前言:中文期刊网精心挑选了汽车质量论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
汽车质量论文范文1
关键词:MVB;WTB;MVBC;CRC;曼彻斯特码
1前言
随着嵌入式微机控制技术和现场总线技术的发展,现代列车的过程控制已从集中型的直接数字控制系统发展成为基于网络的分布式控制系统。基于分布式控制的MVB(多功能车辆总线)是IEC61375-1(1999)TCN(列车通信网络国际标准)的推荐方案,它与WTB(绞线式列车总线)构成的列车通讯总线具有实时性强、可靠性高的特点。列车车辆的现代化的发展趋势与可靠性、安全性、通讯实时性的要求使MVB逐渐成为下一代车辆的通讯总线标准。
MVB是主要用于有互操作性和互换性要求的互联设备之间的串行数据通讯总线,除用于车辆通讯,也可用作其它现场总线。
MVB与MVBC密不可分,MVBC(多功能车辆总线控制器)是MVB总线上的新一代核心处理器,它独立于物理层和功能设备,为在总线上的各个设备提供通讯接口和通讯服务。MVBC与上一代MVB通信控制器BAP15-2/3在性能上有了很大的提高,是目前MVB总线上最先进的通信控制器。
MVB总线通过总线适配器与MVBC相连,根据IEC-61375,MVB总线上采用曼彻斯特码,并每64位帧数据后加以8位CRC校验码。MVB的帧分为主帧和从帧,分别由帧头、数据、校验码以及帧尾构成,不同帧的类型通过帧头来判别。
MVB与MVBC之间数据通信在MVBC中由帧收发器来完成,包括帧的发送接收控制、曼彻斯特编解码以及CRC校验码的产生与数据校验。帧收发器在MVBC中起着数据链路层的底层数据处理的作用,是MVBC芯片的设计难点之一,该模块的设计实现对于整个MVBC的开发有着重要的作用。
本文主要介绍位于MVBC总线物理层接口的帧收发器模块的算法和实现方法。
2MVBC简介
MVBC可通过配置应用在IEC.TCN标准的Class1,2,3,4设备当中。总线连接可编程车载电子设备,也连接一些简单的传感器及执行机构,最多可寻址4096个设备。
MVBC把来自于MVB总线的串行化信号转换为并行的数据字节,也把需发送的字节交由串行化电路发送到传输介质上。MVBC可根据配置实现总线主与总线从的功能,实现数据链路层以及一部分传输层的数据处理,并通过通讯存储器来与上层软件交互。总线控制器内部包含编码/译码电路和控制通信存储器所需的逻辑电路,用来控制帧的发送和接收(如冲突检测、帧的前导比特处理、CRC校验位的处理等);对输入帧译码并检验其有效性;把数据存放到相应的通信存储器中。
图2-1:MVBC结构框图
3帧收发器的设计
MVBC中的帧收发器主要负责帧的发送、接收,包括曼彻斯特码的编码、解码,CRC(循环冗余检测码)的产生与校验,不同类型帧的构建与识别,以及码错的识别和冲突的检测等。其中曼彻斯特编解码以及CRC校验为主要的算法。
3.1曼彻斯特编码、解码器的设计
MVB总线上的串行数据采用曼彻斯特码,曼彻斯特编码中的每个数据位应用以下规范编码:
a)一个“1”的编码在位元的前半部分位“高”,后半部分为“低”;
b)一个“0”的编码在位元的前半部分位“低”,后半部分为“高”;
如图2-4所示:
图2-4:曼彻斯特编码规范示意图
如果曼彻斯特码中出现整个位元的高电平(NH)或整个位元的低电平(NL),则被认为非数据符,用于特殊场合,如:帧头,帧尾标识。
(1)曼彻斯特编码器
根据曼彻斯特码的编码要求,曼彻斯特编码器其电路实现如图2-5所示:
串行数据在1.5M时钟的上升沿处从上一级的移位寄存器输出,在高、低电平时与1.5M时钟相异或,结果得到与上面编码规则相符的曼彻斯特码。
(2)曼彻斯特译码器
曼彻斯特译码过程主要是将串行曼彻斯特码转变成串行的电平信号,并把串行电平信号组合成并行信号输出,以便进一步处理。如果输入的码字不符合曼彻斯特码编码规则(由冲突或其它原因引起),译码器将报告错误信息。
曼彻斯特译码器设计电路如图3-3:
曼彻斯特码输入后经过三级寄存器同步,消除亚稳态。如果总线在空闲状态之后出现下降沿,则被认为帧的开始位,总线上再出现高电平时使能16位计数器计数。如果把曼彻斯特码每个bit周期分为16个部分,如图3-4:
则在数据采样1处得到的采样值即为曼彻斯特编码前的原数据,数据采样2是用来帧头帧尾检测;总线冲突检测的原则为:总线上曼彻斯特码的半个bit周期之内的电平应一致,前后半个周期电平应相异,否则被认为码错。
3.2CRC校验
CRC的全称为CyclicRedundancyCheck,中文名称为循环冗余校验。它是一类重要的线性分组码,编码和解码方法简单,检错和纠错能力强,在通信领域广泛地用于实现差错控制。在各种通信系统中,CRC有bit型算法、字节型算法以及基于查找表的算法。前者适合串行数据通信的校验,后两者常用于高速并行通讯领域。
MVBC可以独立的完成CRC校验码的产生与数据的校验而无需软件参与。其中:
G(x)=x7+x6+x5+x2+1
电路实现方法上我们选择bit型算法,CRC发生电路采用LFSR,主体由一组移位寄存器和模2加法器(异或单元)组成即在数据串行发出的同时,数据经过带有异或单元的移位寄存器产生CRC校验码,实际电路图如图3-5:
