低功耗设计论文范例6篇

前言:中文期刊网精心挑选了低功耗设计论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

低功耗设计论文

低功耗设计论文范文1

从嵌入式处理器来看,从最初的4位处理器,目前仍在大规模应用的8位单片机、到日益受到广泛青睐的32位MCU,以及更高性能的64位嵌入式处理器,目前具有嵌入式功能特点的处理器已逾千种,数十种常用的体系架构。广阔的市场应用前景吸引了大量的半导体公司参与竞争,其中从ASIC、MCU、DSP到FPGA以及因为结合了MCU和DSP优势而近年来异军突起的汇聚式处理器,处理器速度越来越快、性能越来越强,而功耗和价格却越来越低。目前。丰富的嵌入式处理器已经广泛应用到从国防、工业、汽车到医疗设备和消费电子等几乎所有的行业和领域。

汇聚式处理器解决嵌入式设计技术挑战

尽管嵌入式设计经过数十年的发展,在核心处理器硬件平台、嵌入式操作系统和开发工具上已经有广泛的选择,然而随着市场竞争加剧、系统日益复杂化,目标应用对系统的功能、性能、成本的要求也日趋苛刻。工程师所面临的设计挑战似乎并没有随着半导体技术的发展降低,甚至日益增高,工程师在进行方案选择时必须正确评估应用面临的挑战。

处理能力要求越来越高。系统本身的复杂功能、友好的界面设计要求、各种接口和通信需求都需要占用大量的MIPS处理能力,单一的传统MCU或ASIC很多时候难以满足系统高处理能力的需求,双芯片甚至三芯片解决方案日益增多,但随之而来的高设计复杂性、功耗和BOM(材料清单)成本让方案缺乏竞争性。此外,当前嵌入式系统设计,特别是一些新产品和功能复杂的嵌入式产品设计,要在设计周期很有限的条件下完全从零开始实现设计已经变得不现实,也不具成本效益。因此,是否能提供完善的开发工具套件、必要的软件模块、成熟的参考设计、系统设计支持,以及是否有完整的设计生态系统等,对于是否能按期高质量地完成系统设计非常关键。

标准的多样性和不确定性带来产品升级换代的顾虑。当前在各个行业都面临一些创新型应用,例如智能电表和智能视频监控等,这些应用都具有一定开创性,目前没有或尚未形成行业统一的标准,如何在保证抢占市场窗口期的先机,同时确保当前的设计满足未来变化的市场和技术需求,必须考虑方案的可扩展性和性能裕量。

低功耗的要求日益苛刻。处理器性能要求越来越高,而系统功耗要求越来越低,这几乎形成一对矛盾。然而,实际设计过程中,工程师不得不面对这种近乎矛盾的需求。随着半导体工艺技术、嵌入式处理器架构优化以及设计技术的改进,低功耗设计技术日新月异,电压、工作频率自适应调整技术、多工作模式的节能技术、数字电源管理技术,以及低功耗的最新半导体工艺技术应用层出不穷。在众多方案中选择满足设计功率预算要求的系统方案也是系统设计成功的关键因素之一。

选择具有广泛嵌入式系统支持能力的解决方案非常重要。目前可用的嵌入式操作系统众多,各具优势,硬件平台方案对这些操作系统的支持能力是进行方案选型的考虑要点之一。

以Mcu或AsIc为核心器件的硬件平台方案在解决上述嵌入式系统设计要求上正面临挑战,有限的处理能力通常难以满足很多应用的高处理能力需求,或者缺乏进行功能扩展和产品升级换代的设计灵活性,某些设计为了满足系统的处理能力要求而增加DsP或协处理器,从而增加系统的复杂性、功耗和成本。

结合MCU和DsP性能优势的汇聚式处理器是有效解决上述设计挑战的方案之一,而ADI公司Blackfin处理器是目前市面上唯一的汇聚式处理器产品。汇聚式处理器典型应用有电力应用的智能电表,安防应用的视频监控,医疗设备的便携式房颤监测仪,工业应用的3DLevelScanner三维曲面测量仪等。预览全文,请访问本刊网。

