控制系统网络安全范例6篇

前言:中文期刊网精心挑选了控制系统网络安全范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

控制系统网络安全

控制系统网络安全范文1

关键词:工业控制系统;安全威胁;无线网络安全

工业控制系统包括了多种控制系统,是对监控数据采集系统(SCADA)、可编程逻辑控制器(PLC)、分布式控制系统(DCS)等控制系统的总称。工业控制系统在国家关键基础设施中广泛运用,是国家关键基础设施正常运转的基础。随着无线网络技术运用到工控系统中,无线网络的安全问题便备受关注。无线网络的开放性和脆弱性使得工控系统容易遭受恶意攻击和窃听、诈骗等安全威胁,加强工业控制系统无线网络安全具有重要意义。基于现今主要安全防护策略,从密钥管理、加密算法和路由层安全技术三方面来提升工控系统中无线网络的安全度。

1.工业控制系统无线网络的安全问题

工业控制系统对国家社会生活有关键作用,交通、工业、能源、市政等都离不开工控系统的支持和运作。无线网络应用于工控系统大大方便了国民基础设施的正常运行,但由于无线网络的公开性和目前技术的限制,工控系统中无线网络面临许多潜在的安全威胁,如恶意攻击、无线网络系统本身落后等,一旦工控系统遭遇不良破坏和干预,整个国民基础设施便会处于瘫痪状态,给国民经济和生活带来巨大障碍和损失。

1.1恶意攻击

恶意攻击是指工控系统遭受到人为的破坏和干扰,对工控系统安全造成严重威胁的行为。这类攻击可以分为两种,即主动攻击和被动攻击。一般而言,主动攻击包括通过伪造病毒并发送到目标计算机系统中,实现攻破、侵占的目的。而不惊动目标计算机系统,在不知不觉中直接获取计算机内的重要信息和数据的行为属于被动攻击。恶意攻击会流失基础设施运转的资料和信息,易被不法分子利用,对国家生活安全造成严重威胁。

1.2无线网络系统自身的落后性

无线网络技术目前处于新兴时期,所以无线网络运用在工控系统中突显了它自身的技术缺陷。首先,计算、存储能力不足,工业控制现场采用的大多是嵌入式CPU,这种CPU存储空间相对较小、计算能力有限,无法承担大型的数据计算任务。另外,无线网络的能量消耗较大,而工业控制现场的终端设备不需要人工监控,为设备充电和更换电池的做法都不具有可行性,所以在保障无线网络安全时要考虑低消耗问题。最后,节点分布的任意性使得无法确定节点与节点之间的位置和距离。

1.3抗攻击能力弱

传感器节点是工控系统中无线网络安全的关键组成部分,一旦节点受到破坏或攻击,将带来巨大的损失。这是因为传感器节点一般安置在比较恶劣、困难的环境中,长期下来容易受到物理性的破坏,检测并进行维修存在较大困难,又由于传感器节点所在区域是开放的,攻击者便能迅速侵入漏洞,获取该节点的敏感信息,从而带来一系列连锁的恶性影响。

2.无线网络在工控系统中的安全性

无线网络在工业控制系统中逐渐受到采纳和青睐,是由于无线网络的低成本、组网灵活性高、可靠度较高等方面的优势。而在这些优势中,无线网络技术的安全性是工业控制系统最关注的问题。目前,无线网络在工控系统中主要研究密钥模式、加密算法技术和路由层安全技术来提高其安全度。

2.1创新密钥模式

密钥管理是无线网络安全性的重要保障,对工控系统提供了安全保障。密钥管理涉及了密钥预分配、密钥发现和维护三方面内容,这其中又囊括数据加密、数据认证和节点身份认证,对维护无线网络安全有重要作用。密钥模式能有效抵挡恶性攻击,增强无线网络对攻击者的抵御能力。目前,较为成功的密钥管理方案主要有posite随机密钥预分配方式、随机密钥预分配方案等,这些密钥管理方案都在一定程度上提高了工控系统的安全度。为了建立起有效的工控系统安全防护体系,还要继续创新密钥管理模式,增强其破解难度。

2.2提高加密算法技术

加密算法是保证工控系统信息安全的一个重要方面。使用无线网络的加密算法技术后,攻击者只有破解了加密算法才能进入工控系统,而这无疑大大加大了恶意窃取信息的难度和复杂性,从而对工控系统起到了安全维护的作用。加密算法发展至今,已经出现了多种有效的算法方式,如AES、DES、TEA、MD5等,在现今发展的基础之上,加密算法的速度要不断增强,能量消耗也需要尽量降低,使之更好地服务工控系统。