串行数据的CRC校验电路也与CRC发生电路一样,不同的是前者CRC电路在移位寄存器之前,而后者在后。
3.3总线接口模块的设计实现
总线接口模块包括上述的Encoder、Decoder。
3.3.1Encoder
Encoder模块主要有以下功能:
(1)构建帧头帧尾;
(2)按照传输层指示进行CRC校验;
(3)对数据进行曼彻斯特编码;
(4)实现主、从帧的发送;
在Class1mode以及其它Classmode下,Encoder分别由Class1模块和MCU控制。
如果当前配置允许发送,且控制模块告诉Encoder有帧要发送,以及帧类型、帧长度,则Encoder先将配置好的帧头发送,然后将帧数据、产生的CRC校验码移位后经曼彻斯特编码输出,最后发送帧尾,这样完成主、从帧的发送。电路实现如图3-6所示:
图3-6:Encoder模块结构图
3.3.2Decoder
MVB总线采用冗余介质,因此MVBC需要冗余的接收模块来完成帧的接收。
(1)两个Decoder根据选择各自完成信号检测(信任线)或冗余检测(冗余线)功能,完成各自帧数据的起始位判定、数据采样、数据解码和数据移位功能;
(2)Decoder从信任线上接收数据,并监视冗余线;
(3)判断帧类型,从帧中提取数据和校验序列(非CRC校验,可选)并存入RXBuffer中;
(4)实现CRC校验,并报告接收状态。
初始化时ICA,ICB分别置为信任线和冗余线(LAA=1),如果信任线超时、寂静,或用户强制,则信任线与监视线互相交换。接收帧的同时,ICA、ICB两个线路上的Decoder将是否接到帧、何种帧类型、接收是否完成、结果对错等信息告诉线路控制模块,该模块将这些信息与哪一个BUFFER有效上报至上层模块进行报文分析。Decoder线路控制图如图3-8:
4总线接口模块的验证
验证的思想是通过不同的控制信号,来模拟不同的工作环境下,帧的收发正确性:曼彻斯特编码、帧头、帧尾以及帧数据、帧类型、CRC码的正确性。验证实现结构如图4-1所示:
控制模块将一帧数据写入Txbuffer,并控制Encoder开始发送,此时Encoder发送的帧被Decoder接收;控制模块同时监控Encoder、Decoder的状态,当接收完成后,控制模块将解收到的数据从Rxbuffer读出,从Decoder的接收状态来验证帧的属性:帧是否有效、帧类型、帧长度,并从读出的数据来验证数据的正确性。
汽车质量论文范文2
关键词:沥青混凝土,质量控制
沥青路面以造价低、工期短、行车舒适等优点,占据着我国公路建设的重要位置。但是由于原材料质量较差,施工设备及施工工艺落后等原因,是造成沥青路面施工质量较差的现象,往往今年铺,明年补,新建公路路面不到一年又再成为“万补路”,为此,在群众心目中,沥青路面成为一种等级较低的路面结构,而往往选择用水泥混凝土路面来代替沥青混凝土路面。其实沥青混凝土路面和水泥混凝土路面,同样属于“高等级路面”,沥青混凝土路面与水泥混凝土路面相比较,还具有以下优点:
(1)沥青混凝土路面属于柔性路面,耐磨、振动小、有良好的抗滑性能、行车舒适性好。
(2)对汽车噪音减少效果比较理想。
(3)路面平整,无接缝。
(4)工期短,养护维修简便,适宜分期修建。
为了贯彻沥青路面“精心施工,质量第一”的方针,使铺筑的沥青混凝土路面更坚实、平整、稳定、耐久、有良好的抗滑性,确保沥青混凝土路面的施工质量,我想和大家谈谈我的几点体会。
1 沥青混凝土路面施工准备工作
1.1 沥青混凝土所选用粗细集料、填料以及沥青均应符合合同技术规范要求,确定矿料配合比,进行马歇尔试验。
1.2 路缘石、路沟、检查井和其他结构物的接触面上应均匀地涂上一薄层沥青。
1.3 要检查两侧路缘石完好情况,位置高程不符要求应纠正,如有扰动或损坏须及时更换,尤其要注意背面夯实情况,保证在摊铺碾压时,不被挤压、移动。
1.4 施工测量放样:恢复中线:在直线每10m设一钢筋桩,平曲线每5m设一桩,桩的位置在中央隔离带所摊铺结构层的宽度外20cm处。水平测量:对设立好的钢筋桩进行水平测量,并标出摊铺层的设计标高,挂好钢筋,作为摊铺机的自动找平基线。
2 沥青混凝土路面的质量控制
以往的沥青路面,混合料的拌和设备、摊铺设备和碾压设备都较为落后,拌和机普遍都是直排式和滚筒式,不具备二次筛分和不能严格按配合比进行生产,甚至有时采用人工拌合,导致混合料的质量难以保证。摊铺设备相对比较落后,有时仅限于人工摊铺,造成混合料路面离析、路面不平整、横坡度等质量难以保证。
2.1 沥青混合料的拌合
2.1.1 拌和设备。为保证沥青混合料的质量,应选用先进的拌和设备,如帕克(parker英制)、柏拉希(burladi意制)、巴布格林(babgeen德制)和我国西安生产的LB-2000型拌和站等等。论文写作,沥青混凝土。
2.1.2 拌和质量控制。
2.1.2.1 确定生产用配合比 。 根据马歇尔试验结果,并结合实际经验通过现场试铺试验段进行碾压实验论证确定施工用配合比,并投入批量生产。
2.1.2.2 经常检查混合料出料时的温度,出料温度应控制在160±5℃为宜.
2.1.2.3 出料时应检查混合料是否均匀一致、有无白花结团等现象,并及时调整.