科学大师是引用出来的

在一次期刊培训会上,我国一位期刊研究专家语出惊人:“科学大师不是评出来的,而是引用出来的。”例如达尔文的相对论、牛顿三大定律的引用率都属最高级。但目前,我国科技论文的引用量和引用率偏少,这不仅不利于众多科研成果传播,也不利于科研新人的显现,因此,应该鼓励科研人员在学术论文中多引用文章和著作。

低功耗设计论文范文2

>> 低功耗10位100 MHz流水线A/D转换器设计 8bit超级马里奥方块吊灯 4?bit FLASH ADC行为级建模与仿真 超低功耗8位Mcu等 一种用于14 bit SAR ADC的DAC设计 一种12bit CMOS全差分SAR ADC A BIT TOO DARK BIT of Legal Bother 中美BIT来了 I Bit My Tongue 中美共图BIT 采用LMS数字校准的13位200MSPS ADC设计 高性能低功耗 ADI新推26款高速ADC产品扩充其低功耗数据转换器产品组合 a bit与a little THE BOY’A BIT SPECIAL BIT谈判:欧洲的筹码 飞思卡尔SO8QE系列低功耗微控制器分析 浅析低功耗仪表设计 异或门的低功耗设计 常见问题解答 当前所在位置:

关键词:低功耗;流水线;时间交织;逐级递减。

DOI: 10.3969/j.issn.1005-5517.2013.12.020

移动无线通信系统是模拟数字转换器的主要应用。高性能的交流特性,主要包括信噪比(SNR)和无杂散动态范围(SFDR),能够提供更好的无线通信覆盖率,更多的载波,更好的质量和可靠性。功耗和面积对于移动无线通信系统也非常重要。

在多种ADC中,流水线ADC是最适合做高速高精度的。目前的设计趋势是在低功耗下实现高性能。运放共享及开关运放技术被广泛地应用于降低功耗上[1-3]。但是此技术只适合低速ADC。本文中采取的一些技术可以在不牺牲性能的情况下来节省功耗。该ADC在200MSPS,输入信号频率为41MHz时达到47.7dB的信噪比,电流仅为40mA。

论文的组织如下:第二章介绍流水线ADC的结构。第三章介绍了流水级、放大器和基准产生电路等的具体结构。第四章给出最终的测试结果。

流水线ADC有两个通道,每个通道都工作在100MHz下,包括5个1.5 bit流水级和一个3bit flash ADC。传统的转换器。第一级流水级一般为多位数,例如3.5bit或4.5bit。但在文中采用的是1.5bit的。其中有两个原因:第一,文中ADC是时间交织的。它有两个通道,任何不匹配都会降低性能。第一级的多位数会引起比1.5bit更多的失配,因为多位数相对于1.5位会有更多的电容和开关。第二,在8位100MHz ADC中放大器功耗不大,所以第一级选取多位数并不比采用1.5bit和逐级递减技术的更省功耗。系统结构如图1所示。

流水线ADC中还有基准源和时钟等。基准源必须满足PVT变化,所以要仔细设计符合要求;时钟发生器为所有流水级提供时钟,时钟偏移会严重影响性能。时钟的驱动必须设计适当,如果驱动太大会消耗过多的功耗,而版图中会有很多寄生电容,所以为保证性能要留一些裕度。

如图2所示,对于电荷转移结构来说,第一个和最后一个交叉点总是位于-1/2 和 1/2处,但输出幅度会被?影响。对于电容翻转式结构,第一个和最后一个交叉点会被 影响,但是输出幅度不会被?影响。在电荷转移结构的-1/4 和1/4处的跳变高度相对电容翻转式结构来说更接近Vref,分别为0.95Vref和0.9Vref。流水线ADC一般采用冗余位用来校正。如果失调只发生在第一级(假设其他级都是理想的且都是2bit),那么校正过程如图3所示。

因为交叉点总是都在-1/2 和1/2处,且1/4 或-1/4处的跳变高度比电容翻转式的大,电荷转移结构能更好的实现校正。

当?是正数时,电荷转移结构会造成失码,但是对比于电容翻转结构在交叉点和跳变电的偏差,失码引起的误差对性能造成的影响较小。图4给出不同电容失配情况下两种结构SNDR的变化。