2.3加强路由层安全技术

工控系统底层通信的基础是路由层技术,因此提高路由层安全技术是保障工控系统安全的重要部分。路由层技术的提升能增强无线网络的抗干扰性和自愈能力,为工控系统通信安全提供保证。整个无线网络的安全度需要路由层安全技术做支撑,因此,必须针对现有的路由层技术缺陷,研究出安全系数更高的路由层。

3.结束语

工业控制系统关系国计民生,无线网络技术在工业控制系统中的应用能降低成本、方便维护和增强灵活性,然而无线网络的开放性使工控系统安全性受到一定威胁。为了保障工控系统的安全性,主要从密钥管理模式、加密算法、路由层安全技术者三方面着手,致力于增强密钥管理的创新性和复杂度,开发新型加密算法并提高路由层安全技术。在新时期,建立高安全性能的无线网络安全体系是完善国家工业控制系统的必然要求。

参考文献:

[1]曲家兴,周莹,王希忠,张清江.工业控制系统无线网络安全体系的研究[J].信息技术,2013,01:36-38.

控制系统网络安全范文2

摘要: 随着信息的发展,网络安全问题已经引起越来越多人的关注。而校园网作为学校重要的基础设施,担当着学校教学、科研、管理和对外交流等许多角色。随着校园网应用的深入,校园网上各种数据急剧增加,结构性不断提高,用户对网络性能要求的不断提高,网络安全也逐步成为网络技术发展中一个极为关键的任务。从分析校园网信息安全需求入手,就校园网络系统控制安全措施提出笔者的几点浅见。 

 

关键词: 网络安全 安全需求 措施 

1 校园网的概念 

简单地说,校园网络是“校校通”项目的基础,是为学院教师和学生提供教学,科研等综合信息服务的宽带多媒体。根据上述要求,校园网必须是一个宽带,互动功能和高度专业化的局域网络。 

2 校园网的特点 

校园网的设计应具备以下特点: 

1)提供高速网络连接;2)满足复杂的信息结构;3)强大的可靠性和安全性保证;4)操作方便,易于管理;5)提供可运营的特性;6)经济实用。 

3 校园网络系统信息安全需求 

3.1 用户安全 

用户安全分成两个层次即管理员用户安全和业务用户安全。 

1)管理员用户拥有校园网的最高执行权限,因此对信息系统的安全负有最大的执行责任。应该制定相应的管理制度,例如对管理员的政治素质和网络信息安全技术管理的业务素质,对于涉及到某大学的网络安全策略配置、调整、审计信息调阅等重要操作,应实行多人参与措施等等。 

2)业务用户必须在管理员分配的权限内使用校园网资源和进行操作,严禁超越权限使用资源和泄露、转让合法权限,需要对业务人员进行岗前安全培训。 

3.2 网络硬环境安全 

通过调研分析,初步定为有以下需求: 

1)校园网与教育网的网络连接安全二需要在连接处,对进/出的数据包进行访问控制与隔离,重点对源地址为教育网,而目的地址为某大学的数据包进行严格的控制。2)校园网中,教师/学生宿舍网络与其他网络连接的网络安全。3)校园网中,教学单位网络与其他网络的网络连接安全。4)校园网中,行政办公网络与其他网络的网络连接安全。5)校园网中,网络管理中心网络与其他网络的网络连接安全。6)校园网中,公众服务器所在的网络与其他网络的网络连接安全。7)各个专用的业务子网的安全,即按信息的敏感程度,将各教学单位的网络和行政办公网络划分为多个子网,例如:专用业务子网(财务处、教务处、人事部等)和普通子网,对这些专用业务子网提供网络连接控制。 

3.3 网络软环境安全 

网络软环境安全即校园网的应用环境安全。对于一些涉及到有敏感信息的业务专用网,如:财务处、教务处、人事处等等,必须确保这些子网的信息安全,包括:防病毒、数据备份与灾难恢复、规范网络通信秩序、对保存有敏感信息的重要服务器软/硬件资源进行层次化监控,防止敏感信息被窃取。 

3.4 传输安全 

数据的传输安全,主要是指校园网内部的传输安全、校园网与教育网之间的数据传输安全以及校园网与老校区之间的数据传输安全。

4 校园网络系统控制安全措施 

4.1 通过使用访问控制及内外网的隔离 

访问控制体现在如下几个方面: 