2.1.2.4 拌好的热拌沥青混合料不立即铺筑时,可放入保温的成品储料仓储存,存储时间不得超过72h,贮料仓无保温设备时,允许的储料时间应以符合摊铺温度要求为准。
2.2 混合料的运输。
从拌和机向运料车放料时,应自卸一斗混合料挪动一下汽车位置,以减少粗细集料的离析现象。运输时宜采用大吨位的汽车,以利于保温,同时车厢应该上帆布,起保温、防雨、防污染作用,运输中混合料温度降低不少于5℃。论文写作,沥青混凝土。
混合料的运输车辆应满足摊铺能力,在摊铺机前形成不间断的车流,具体可按以下公式计算:
N=1+T1+T2+T3/T+d
T--每辆车容量的沥青混合料拌和,装车所需时间min。论文写作,沥青混凝土。
t1t2--运输到现场和返回拌和站的时间。
t3--现场卸料和其他时间。
d--备用汽车数量。
2.2.1 除了进口摊铺机外,我国近几年也有比较先进的摊铺设备,包括陕建ABG系列,镇江华通WLTL系列,徐工集团的摊铺机等。
2.2.1 摊铺质量控制
2.2.2.1 摊铺时必须缓慢、均匀、连续不断的摊铺。
2.2.2.2 当摊铺机不能全幅路面施工时,应考虑用两台或三台摊铺机排列成梯队进行摊铺。相邻两幅之间应有重叠,重叠宽度宜为5-10cm,相邻的摊铺机宜相距10-30m,且不得造成前面摊铺的混合料冷却。
2.2.2.3 用机械摊铺的混合料,不应用人工反复修整。
2.2.2.4 当高速公路和一级公路施工温度低于10℃,其他等级公路施工气温低于5℃时,不易摊铺,当施工中遇雨时应立即停止施工,雨季施工时应采取路面排水措施。
2.2.2.5 及时检查路面的厚度,平整度,横坡度等指标。
2.3 碾压
沥青混合料的碾压分为初压、复压、终压三个阶段,初压时宜采用6-8T的双轮压路机,沥青混合料温度不低于120℃,从外侧向中心碾压,复压宜用8-12T的三轮压路机或轮胎压路机,,也可用振动压路机代替,沥青混合料温度不低于90℃,终压宜采用6-8T的双轮压路机,沥青混合料温度不低于70℃,使路面达到要求的压实度并且无显著轮迹,整个过程为“轻-重-轻”。为防止压路机碾压过程中沥青混合料沾轮现象发生,可向碾压轮洒少量水、混有极少量洗涤剂的水或其他认可的材料,把碾轮适当保湿。
2.4 接缝、修边和清场
沥青混合料的摊铺应尽量连续作业,压路机不得驶过新铺混合料的无保护端部,横缝应在前一次行程端部切成,以暴露出铺层的全面。接铺新混合料时,应在上次行程的末端涂刷适量粘层沥青,然后紧贴着先前压好的材料加铺混合料,并注意调置整平板的高度,为碾压留出充分的预留量。相邻两幅及上下层的横向接缝均应错位1m以上。论文写作,沥青混凝土。横缝的碾压采用横向碾压后再进行常规碾压。修边切下的材料及其他的废弃沥青混合料均应从路上清除。
3 结构组合
3.1 沥青路面层宜采用双层或三层式结构,至少有一层是I型密实级配,以防止雨水下渗。三层式宜在中面层采用I型密实级配,下面层根据气候,交通量采用I型或II型沥青混凝土。
3.2 不宜采用沥青碎石作为路面结构层,因为沥青碎石空隙率不具备具体指标,且混合料不加入矿粉,对沥青路面的质量控制较困难。
3.3 不宜采用一层罩面形式,特别是对旧混凝土路面铺筑沥青混凝土路面进行改造过程中,经过各个例子证明,采用单层罩面或沥青路面总厚度过薄,极易出现反射裂缝,因此,沥青路面结构层不宜太薄,根据路基情况交通量等因素,对结构层进行合理设计。
3.4 在裂缝较多和路基强度不理想的情况下,可考虑在底层加铺一层土工布或土工格栅。论文写作,沥青混凝土。论文写作,沥青混凝土。
3.5 为减少路基或旧水泥路对沥青路面的影响,可在路基面或水泥路面设一层应力吸水膜。
4 其他控制
4.1为提高沥青路面抗老化、高温稳定性等指标,可在沥青中掺入改性剂生产的改性沥青,或者直接购买厂家出口的改性沥青。
4.2沥青材料的选择根据路面型、施工条件、地区气候、施工季节和矿料性质因素决定,一般热区宜采用AH-70,温区宜用AH-90。
4.3 矿粉宜选用石灰石,白云石等磨细的石粉,并检查其颗粒组成、比重、含水量、亲水系数等。
4.4沥青混合料的沥青用量应严格控制,按目标配合比的用量加减0.3%,进行马歇尔试验,确定生产配合比的沥青最终用量,同时,应注意油石比接近低限为宜,并避免出现泛油等病害。
5 结束语
5.1 沥青路面结构设计是路面设计的一项重要工作,做出正确的设计,可保证沥青路面的使用年限,提高路面的使用年限。
5.2 先进的施工工艺和设备,严格的质量控制是保证沥青路面施工质量的重要措施。
参考文献
[1]JTJ 014-1997《公路沥青路面设计规范》
[2]JTJ 052-2000《公路工程沥青及沥青混合料试验规程》
[3]JTG F40-2004《公路沥青路面施工技术规范》
汽车质量论文范文3
关键词:汽车,污染,防治
由于汽车运行严重的分散性和流动性,因而也给净化处理技术带来一定的限制。除了开发在机内净化技术外,还要大力开发机外净化处理技术。这应从两个方面入手:一是控制技术,主要是提高燃油的燃烧率,安装防污染处理设备和采取开发新型发动机;二是行政管理手段,采取报废更新,淘汰旧车,开发新型的汽车(即无污染物排放的机动车),从控制燃料使用标准入手。
一、汽车燃油的改用
1.采用无铅汽油,以代替有铅汽油,可减少汽油尾气毒性物质的排放量。
首先应抓汽车油的改用。以无铅汽油代替四乙基铅汽油。这种汽油是用甲荃树丁醚作渗合剂,它不仅不含铅,而且汽车尾气排出的一氧化碳、氮氧化合物、碳氢化合物均会减少。因有铅汽油中,它加入了一种抗爆剂――四乙基铅,它具有很高的挥发性,甚至在0摄氏度时就开始挥发,而挥发出的铅粉末。但铅的污染程度与交通密度(每小时通过的车辆数)以及汽油中铅的含量有密切关系。
虽然我国城市的交通密度比发达国家的密度低,但有铅汽油燃烧带来的铅的污染程度不可忽视。因铅是一种蓄积毒物,它通过人的呼吸、饮水、食物等途径进入人体。对人体的毒性作用是侵蚀造血系统、神经系统以及贤脏等。诸如对血管系统、生殖系统以及癌致畸等毒性作用也可能发生。
2.掺入添加剂,改变燃料成分。
汽油中掺入15%以下的甲醇燃料,或者采用含10%水份的水-汽油燃料,都能在一定程度上减少或者消除CO、NOx、HC和铅尘的污染效果。
若采用“甲醇燃料”,即采用甲醇和其它醇类同汽油混合所制成的燃料。硕士论文,防治。当甲醇占比例30%-40%,汽车尾气排出的污染物可基本上消除。
3.选用恰当的添加剂-机械摩擦改进剂。
在机油中添加一定量(比例为3%-5%)石墨、二硫化钼、聚四氟乙烯粉末等固体添加剂,加入到引擎的机油箱中,可节约发动机燃油5%左右。此外,采用上述固体剂可使汽车发动机汽缸密封性能大大改善,汽缸压力增加,燃烧完全。尾气排放中,CO和HC含量随之下降,可减轻对大气环境的污染。
4.采用绿色燃料同样可减少汽车尾气有毒气体排放量。