放大器

本电路采用的不是传统的两级放大器。第一级是共源放大器,第二级是共源共栅放大器,如图5所示。

跟跟传统二级放大器比有两个优点。第一,其增益要比传统结构的高。因为第二级放大器是共源共栅放大器,所以输出阻抗大,进而增益也大。第二,因为第二级是输出级,所以输出级的极点是主极点。通过仔细的设计,可以使主极点远离第一级的非主极点。这就意味着不需补偿,减小了负载电容,所以与传统放大器比,更小的电流可以获得更高的带宽。这对低功耗设计非常重要[6]。

这里选用了开关电容共模负反馈,因为它相对连续时间共模负反馈更稳定。这里有一个改动,即增加了SD1和SD2两个开关。此设计减小了电荷注入和时钟馈通的影响,所以电容C1和C2被的取值可以C3和C4一样而不是远大于C3和C4。这种结构可以实现更高的速度。

根据计算,增益和带宽的要求可以通过公式计算得到,因为电路中一个通道是8位100MSPS的,所以其增益要求为61dB,带宽要求为794MHz。仿真结果如图7所示。

其他电路

低功耗设计论文范文3

【关键词】WiFi;无线传感器网络;低功耗;流量热量测量

【中图分类号】TP216+.1 【文献标识码】A 【文章编号】1672-5158(2013)01―0158―01

0 引言

目前国内工业监测趋向于支持无线和实时监控,基于传统电气连接方式需要在场地内进行布线,短距离可以,长距离传输质量会受到影响,检查线缆又受到穿墙入地等条件的限制十分不便。

涡街流量计因其介质适应性强、可靠性高、压力损失小、量程比宽等优点,在许多行业中得到了广泛应用。为了满足用户方将工业测量数据传输至能源管理系统的需求,设计把WiFi这种短距离无线技术,应用在工业测量以及无人值守站基础通讯模组上,使其完成流量热量监测的任务。利用WiFi的突出优势在于:一使用开放的2.4GHz直接序列扩频无线技术;二是WiFi的传输速度非常快,最大传输速率为11Mbit/s,在信号较弱或有干扰时,带宽可调整为5.5Mbit/S、2Mbit/S和1Mbit/S;三是进入门槛低,只要支持WiFi的终端设备都可以按照一定的权限加入到WiFi网络中即可。在流量检测系统中,使用其进行节点参数的采集与传送、控制信号的传输与控制,避免在现场布设繁琐的数据线,对降低成本和能耗都有一定的意义,使监测系统的扩展性更灵活。

工作站通过相应集成系统自动采集各监测终端采集的数据并存储汇总,将信息输入服务器,服务器负责提供相应的集团数据指标进行控制,同时提交给数据服务中心相应的数据,而便携终端(如PDA终端)或者其他带有无线WiFi功能终端(如手操器,或者笔记本电脑等)则可以设定参数,并提交服务器或者直接发送相应指令给传感器或者执行机构。

根据以上功能需求设计基于WiFi的涡街流量计流量热量监测终端,其主要结构包括流量热量采集终端和无线抄表单元两部分,按照预设参数的要求存储传感器测量的流量、热量,经过模拟数字转换后传输到无线抄表单元中。无线抄表单元中带有WiFi传输发射装置,经由100米范围内的AP点通过TCP/IP协议连接至局域网内,使得网内其它连接在AP点上的设备相互通讯,也可以经过IP NetWork传输到上位机,上位机的接入也可采用多种方式,可通过有线、无线接入互联网,可根据需要以及实际情况灵活的选择上层方式。

1 硬件系统设计

1.1 监测终端结构

监测终端硬件部分主要是低功耗WiFi模组与流量热量测量部件的对接。其硬件结构主要包括:32位MCU、FLASH芯片、电源芯片、液晶屏、低功耗WiFi模组。其中主要模组由PIC32MX处理器和MRF24组成,负责管理整个系统的运行和数据运算与处理。

1.2 WiFi模块简介

Microchip公司的MRF24具有内置天线,兼容的表面安装的RF收发器模块,包括了所有的RF元件:晶振、旁路和偏压无源元件以KMAC,基带RF和功率放大器;内置的硬件支持AES和TKIP。

