连接点,这样可以发现一些接触不良的地方,若有漏电情况应该及时对此进行维修。电路在工业中也是起到了很大的作用,在安装电路的时候,一定要小心谨慎,综合考虑多方面因素,不要遗漏一些小问题,有时一些小问题也可能出大错,保证电路的稳定才能更好地协调其他设备的安装稳定。应认真复查电路,查看电路有无正确安装,或存在设备多安装或少安装的现象,同时应认真检测每个接触元器件连接点,明确有无接触不良或短路现象,若发生漏电务必要及时维修与处理。电路调试的具体流程总结如下:

第一,应认真查看明确电路整体状况,了解电路面板线有无准确连接,有无看似连接实际并未连接的线,或易短路的线;是否存在两条或多条线混淆的情况;此后,使用最小量程档的万用表对电路面板进行检查,查看开路处和闭路处有无正确开路与闭路,地线是否漏接,电源连线连接的安全性等,同时需测量电源有无短路现象。测量期间可直接进行元器件连接点测量,如此可明确有无以上情况的同时又弄清楚是否存在接触点不良现象。第二,电路调试过程的关键环节之一即硬件电路调试。调试期间务必要注意细小环节的把控,根据电路功能原理做好各个单元电路的调试,再作整体调试,后进行整个电路的调试。电路在工业生产里发挥的作用是相当大的,电路安装过程里务必要综合考量多方因素,认真谨慎,切不可遗漏或放过存在的小问题,确保电路稳定性得到保障。