据美国的俄亥俄州某研究所用豆油与甲醇、烧碱混合,然后去除其中的甘油,从而可获得“大豆些油”。硕士论文,防治。用“大豆柴油”,以3:7的比例掺入到普通柴油中,可供柴油汽车之用。它可大大减少发动机工作时排放的硫化物、碳氢化合物、一氧化碳和烟尘。故誉作绿色燃料。
5.采用多种燃料作为汽车燃料来源。
随着科学技术的发展和计算机的广泛应用,确保环境保护法规的实施和节能措施:汽车中可广泛使用新的配方汽油、电力、压缩的天然气体、太阳能以及生态燃料的蓄电池等等。然而在这种汽车上装上电脑,不断在行驶中早先调拨组合,以使汽车发挥最佳性能。采用计算机控制点火系统,以便对发动机的不同工况作出快速反应,可取得最佳 燃料经济性和发动机动力性能,可减少尾气对大气的污染。
6.节约能源,有利环境,大力推广车用乙醇汽油。
根据有关专家指出,开发乙醇代替汽油,即节约能源,又可消化陈粮,使汽车排出的有害汽体减少,是一项有利于保护环境和资源的新课题。
如果按照1:9的乙醇汽油配比,用20万吨乙醇,可配出约200万吨的乙醇汽油,200万吨的乙醇只消耗粮食70万吨。因此,发展、开发使用专用乙醇汽油可解决储存粮食的转化问题,又可以在一定的程度上代替汽油,缓解我国原油供应的紧张状况。硕士论文,防治。因乙醇是一种小麦、玉米等原料生产的变性燃料乙醇和汽油以一定的比例混合而成的汽车燃料,已经列入“十五”发展计划,它与纯汽油比较,汽车尾气中一氧化碳量可降低1/3左右,碳氢化合物降低13.4%。此计划推广使用,将对改善城市大气污染,保障人民健康起到重要作用。硕士论文,防治。
二、汽车发动机内部的调试,可减少尾气污染物的排放量。
1.减少喷油提前角。减少喷油提前角,可降低发动机工作的最高温度(1500摄氏度),使NOx的生成量减少。硕士论文,防治。
2.改善喷油器的质量,控制燃烧条件(燃比、燃烧温度、燃烧时间),可使燃料燃烧完全,从而可减少CO、HC和煤烟。
3.调整喷油泵的供油量,可降低发动机的功率,使雾化的燃料有足够的氧气进行完全燃烧,从而也可以减少CO、HC和煤烟的生成。
三、发动机外部尾气净化措施
即汽车尾气由原有毒气体,变成为无毒气体,再排放到大气中。从而可减少对大气环境的污染。
1.采用催化剂:将CO氧化成CO2,HC氧化成CO2和H2O,NOX被还原成为N2等。采用的催化剂有氧化锰-氧化铜;氧化铬-氧化镍-氧化铜等金属氧化物和白金属(铂)等贵金。它们都可以净化CO、HC。催化反应器设置在排气系统中排气歧管与消音器之间。
2.水洗:通过水箱,使汽车尾气中的碳烟粒子经过水洗和过滤及蒸气的淋浴,可支队粘在碳粒上的有毒物质,使碳粒子胀大而给予去除。
四、发动机内部净化处理措施
1.正曲轴箱通气系统的设计:把从汽缸窜入曲轴箱的气体(主要是未燃气体)再循环进入进气歧管,使其再次燃烧,改变了过去将其直接排入大气所造成的污染。
2.排气再循环设计:发动机排气口用控制阀与进气歧管相连接,使排出的气体经过再次循环,以降低氮氧化物的排放量。
3.蒸发排放控制系统的设计:将化油器浮子室中的汽油蒸发汽引入进气系统,而将油箱中的蒸发汽引入储存系统,可大大减少污染物的排放。
五、加强行政管理,减少和消除汽车尾气对大气环境的污染
1.淘汰旧车,采取报废迎新。开发并采用多种燃料的新型汽车,这是今后汽车的发展方向。以氢为燃料的电池电动车、太阳能汽车、电动汽车、复式汽车、液化气汽车、甲醇汽车等。它们是低公害、前途最佳的新型汽车。同时,目前也还可改装汽车发动机的汽车为柴油发动机汽车。虽然柴油发动机燃料费用高,但CO生成量少。如果对NOx、粉尘排放量作相对的限制的话,那么柴油发动机汽车也是未来最佳汽车。硕士论文,防治。
2.严格执行国家质量技术标准,控制燃油标准。按国家规定,不合质量的燃油不能使用,市场上不准出售低劣的燃油。然而汽车不准作用含铅汽油这一禁令已下,但难以奏效。其主要原因是广大市民对这一政策了解不足,含铅的70号和不含铅的90号及90号以上汽油,每吨差价比较大,加之无有效措施和得力宣传。另外,个别城市周边的地区又没有实行含铅汽油的禁令。市场调查结果显示含铅汽油库存数量还比较大,加之,车辆运输的流动性,故使得禁令难以实施。因此,对“禁令‘的宣传力度和推行力度应大大加强,才能保证大气环境的洁净。
六、优先发展公共交通
发展公共交通,减少市区、特别是城市中心区的车流量,是减少汽车污染物排放、改善城区大气环境质量的有效措施。尽管十年来北京市道路建设有了很大发展,道路系统逐步完善,但仍满足不了车辆迅猛发展的需要,交通阻塞问题仍十分严重,城区汽车经常处在怠速、低速、加速、减速等排放恶劣工况下工作,加重了城区特别是城区交通道的空气污染,同时造成能源浪费。北京市环科院的研究结果表明:一般来说,小轿车的车速由20公里/时提高到50公里/时,其尾气排放的一氧化碳、碳氢化合物可减少50%左右。因此解决交通阻塞,提高道路通行能力,可大大减少交通污染。
参考文献:
[1]汽车诊断及其检测技术
[2]广州本田雅阁轿车维修手册麻友良机械工业出版社2001
[3]国家环保网
[4]国家检测网
汽车质量论文范文4
关键词:发动机、机器、高科技、性能
Abstract: with the rapid development of national economy, automobile production increased year by year, our country more and more cars, cars are more and more complex. Especially the rapid development of science and technology, the automobile industry competition has changed from single performance competition steering performance, environmental protection, energy saving, comprehensive competition. Only the automobile engine, to cope with the world energy crisis and reducing the environmental pollution, the research and development work has focused on reducing fuel consumption, reduce emissions, lightweight and reduce wear and so on, to optimize the technology will be widely used in these studies.