1.3 无线模块硬件接口

WiFi模块与现场仪表之间采用SPI接口进行通信,PIC32做为主设备,MRF24作为从设备。将主从设备中的SCK、SDO、SDI引脚互联,PIC32通过RB3控制MRF24的CS,实际功能相当于片选。另外,由于在WiFi通信的过程中需不断检测WiFi模块的状态信号,因此将MRF24的中断信号INT接到PIC32的INT4脚,当有WiFi通讯请求时通过此口向PIC32发送中断请求信号。PIC32的RB4口接至MRF24的RESET管脚端,用于软控制其复位,PIC32的RB5口接至MrF24的HIBERNATE管脚端,在无数据传输的时候控制其处于休眠状态,便于降低系统功耗,节省电池电力,在需要唤醒时再通过此管脚唤醒,以控制模块状态。

2 软件的设计

2.1 整体框架

仪表软件具有启动引导程序、仪表运行主程序、数据文件系统、驱动程序、通讯传输程序,各程序模块采用中断优先级管理和轮询运行相配合的方式运行。

仪表运行主程序包含人机界面,键盘操作、数据处理、数据传输、数据存储、状态检测。数据采集模块负责采集、发送数据,同时需要完成硬件检测、网络配置工作。通信模块构建通信链路,完成数据协议转换。监控模块主要负责数据处理以及设备调校等。状态部分主要用来检测传感器以及通讯部件的通讯连接状态,以及时钟授时部分。

2.2 程序设计

这部分包括通讯参数初始化,无线模块设置状态,等待召测命令,数据发送。运行流程如下:

先硬件初始化和操作系统初始化,检查系统内存映射,将内核映像,从Flash上读到SDRAM中,为内核设置启动参数,调用内核。当遇到中断请求时,总是先响应中断请求,执行完中断后,中央处理器执行为看门狗程序,然后执行仪表数据读取判断召测与否,如果需要召测数据,将存储单元内FLASH芯片中的流量值信鼠等通过WIFI无线通讯模块发送给上位机;首先经由远程主机定时发送要求信号,WIFI模块也定时处于唤醒状态,信号经WiFi模块转换传入单片机,单片机解析命令,命令中包含远程通讯协议封包数据,CPU将两部分数据进行解析,根据解析的内容,选择现场采集模块某一路进行工作,同时将标准协议数据信号部分通过CPU的SPI接口送入WIFI模块;WIFI模块对接收的数据进行封包处理转换,采集模块将数据发送到终端智能仪表设备;然后设备进入延时等待状态,当采集模块有新数据响应时,采样电路进行采集信号,再由处理单元将信号放大整形滤波,由CPU进行接收后,对数据进行处理,添加通讯设备信息,并将数据传入WIFI模块,由WiFi模块传送至远程终端。如果接收到上位机发送的实时参数调整指令则调用本地程序进行参数调整;之后返回主程序。

3 结束语

这一应用方案立足于工业无线抄表系统,节省前期布线以及后期有线维护成本,满足低功耗的要求,实现工业流量、热量测量数据的远传和实时管理,是一种较为经济有效的方式。采用WIFI架设无线网络,架设简单,其无线电波覆盖范围广,传输速度快,门槛较低,只需要在现场设置“热点”,工作人员只需要具有支持WLAN的设备进入热点的覆盖范围,即可高速接入局域网或者Internet定时或实时召测数据并上传,不用耗费大量人力物力来进行网络布线接入,节省大量成本。在工业现场具有一定的应用价值。

参考文献

[1]王斌.基于MSP430的低功耗数字涡街流量计研究硕士论文天津大学

低功耗设计论文范文4

【Abstract】With the progress of science and technology, the clock is developed from the original droplet to the mechanical, developed to today's electronic clock, and the electronic clock gradually developed into the current multi-functional intelligent calendar.The progress of clock has brought great convenience to people's production and life.This paper describes a design scheme of intelligent perpetual calendar based on MCU, intelligent perpetual calendar, carries out the production and testing of the object, and achieves the purpose of intelligent calendar.This calendar has the advantages of simple structure, high stability, small error, and convenient maintenance.

【P键词】万年历;单片机控制;智能化

【Keywords】 calendar;MCU;intelligent

【中图分类号】TN216 【文献标志码】A 【文章编号】1673-1069(2017)04-0167-02

1 引言

如今快节奏的生活方式,使得人们对时间观念越来越重视,使得万年历愈发受到人们的重视,已经是人们生活中不可缺少的一类电子产品,它广泛应用于家庭、学校、医院、公司、工厂、车站、机场、影院等场所。一款性能优良的万年历不仅可以精准走时、早上准时提醒你起床,还能给你预报当天天气情况和当天的备忘录等等。

本智能万年历由此为出发点,依托时间芯片、语音芯片、电源管理模块、显示模块、WiFi模块、温湿度传感器、单片机系统,协同工作共同组建一个智能万年历。该万年历克服了传统万年历需要人工调时的局限性,弥补了万年历功能不全的缺陷,实现了万年历的智能化[1-2]。

2 系统方案设计

整个系统由DHT12温湿度模块、DS1302时钟模块、OLED显示屏、语音模块、电源管理模块、ESP8266WiFi模块和STC15W408AS单片机最小系统等模块组成。系统框架图如图1所示。

3 硬件设计

3.1 电源管理模块

电源管理模块由TP4056芯片与BL8530芯片组成,万年历电源由锂电池供电,其中TP4056芯片负责通过USB给锂电池恒流恒压充电,BL8530芯片负责将锂电池升压到5V给万年历的各个模块供电,同时通过单片机的AD接口检测电池电压,进而估算电池剩余电量。当电量不足时,万年历通过WiFi模块向客户端发送电量不足的警示,同时万年历自动进入掉电模式,防止锂电池因过度放电而损坏;若电量充足,万年历向客户端发送剩余电量值和预估使用时间。

3.2 单片机最小系统

此次设计的万年历采用的主控芯片是STC15W408AS,是STC公司推出的新一代微处理器,具有高速、低功耗、高稳定性、内置功能强大的优点。

3.3 ESP8266Wi-Fi模块

ESP8266是一个完整且自成体系的Wi-Fi网络解决方案,其高度片内集成:天线、稳压器及电源管理组件、TR开关、功率放大器、匹配网络、PLL、温度传感器、32位低功耗CPU、LNA等。具有性价比高、功耗低、工作稳定、使用灵活方便等特点。

3.4 DS1302时钟模块

目前市场上专用时钟芯片的种类非常多,其中DS1302是目前应用的最广泛的时钟芯片之一。DS1302是一款性价比高、计时准确、功耗低、具备掉电走时功能和闰年补偿的可持续计时的时钟芯片。其通过3个控制口与单片机IO通信,程序编写简单。在此次设计中主要为万年历在无网络连接时可以本地走时,增加了万年历走时的准确性,保证系统的正常工作。

3.5 语音模块

语音模块采用SYN6288芯片为核心,辅以必要的硬件电路。SYN6288是由北京宇音天下科技有限公司在2010年初推出的性价比高、硬件电路简单、低功耗、音色圆润、效果更自然的一款中高端中文语音合成芯片,其通过UART通信方式与主控CPU通信,接收待合成的文本数据,实现文本到语音的转换。

3.6 DHT12温湿度模块

DHT12温湿度传感器是一款含已校准数字信号输出的温湿度复合传感器,是DHT11的升级替换产品,相比之下DHT12拥有更低功耗、更小体积、更广的测量范围、更高的精度。DHT12共有4个引脚,分别为VDD、SDA、GND、SCL,具有单总线和标准IIC两种通信方式,可由用户自由选择:上电拉低SCL脚即为单总线通信方式,反之为IIC通信方式。

3.7 OLED显示屏模块

万年历因为采用锂电池供电,因此在显示模块的选择上面非常注重功耗与性能的平衡。相比传统显示屏,OLED显示屏的主动发光特性使得视觉可达170度,并且无需外接背光电路,因此能耗较低。显示模块采用基于IIC接口的0.96寸OLED显示屏,用于显示时间、温湿度、闹钟、天气、备忘录等信息。

4 软件设计

智能万年历因使用了多款芯片和传感器,因此需要在单片机中对每个芯片或者传感器的时序图编写相关程序,程序编写完成后,还需要进行编译与下载,在实际的运行过程中还有观察是否出现BUG,如果出现,需要及时改正,直至达到设计要求。