Keywords: engine, machine, technology, performance
中图分类号:S219.031文献标识码:A 文章编号:2095-2104(2012)
发动机是一部由许多机构和系统组成的是将某一种型式的能量转换为机械能的复杂机器。其作用是将液体或气体燃烧的化学能通过燃烧后转化为热能,再把热能通过膨胀转化为机械能并对外输出动力。而汽车发动机是汽车的动力装置。由机体、曲柄连杆机构、配气机构、冷却系、系、燃料系和点火系(柴油机没有点火系)等组成。按燃料分发动机有汽油和柴油发动机两种。按工作方式有二冲程和四冲程两种,一般发动机为四冲程发动机。
随着世界能源问题和环境污染问题的日趋严重,飞机及汽车作为污染环境和消耗能源的大户,备受人们的关注。发动机燃烧过程直接影响节能和环保,对发动机燃烧过程优化的研究越来越受到重视。
发动机设计以结构、热力、燃烧、强度、振动、流体、传热等多个学科为基础,可变因素多,随机性大,是一个可变互耦系统的优化问题。多学科设计优化通过充 分利用各个学科之间的相互作用所产生的协同效应,获得系统的整体最优解,因而在发动机传统设计流程图上有很大的应用优势。
发动机的优化涉及到多个目标,与单目标优化问题不同的是这些目标函数往往耦合在一起,且每一个目标具有不同的物理意义和量纲。它们的关联性和冲突性使得对其优化变得十分困难。多目标优化方法可以分为如下两大类并且已在发动机的优化设计中得到了应用。1.基于偏好的多目标优化方法此方法根据工程实际的具体情况,首先选择一个偏好向量,然后利用偏好向量构造复合函数,使用单目标优化算法优化该复合函数以找到单个协议最优解。如利用线性组合法对发动机的悬置系统进行多目标优化;利用加权法对液体火箭发动机的减损和延寿控制进行多目标优化。2.基于非劣解集的多目标优化方法 此方法首先需要找到尽可能多的协议解,然后根据工程实际情况,获得决策解。相比基于偏好的多目标方法,该方法更系统、实用和客观。如通过多目标遗传算 法,以单位推力、耗油率等为目标函数对航空发动机总体性能进行优化;基于多目标遗传算法对固体火箭发动机的性能和成本进行优化。在发动机的生产及实际使用中,总是存在着材料特性、制造、装配及载荷等方面的误差或不确定性。虽然在多数情况中,误差或不确定性很小,但这些误差或不确定性结合在一起可能对发动机的性能和可靠性产生很大的影响。对于此类不确定性问题的优化,传统的优化方法已无法解决,而必须求助于不确定性优化方法。 随着发动机质量越来越轻,而其功率和转速不断提高,振动和噪声问题越来越突出。振动不仅影响到发动机自身的强度和性能,而且会给车辆整体寿命和乘客舒适 性造成很大的影响。除了对发动机本身结构进行改进外,对发动机的减振系统进行优化也是一条提高车辆整体振动性能的有效途径。传统的弹性减振系统已无法满足 舒适性要求,未来的趋势是半主动减振和主动减振控制系统,即能根据发动机激励、路况、车辆行驶状态和载荷等自动调节系统参数,优化车辆动力学特性,实现主 动减振。车用发动机的减振系统是一复杂的非线性系统,而神经网络因其自身的非线性映射能力在未来发动机减振系统的优化设计中具有很大的潜力。另外,由于发 动机动力系统的复杂性,在模型、载荷、激励等方面都具有很大的不确定性,减振系统的优化不可避免地应考虑系统不确定性的影响,可以利用模糊集或区间数学理 论结合神经网络进行不确定性优化,以提高减振系统的可靠性和鲁棒性。
发动机的燃烧和排放系统直接影响到 发动机的燃油经济性、噪声、排放等重要指标,影响到汽车的节能与环保性能。对燃烧与排放系统的优化可从两个方面进行。一方面是燃料喷射系统的优化,可通过 电控单元精确控制各气缸的燃油喷射量,自由控制发动机的转矩,使得发动机具有良好的启动性能和最佳的输出响应特性,并使得气缸达到最佳混合气状态,提高燃 油热效率,降低噪声;另一方面是优化进气管系的结构参数,改进发动机燃烧室,优化压缩比。未来的燃烧与排放系统的设计,应当综合考虑喷射系统和发动机结 构,同时注重结构、燃烧、流体、噪声等不同专业领域的性能提高,进行多学科优化设计。汽油发动机的热效率为 20 %~30 % ,柴油发动机为 30 %~40 %。如能广泛地使用柴油机 ,将会节约大量燃料。柴油机的优点还在于它可以使用纯度比较低、价格比汽油便宜的柴油作燃料。据统计 ,将汽油机转换为柴油机 ,每升燃料的行程里程平均可增加 35 % ,同样质量和功率相同的柴油机与汽油机相比 ,油耗可降 15 %~ 25 %。因此 ,各汽车制造商都积极地增加柴油车的比重 ,目前绝大多数商用车都装备柴油机 ,而各汽车厂商提供的装有柴油机的轿车、行车也日益增多 ,如宝马、奔驰、奥迪、丰田、本田、马自达等都在全力开发并推出环保型柴油车。在欧洲 ,轿车柴油化的比例已高达 40 % ,且有不断上升之势。
综上所述,优化技术在发动机的设计 制造中占有非常重要的地位。包括常规优化方法和智能优化方法在内的优化技术已被应用于发动机设计。考虑到能源的短缺和环境问题的重要性,未来的车用发动机 优化设计的研究将是以节能和环保为重点的综合最优,应当建立并应用多种不确定多目标多学科优化理论方法、策略及算法;并应大力开发在一个优化平台上集成各 个学科设计要求的多学科多目标优化设计系统,该系统将具有更高的优化效率和较好的开放性,可以更好地适应未来汽车个性化设计的趋势。
摘要:
[1]汽车行业一体化 (质量、境、业健康安全)管理体系认证的研究 .吉林大学 . 2007中国优秀硕士学位论文全文数据库 .
[2 ]汽车驾驶员前方视野测量系统软件开发 .吉林大学 . 2007中国优秀硕士学位论文全文数据库 .