万年历程序的主要思想是单片机读取DHT12温湿度传感器的数据和电池电压电量信息,同时通过WiFi模块进行网络连接,如果能连接到网络,将进行与客户端的数据交换并将网络时间写入DS1302芯片中,以实时同步网络时间,若无法连接网络,将读取DS1302时钟数据作为本地时间。语音模块通过单片机串口将需要提醒的信息以语音的方式进行提醒,免去了用户需要通过显示屏来翻看详细信息的麻烦。OLED显示屏同时显示相应信息,也便用户快速查看简易信息。

5 结语

智能万年历在实际的测试与使用过程中体现出较强的功能与实用性。在有无网络连接的环境下均能精确走时,但在有网络连接环境下可以充分发挥其全部的功能,同时通过网络也可以与智能家居系统连接,具有很强的开展性和灵活性。该电路设计新颖、功能强大、结构简单等优点,符合电子仪器仪表的发展趋势,具有广阔的市场应用前景。

【参考文献】

低功耗设计论文范文5

【关键词】MSP430F149;电力参数;谐波

引言

随着现代科学技术的迅猛发展,一方面,造成电能质量问题的因素不断增加,另一方面,各种复杂的、精密的、对电能质量敏感的用电设备不断普及,人们对电能质量及可靠性要求越来越高,这样的矛盾越来越突出[1]。

另外,随着电力工业的快速发展以及电网的不断扩大,电力运行对电力调度自动化水平和安全性的要求越来越高,为给电网安全和经济运行提供参考依据,需要电力监控仪表来对电压、电流、功率、功率因数、谐波、频率等电力参数进行实时检测。为此,本文提出了基于MSP430F149的三相多功能综合测试仪的总体方案,该方案具有功能全面、成本低、人机交互性好等特点。下面重点介绍一下三相多功能测控仪的软硬件设计。

1.采集器硬件设计

1.1 硬件总体设计

整个硬件电路以MSP430F149为核心,由数据采集模块、时钟模块、数据存储模块、人机对话模块、通讯模块和电源管理模块构成,硬件总体设计如图1所示。

MSP430系列的单片机是TI公司生产的一种超低功耗的混合控制器,性能优越,具有超低功耗、强大的处理能力、系统稳定、方便高效的开发环境等特点,结合本测控仪的功能要求,硬件设计中主要应用了MSP430F149的如下性能:(1)ADC12模数转换模块;(2)硬件乘法器;(3)多种定时器;(4)双路的USART

口;(5)有48个I/O口。

系统的硬件模块较多,我们以数据采集模块为例,说明它的工作过程。

1.2 数据采集模块

被测三相电流和电压经电流电压互感器电路转化交流小电压,经低通滤波将系统高次谐波滤掉,后分两路处理:一路是将滤波后的信号经电平抬升送于MSP430F149模数转换模块处理;另一路是将信号通过过零比较电路转换为与信号同频率的方波信号,再通过锁相电路得到频率为信号频率64倍的方波信号,用于同步采集瞬时电压电流信号。其硬件框图见图2。

2.测控仪软件设计

软件系统采用了模块化设计思想,这样使得软件结构简单清晰,便于修改、调试和扩充。本软件将系统功能分成初始化模块、主循环模块、数据处理模块、通讯模块、人机对话模块等。系统上电复位后,主函数对系统初始化,然后定时对任务轮巡,当查询到某一任务条件满足,该任务标志位置位,则调用相关程序模块,执行该任务并在该任务完成后返回。软件总体框架见图3。

结束语

基于MSP430F149的三相多功能测控仪对电流、电压、频率、功率、功率因数、谐波、电度等电力参数进行了测量,在现实中可以广泛应用于城市居民小区、工厂、农村等场合,同时,功能全面、成本低、人机交互性好等特点使其具有很广的应用前景。

参考文献

[1]郭先概.电能质量参数检测系统的研究[D].哈尔滨工业大学硕士论文.2006,6.

[2]刘玉宏.MSP430单片机C语言和汇编语言混合编程[J].微计算机信息,2003,19.

低功耗设计论文范文6

本文以常用的车载物流过程为研究对象,在货柜中部署传感器节点,来实时监测货物运输过程的相关环境参数,WSN中的汇聚节点通过蓝牙传输协议将数据传给作为网关的智能手机,智能手机通过GPS卫星定位将位置信息加入到参数数据中,再通过移动通信网络将数据传输到后台系统中。本论文研究主体为车载部分,其架构如图2所示。

1.1传感器节点的设计本系统中,传感器节点的主要任务是实时监测相关环境参数,并对其他节点转发来的数据进行存储和转发,使数据通过WSN传输到汇聚节点处,其处理能力、存储能力和通信能力要求不高,因此采用简单节约的设计方案。如图3所示,传感器节点由传感器模块、处理器模块、射频模块、电源模块和电路等部分组成。传感器模块负责对所需参数进行采集和模数转换。处理器模块负责控制整个传感器节点的操作,存储和处理传感器模块采集的以及射频模块发送过来的数据。射频模块负责与其他节点之间的通信,对数据进行发送或接收。电源模块负责为整个节点提供运行所需的能量,是决定节点寿命的关键因素之一。电路则包括声光电路、复位电路及接口电路等。(1)处理器模块。处理器模块是传感器节点的核心部分,本设计方案中,处理器选用德州仪器(TI)公司的16位超低功耗微控制器MSP430F135,该处理器采用1.8V-3.6V的低电压供电,可以在低电压下以超低功耗状态工作,非常适合应用在对功耗控制要求甚高的无线传感器网络。该处理器同时拥有较强的处理能力和较丰富的片内资源,拥有16kB闪存、512BRAM、2个16位的定时器、1个通用同步异步接口(USART)、12位的模数转换器(ADC)和6个8位并行接口。(2)射频模块。在无线传感器网络实际应用中,传感器节点既需要发射又需要接收数据,因此本设计方案中的射频模块采用收发一体的无线收发机。射频模块采用Chipcon公司推出的无线收发芯片CC2420,它的工作电压位于2.1~3.6V之间,收发电流不超过20mA,功耗低;其具有很高的集成度,只需要较少的电路就可工作,天线设计采用PCB天线,进一步减小模块体积。CC2420工作在2.4GHz频段上,支持IEEE802.15.4和Zig-Bee协议;采用O-QPSK调制方式,抗邻道干扰能力强;128B接收和128B发射用的数据缓存空间,数据传输速率高达250kb-ps。(3)传感器模块。传感器节点的数据采集部分根据实际需要选择相应的传感器,如温度、湿度、振动、光敏、压力等传感器。本文的研究重点不在传感器上,因此仅以温湿度传感器作为例子。本方案采用Sensirion公司的SHT15温湿度传感器,该传感器将传感元件和信号处理电路集成在一起,输出完全标定的数字信号[3]。其工作温度范围在-40℃-123.8℃之间,其在-20℃-70℃范围内,温度测量精度在±1℃以内;湿度范围在0%-100%之间,在10%-90%范围内,湿度测量精度在±2%以内。

1.2汇聚节点的设计在本系统中,汇聚节点的主要任务是接收传感器节点转发来的数据,进行存储和处理后传输到网关节点处,同时,接收来自网关节点的信息,向传感器节点监测任务。汇聚节点是连接WSN和外部网络的接口,实现两种协议间的转换,使用户能够访问、获取和配置WSN的资源,对其处理能力、存储能力和通信能力要求较高。而为了与传感器节点匹配,汇聚节点的硬件结构与传感器节点基本相似,如图4所示,汇聚节点没有传感器模块,增加了存储器模块和蓝牙通信模块。(1)处理器模块。同样的,处理器模块也是汇聚节点的核心部分,主要负责控制整个汇聚节点的操作,存储和处理来自射频模块或者蓝牙通信模块的数据,再将处理结果交给射频模块或者蓝牙通信模块发送出去。本设计方案中,处理器选用TI公司的16位超低功耗微控制器MSP430F1611,该处理器和MSP430F135一样,可以在1.8V~3.6V的低电压下以超低功耗状态工作,但其拥有更强的处理能力和更丰富的片内资源,48kB闪存和10KBRAM、2个16位定时器、1个快速12位ADC、双12位DAC、2个USART接口和6个8位并行I/O接口。(2)存储器模块。考虑到物流运输过程中环境多变,容易带来一些不确定因素,这些不确定因素可能引起处理器自带的存储器中的数据丢失,因此汇聚节点需要存储一些重要的数据。本设计方案中,汇聚节点的外部存储器芯片选用由Mi-crochip公司生产的24AA64,工作电压低至1.8V,它采用低功耗CMOS技术,工作时电流仅为1mA,而且可以在恶劣的环境下稳定工作。由于汇聚节点对存储容量要求不高,而且24AA64芯片的存储容量为64KB,擦写次数可达到百万次,因此一块芯片即可满足本系统的存储要求。(3)蓝牙通信模块。本系统采用智能手机作为后台系统和WSN之间的网关,来实现远距离的数据传输。为了使汇聚节点与智能手机能够进行通信,采用蓝牙通信协议。而在汇聚节点使用蓝牙通信方式需要增加一个蓝牙通信模块。本设计方案中,采用SparkFun公司的BlueSMiRF模块,其工作电压为3.3V-6V,工作电流最大为25mA,功耗较低;其最大传输距离为100m,通信速率最高可达115200bps;其天线为PCB天线,所需器件很少,故模块的体积很小,可以通过串行接口直接与处理器模块相连。