汽车质量论文范文5
关键词:汽车制造;零部件;供应链;产品质量;管理优化
0引言
在制造业中,供应商的选择以及与之合作关系的确立,是制造企业产品供应链的开端。当某一企业接受另一企业的委托,按照合同要求和生产经营活动需要,为其设计图纸并加工制造某一产品物件时,产品的供应链条就已经形成。对于汽车制造业企业来说,除了自身进行整车制造和加工维护外,现阶段许多零部件都是通过供应商购进的,因此保障汽车零部件供应链的质量安全,对于汽车车身性能和汽车企业的持续发展具有重要影响。
1汽车零部件供应链质量管理工作面临的问题
1.1潜在供应商调查不够全面
对于汽车企业来说,在确定汽车零部件产品的供货对象之前,首先必须进行全面系统的潜在供应商调查与市场评估,只有这样才能为企业寻找到较为可靠的合作伙伴。在潜在供应商调查阶段,客户向供应商提供企业零部件所需的技术资料,由供应商给出基础报价和预算,待样件完成后进行零部件产品质量的第一次验收。为了降低汽车制造企业相关商业秘密的扩散范围,企业往往会选择较少几家供应商进行业务洽谈,这也会使得潜在供应商的调查不够系统全面,尤其是样件质量的验收并不能完全代表供应商在量产之后的产品质量水平,为后期汽车零部件质量管理工作带来了较大负担。
1.2涉及质量管理的多部门分工不细
供应链质量管理工作涉及的部门和单位相对繁杂,如果各部门之间缺乏必要的沟通,就可能出现纰漏,影响产品质量验收工作的效率。在现阶段,一些企业在供应链质量管理方面并未完全明确各部门各自的职责,或者存在分工不细、责任不清的情况,导致全产业链质量监管方面出现输入和输出环节交接工作不顺畅,无法较好地完成供应链质量管理监督工作。而在有些企业中,则是存在分工过细、部门之间工作职责交叉重叠的问题,导致某一部门在质量管理工作开展过程中可能需要请示多部门领导的情况,不仅影响了正常的工作效率,还可能出现影响整个项目进度的情况,对汽车制造企业来说也是一种损害。
1.3产品质量和资源成本之间存在矛盾
随着汽车制造业市场竞争的日趋激烈,如何利用较少成本换取更大的经济价值,是任何汽车制造企业都必须面临的问题。因此,在选择零部件供应商时,尽量选择更低成本、更高质量的供应商,是企业的一道生存法则。在当今时代汽车生产制造国际化竞争的市场环境下,一些地方本土化企业由于缺乏国际化背景支撑,往往能给出较低的市场报价,尽管短期内产品质量能够达到企业标准,但在量产后期随着产品规模的增加,长期质量能否得到有效保证,汽车生产企业在选择供应商时还需要把握好二者之间的关系。
2供应链质量管理在汽车制造业的优化措施
2.1零部件供应商选择调查阶段的质量管理
零部件供应商的选择直接关系到汽车企业生产经营的合作是否融洽,选择信誉较高、质量上乘的零部件供应商,对于汽车企业来说不仅可以有效避免产品质量不达标造成的投诉事件,还能及时规避风险,保证零部件的按时到货,为汽车企业生产销售活动提供保障。对于汽车企业来说,选择零部件供应商需要经过以下几个步骤:第一,确定零部件自主设计制作与外包购买的比重和产品类型;第二,初步筛选符合企业标准的供应商,主要是审查企业资质、社会信誉、质量水平和售后服务能力;第三,确立供应商评价指标体系,并根据先期筛选出的潜在供应商清单进行再次确认;第四,要求目标供应商进行零部件的试生产,产品质量达标的可以签署合同,结成合作关系。
2.2零部件供应商产品开发阶段的质量管理
在供应商产品开发阶段,对汽车零部件的质量进行必要的管理,是对整个零部件生产链条监控的基础,同时对最终零部件产品的形成和大规模投产来说,是一种保障。只有在零部件开发阶段将产品质量和性能等方面的问题扼杀在萌芽时期,才能有效防止安全生产责任事故的发生,为企业避免更大的损失。对于汽车企业来说,在供应商产品开发阶段进行零部件质量监管和监控,需要经过以下几个步骤:第一,零部件产品的设计开发准备工作审查以及零部件样件的质量验证;第二,执行零部件产品质量的前期策划和过程控制,考察供应商是否能够根据既定时间规划完成规模化生产的目标质量;第三,对供应商生产零部件的批准程序进行必要审查,同时对企业生产能力进行评价评估;第四,在爬坡以及量产的初期阶段强化供应商过程优化与控制,从而更好地保证生产线环节零部件产品质量的优良;第五,对于供应商加工生产的样件进行试验验证,并对试生产订单进行管理,在这一过程中要求对小批量样件进行抽检并出具详细的检测报告;第六,在零部件的运输和包装等环节进行监管,确保运输过程中不被损坏,达到整体装配生产前零部件产品的质量要求。
2.3零部件供应商量产阶段的质量管理
规模化批量化生产是汽车零部件供应商为汽车生产制造企业提供零部件货源的必要阶段,在零部件实现量产后进行质量管理,可以更好地实现系统化风险控制。对于汽车企业来说,在供应商量产阶段进行零部件质量监管和监控,需要经过以下几个步骤:第一,对供应商零部件交付期的产品质量进行管理,在双方交货的过程中,由质量监督员对产品的包装、箱数和质量进行检查;第二,在供应商进行规模化生产并向汽车生产企业正常供应零部件货品后,就偏差放行及其他问题进行跟踪整改;第三,在供应商的绩效评价和考核环节纳入产品质量考核标准,主要是考察供货抽检时的产品缺陷率、进料过程中的生产线报废率以及供应商按时按量交货率等因素;第四,供应商综合质量审核,主要是为了考察供应商年度生产产品质量和供货活动是否能满足汽车企业零部件需要,双方之间能否进一步合作等问题。
3结语
在激烈的市场竞争环境下,汽车制造企业要积极寻找更为可靠的零部件供应商,成立专本的质量评估检测部门,定期对供应链环节零部件的质量进行检测评估,以保证供应商生产的产品符合企业需要。同时希望我国汽车制造企业培养更多的项目监管人员和质量评价人才,为零部件供应商提供技术指导,从而更好地保障我国自主生产的汽车性能更佳、质量更好。
参考文献:
汽车质量论文范文6
随着社会的进步,经济的发展,全球机动车数量持续增加,机动车尾气造成的环境污染日益严重。在国内外许多大城市中,机动车尾气污染排放分担率相当高。以CO为例,1983年英国汽车尾气CO排放率占85%,1967年芝加哥为94%,1970年洛杉矶为98%,1965年纽约占96%[1],美国1995年汽车尾气污染排放率占总排放的66%,上海市在1998年机动车排放的CO就占到了总排放的64%[2],广州市1994年CO占88.8%,北京市1992年占62%[2]。机动车尾气中另外两种主要污染物NOx、HC的排放在总排放量中的分担率也非常高,如NOx,东京市在1975年汽车尾气排放分担率占到了80%[1]。