1.3网关节点的设计本系统要求在后台系统和WSN部署点间进行双向通信,为了实现远距离的数据传输功能,有两种方案,一是汇聚节点增加移动通信模块,如GPRS模块[4];二是采用智能手机作为后台系统和汇聚节点之间的网关。方案一对汇聚节点的要求进一步提高,不仅处理过程更加复杂,其能量消耗也大大提高;另一方面要实现物流过程的跟踪,还需有定位功能,一般采用GPS模块[5],这样成本也将大大提高。相比之下,方案二优势明显,采用智能手机可以进行各种复杂的数据处理,进行大量数据的存储,使用移动通信网络与后台系统进行通信,使用内置的GPS定位功能,后台用户可以在紧急事件发生时直接联系货车司机等。因此,本系统采用智能手机作为网关节点。本设计方案中,采用中国移动M811手机作为测试对象,其支持4G/3G/GPRS等移动网络,可以方便地使用移动网络与后台系统进行通信;其具有GPS定位功能,可以实现货车定位;具有蓝牙通信功能,可与汇聚节点间采用蓝牙通信;使用An-droid4.0操作系统,拥有丰富的开源资源,方便软件的设计。

2系统软件部分设计

本系统使用WSN中的传感器节点检测物流过程中相关环境参数并发送到汇聚节点处,由其将数据通过蓝牙连接传输到智能手机,智能手机通过移动通信网络将加入GPS信息的数据传输到后台服务器。系统各部分的工作任务不一,硬件条件也有很大差别,因此系统的软件设计也十分关键。

2.1传感器节点程序设计传感器节点主要承担数据采集和发送的工作,由于其能量及处理资源有限,因此需要采取节能和减少数据处理的设计方案。本设计方案中,传感器节点采取按需求唤醒的工作方式,检测等待时间(等待时间可由后台设置)未到或者没有收到汇聚节点命令时节点处于休眠状态;当等待时间一到或者收到命令时,立刻开始工作,进行采集数据并发送,或者根据命令完成相应操作,完成后又进入休眠状态,等待下一次激活,其程序流程如图5所示。

2.2汇聚节点程序设计汇聚节点的主要任务是接收传感器节点转发来的数据,处理后通过蓝牙传输到网关节点处,同时接收来自网关的命令,完成相应的操作。相比于传感器节点,汇聚节点的工作更加复杂,而且其能量和处理资源也不多,因此采取与传感器节点相似的节能设计方案,将复杂的数据处理工作交予网关节点,其程序流程如图6所示。

2.3智能手机APP设计智能手机作为本系统的网关节点,承担协议转换、数据传输、数据处理等复杂工作,因此开发相应的应用程序(Applica-tionProgram,简称APP)来实现上述功能,其流程图如图7所示。该APP实现对智能手机内部蓝牙模块的调用,通过蓝牙连接与汇聚节点通信;利用智能手机的GPS模块获取位置信息,加入到接收到的传感器数据中,再通过移动通信网络传输到后台系统;接收后台系统的命令,完成相应的操作;同时通过智能手机对应的界面提供数据显示、告警提醒以及日志功能。

3结语