近年来,随着经济的迅速发展以及机动车保有量的持续增长,机动车排放所造成的污染也日益成为人们所关注的焦点[3~9]。自九十年代以来本市加强了在用车尾气排放检测、普及使用无铅汽油、提前执行轻型车新车排放标准等一系列机动车污染控制措施,较为有效地控制了中心城区的环境空气质量继续恶化的势头,但郊区环境空气质量受机动车污染排放影响日益突出。2000年全市NOx年均浓度0.056毫克/立方米,比1995年上升了10%;城区和郊县NOx年均浓度为0.090毫克/立方米和0.032毫克/立方米,分别比1995年上升了23%和39%,见表1[10]。
表1.1995~2000年上海市NOx年日平均浓度变化
年份全市城区郊县
浓度
(微克/立方米)相对浓度
(%)浓度
(微克/立方米)相对浓度
(%)浓度
(微克/立方米)相对浓度
(%)
1995511007310023100
19975911610514428122
2000561109012332139
根据国外机动车发展经验可知,当人均国内生产总值达到3000美元以上时,轿车将成为机动车保有量增长的主要方向。作为国际大都市的上海,汽车工业的发展不仅预示和带动本市经济的腾飞,同时,人民生活水平的提高也急切期待现代化便捷交通方式的到来和家庭汽车的普及,机动车在今后相当长时间内将保持快速增长的速度。根据市交通所预测,到2020年本市机动车保有量将达到200~350万辆,是2000年的3~5倍,可以预见如果不采取措施加以控制,本市大气环境势必进一步恶化。
目前,国内外对于机动车污染控制的研究,主要集中于两个方面,一是机动车排放因子的研究;二是机动车污染治理和控制对策的探讨。排放因子是反映机动车排放状况的最基本的参数,也是确定机动车污染物排放总量及其环境影响的重要依据。目前用来计算机动车排放因子的模式主要有美国加州空气资源局的EMFAC模式,欧洲共同体的COPERT模式,美国EPA的MOBILE系列模式。其中,MOBILE汽车源排放因子系列模型是美国环保局开发的计算车队排放水平的程序[11]。在该模型中,综合考虑了汽车的使用年限、行驶里程、新车排放因子、劣化系数、行驶速度、气温、I/M(检查/维护)制度以及车用油料特性等因素对排放的影响[12]。国内外对于该模式已有广泛的应用。墨西哥采用美国EPA的Mobile5a基本结构模式,用来计算5个特定区域中8种车型的排放因子。根据气温、平均车速、汽车操作模式,燃料挥发和里程自然增长率条件估计1960年到2020年的排放因子[13]。此模型在加拿大的多伦多地区[14]、泰国曼谷等也有所应用。MOBILE模式在国内的小范围内也得到了一定的应用。北京清华大学郝吉明、傅立新等于1997年曾结合北京市实际情况对MOBILE5进行修正,并将之应用于北京市机动车尾气排放的研究中;祝昌健等应用MOBILE5模式对广州市机动车尾气排放系数及污染趋势进行了探讨[15];李修刚等将MOBILE5模式用于南京市,将给出的南京市现状排放因子直接应用于南京市及附近城市的环境影响评价[16]。
将MOBILE5模式结合上海实际情况进行本土化已经有人做过尝试,但是由于基础数据严重不足,因此对于此模式的修正尚不能进行检验。主要的方法仍是采用美国FTP的测试数据,将上海市机动车目前的排放水平类比于美国70年代,计算得到不同车型的排放因子。
在污染物的扩散方面,目前一般沿用有限源高斯扩散模型,即根据线源的长度、高度、强度、距离、风速、风向和相应扩散参数计算空间任一点的污染物浓度[17]。但目前这方面的研究较少考虑城市空间的特殊性,即对城市各类人为设施,包括绿化、建筑等对扩散的影响考虑较少。
对于线源排放污染物的扩散研究,国外主要的模式有CALINE、BLP(BouyantLineandPointSourceModel)、CDM2(ClimatologicalDispersionModel)、ISC3(IndustrialSourceComplexModel)、RAM(Gaussian-PlumeMultipleSourceAirQualityAlgorithm)。以上模型均由美国环保局(USEPA)开发。其中,CALINE为稳态高斯扩散模型,用于确定高速公路下风向的空气污染浓度,要求地形相对不太复杂。BLP为高斯烟流扩散模型,用于处理炼铝工厂以及其它的工业污染源的单一建模问题,要求其烟流上升和下降是主要由固定线源所影响的。CDM2为气候稳态高斯烟流模型,用于确定城市区域平地下风向的长期(每季或每年)的污染物的算术平均浓度。ISC3是一个稳态高斯烟流模型,可用于评价来自与工业带相关的许多污染源的污染物的浓度。这个模型涉及到了下列因素:粒子的下沉和干沉降、风向、点面线及立体污染源、烟流的上升为距离的函数、点源的分离以及有限的地形调整功能。ISC3可以有长期和短期两种模式可供选取。RAM是高斯烟流多源空气质量算法,是一个稳态高斯烟流模型,用于估算相对稳定的污染物浓度,平均从一小时到一天、从点源到面源、在乡村或者城市的沉降,其地形条件可以假设。
我国目前汽车污染仅相当于国外70年代中期水平,现有汽车90%以上是国产车,由于排放控制技术落后,在同样运行工况下,国产车较发达国家同类产品排放量高几倍甚至几十倍,加上交通管理手段落后,在用车检查维修制度不完善,城市交通道路拥挤和市内居民集中,大量车况恶劣的车辆继续行驶,更加剧了污染物的排放。国产车平均日排污量为0.6—0.9kg[18]。本论文旨在借助GIS环境,根据城市路网、交通流量、车型比例等信息,采用经过修正的MOBILE模型,计算不同车型机动车的排放因子,从而确定每条路段不同污染物的排放量。由于机动车流量和排放因子是计算道路机动车污染物排放源强的关键参数[19~21],本论文将通过抽样调查和MOBILE模型修正得到了这两个量。在确定道路线源排放源强的基础上,利用CALINE3有限长线源扩散模式,建立上海市城区多线源污染扩散模式,以此来分析道路污染物扩散状况,并在GIS图形上进行显示,最终完成上海市交通线源污染管理信息系统。此系统可为政府有关部门制定道路交通污染管理制度、合理制定城市规划和建设管理决策提供理论依据。
参考文献
[1]上海市大气污染防治对策研究P1
[2]上海市环境科学院《世界银行——上海城市交通项目:减少上海城市车辆排污危害的战略》1997.9
[3]陈长虹等,上海市机动车排污状况与污染控制战略,1997,16(1):28
[4]赫崇衡等,汽车排气污染及治理现状和动向,上海环境科学,1996,15(8):11~13
[5]彭宝成等,汽车尾气对动物的生物效应研究,上海环境科学,1995,14(2):14~17
[6]王培洁,上海市汽车排气污染管理的现状与对策,上海环境科学,1994,13(7):7~8
[7]陈长虹等,城郊道路污染个例分析,上海环境科学,1993,12(9):13~17
[8]陈长虹等,城郊道路交通带状多线源污染扩散模式研究,上海环境科学,1993,12(11):7~10
[9]王素云等,上海市汽车排气污染在大气中的分担率,上海环境科学,1990,9(11):27~29
[10]上海市机车污染综合防治领导小组办公室,《上海市机动车污染综合防治规划及规划纲要》,2000,3
[11]傅立新等,MOBILE汽车源排放因子计算模式研究,环境科学学报,199717(4):474
[12]傅立新等,北京市机动车污染物排放特征,环境科学,200021(3):68
[13]WesternGovernor’sAssociationDenver,ColoradoandBinationalAdvisoryCommittee.Mobiel5-MexicoDocumentationandUser’sGuide.Nov.20,2000
[14]R.MclarenandD.L.Singleton.AnalysisofMotorVehicleSourcesandTheirContributiontoAmbientHydrocarbonDistributionsatUrbanSitesinTORONTODuringtheSouthernOntarioOxidantsStudy.AtmosphereEnvironment,30(12),1996
[15]祝昌健,广州市机动车尾气排放系数及污染趋势探讨,中国环境科学,199717(3):216
[16]李修刚等,用于城市交通规划的机动车污染物现状排放因子研究,交通运输工程学报,20021(4):87
[17]A.K.LuharandR.S.Patil.1989.Ageneralfinitelinesourcemodelforvehicularpollutionprediction.AtmosphericEnvironment,23:555-562
[18]贾艳杰,我国大城市汽车废气污染问题及其治理对策人文地理199712(3):48
[19]EPA,User’sGuidetoMOBILE5(MobileSourceEmissionFactoryModel),May1994
[20]EgglestonHS,GoriβenN.JourmardR,etal.CORINAIRworkinggrouponemissionfactorsforcalculatingemissionsfromroadtraffic[R].Methodologyandemissionfactors.ReportVol.1,No.EVR12260EN,Luxembourg,1989.
[21]pilationofairpollutantemissionfactors[R].USEnvironmentProtectionAgency.AP-42,NC,USA.1985.50-83
二、研究方案
1、研究目标、研究内容和拟解决的关键问题
研究目标:研究上海市机动车尾气排放造成的道路线源源强,以及机动车污染物在中心城区街道峡谷中的扩散效应,并在GIS系统上进行显示,完成自主开发的上海市交通线源污染管理信息系统。
研究内容:1)上海市主要道路机动车尾气排放源强;
2)机动车尾气在街道峡谷中的扩散效应;
3)交通污染在GIS平台上的实现。
关键问题:1)机动车大气污染排放源强计算模型;
2)上海市道路机动车尾气在峡谷中的扩散模拟;
3)地理信息系统与交通大气污染模型整体集成的方法和途径。
2、拟采取的研究方法、技术路线、实验方案及可行性分析
研究方法:基础数据调研、模型修正、机动车污染物排放和影响预测可视化界面设计、系统整合。
技术路线:如图1所示。
实验方案与可行性分析:
1)建立机动车排放源强计算模型、污染物扩散模型,以及基于GIS技术应用模型,其工作量较大,其中基础数据(包括车流量、车速)的调研尤其困难。但是通过参与上海市环境保护局2002年科技攻关项目——《上海市机动车发展和大气环境保护研究》,并搜集大量的国内外相关文献,可获得系统开发所需要的相关数据,因此本研究已经有较好基础。
2)参与《影响上海大气能见度的主要因素与控制管理对策研究》课题的研究工作,对于本市机动车污染现状和历史沿革已有所了解。
3)参与了“上海市数字城市大气环境模块”的工作,初步掌握了GIS系统开发和实现方法。
据此我认为,按期完成论文是可行的。
图1.研究技术路线
3、本论文的特色与创新之处
建立适合上海市情景的主要道路机动车尾气中污染物源强排放模式。建立线源扩散模式,使其适用于大城市中街道峡谷中机动车尾气污染物的扩散状况。给出上海市上空污染物扩散状况。
目前国内将交通污染模拟与地理信息系统结合的研究还不多见,因此本论文在该方面的研究将是一个新的尝试。
4、预期的论文进展和成果
预期进展:
2003.07——2003.09收集中外文文献
2003.09——2003.10基础数据的收集和处理
2003.10——2003.12模型的修正
2004.01——2003.03GIS系统的编程实现
2004.03——2004.05论文的撰写与修改
预期成果:
•研究上海市机动车尾气排放状况,建立源强计算模型;
•综合城市气象条件、交通污染物排放强度、建立污染物扩散模式,确定机动车污染物影响的时间变化、空间分布,;
•完成交通污染管理信息系统;
•除完成毕业论文之外,在国内外有关刊物上2篇。
三、论文大纲
摘要
前言
第一章大城市机动车尾气污染排放数值模拟的研究背景及意义
一、研究背景
二、国内外研究现状
第二章机动车排放因子计算模型
一、MOBILE6模型介绍
二、利用修正的MOBILE6计算机动车排放因子
第二章道路机动车尾气污染物排放源强
一、线源源强计算模式
二、上海市道路机动车尾气污染排放源强的计算
第三章城市上空污染物扩散模式
第四章街道峡谷污染物扩散模式
一、CALINE4模型介绍
二、模式修正
三、上海市街道峡谷污染物扩散模式的建立及应用
第五章上海市交通污染管理信息系统的建立
一、排放清单数据库的建立
二、系统的开发
第六章结论
参考文献
四、研究基础
1、已参加过的有关研究工作和已取得的研究工作成绩
(1)参加《中国气象百科全书》建筑气象、城市气象等内容的编写。
(2)参与上海市普陀区建设项目环境影响评价工作。
(3)参加“扬尘污染来源与控制管理研究”课题的研究工作。
(4)承担了“崇明岛综合开发项目”的大气监测和采样工作。
(5)参与“影响上海大气能见度的主要因素与控制管理对策研究”课题的研究工作。
(6)参与“机动车发展与大气环境保护研究”项目。
(7)参与“上海市能见度影响因子研究”研究生科研基金项目。
(8)参与上海市数字城市课题交通环境模块的模拟研究。
2、已具备的实验条件,尚缺少的实验条件和拟解决的途径
拥有以下主要设备:
•桌面地理信息系统软件ArcView3.2及其主要扩展模块