1)要制订严格的规章管理制度:可制定的相应:《用户授权实施细则》、《口令字及账户管理规范》、《权限管埋制度》。例如在内网办公系统中使用的用户登录及管理模块就是基于这些制度创建。 

控制系统网络安全范文3

“十三五”规划纲要和今年政府工作报告再次对制造强国进行部署,制造业作为立国之本、兴国之器、强国之基的地位愈发受到重视。在产业大规模升级和两化深度融合的情况下,我国工业控制系统的网络信息安全问题也愈发突出,亟待补齐短板。

工业控制系统是制造业基础设施运行的“大脑”,广泛应用于电力、航空航天、铁路、汽车、交通、石化等领域。2010年“震网”病毒攻击伊朗核设施,2011年“火焰”病毒入侵中东国家,2015年底“黑暗能源”病毒攻击乌克兰电网……一系列突发事件表明,工业控制系统的网络安全面临严峻的挑战。无论以美国为代表的“工业互联网”,还是以德国为代表的“工业4.0”,都将工业控制系统的网络安全视为重中之重。

中国政府对工业系统的网络安全同样极为重视。2011年开始,国务院先后出台的《工业转型升级规划(2011-2015)》、《关于大力推进信息化发展和切实保障信息安全的若干意见》、《中国制造2025》等一系列文件,都强调了两化融合中网络安全保障的重要性。

然而,与工业系统的快速数字化、信息化和智能化相比,中国工业控制系统的网络安全保障进展缓慢,防护薄弱,问题仍较为突出。

乌克兰电网被攻击后,国内相关网络安全公司的监测报告显示,在国内交通、能源、水利等多个领域的各类工业控制设备中,完全暴露在外、可以被轻易攻击的多达935个。有些城市和地区的工业控制系统面临较大的安全风险。

造成这一隐患的原因众多,关键是一些企事业单位在借助信息化提高生产效率的同时,没有考虑工业控制系统的网络安全防护。而即使认识到工业控制系统安全的重要性,在系统改造实施过程中,由于没有专业知识、人员和部门支撑,所采取的安全措施也往往浮于表面,未得实效。

从实际情况看,中国的工业控制系统虽然还没有发生影响巨大、后果严重的网络安全事件,但不少领域的企业都已经或多或少遭遇了因计算机病毒引发的安全事故。如果上升到国家安全层面,一旦这些控制系统的安全漏洞被利用,将有可能导致核电站过载、电网停电、地铁失控等灾难性后果,这绝非危言耸听。

面对日益严峻的网络安全形势,加强工业控制系统的网络安全保障迫在眉睫。既要有国家自上而下的体系化顶层设计,也要有产业和企业自下而上的探索与实践。

从国家层面来看,在保障体系的机制建设上,需要一个高规格的协调机构,以应对关键基础设施和重要系统可能遭受的高强度攻击,同时组建以工业企业、信息网络、公共安全为主的应急联动机制,制定应急响应处理办法。

与此同时,做好重点行业的工业控制系统威胁情报研究,各方联动,形成合力,提供有价值的威胁情报信息,建立更有实用性的威胁情报库,为政府机构、安全厂商、企事业单位提供更好的支持。

在技术上,要做好整个安全保障体系的“供应链”安全,特别是在一些关键基础设施和重要信息系统新建项目上,必须强化项目规划和设计阶段的网络安全风险评估,引入第三方安全机构或服务商对技术实施方案和产品供应链进行审查。同时加大投资力度,大力发展具有自主知识产权的安全防护技术和产品。

控制系统网络安全范文4

 

1美国电力行业信息安全的战略框架

 

为响应奥巴马政府关于加强丨Kj家能源坫础设施安全(13636行政令,即ExecutiveOrder13636-ImprovingCriticalInfrastructureCybersecurity)的要求,美国能源部出资,能源行业控制系统工作组(EnergySec*torControlSystemsWorkingGroup,ESCSWG)在《保护能源行业控制系统路线图》(RoadmaptoSecureControlSystemsintheEnergySector)的基础上,于2011年了《实现能源传输系统信息安全路线阁》。2011路线图为电力行业未来丨0年的信息安全制定了战略框架和行动计划,体现了美国加强国家电网持续安全和可靠性的承诺和努力%

 

路线图基于风险管理原则,明确了至2020年美国能源传输系统网络安全目标、实施策略及里程碑计划,指导行业、政府、学术界为共丨司愿景投入并协同合作。2011路线图指出:至2020年,要设计、安装、运行、维护坚韧的能源传输系统(resilientenergydeliverysystems)。美国能源彳了业的网络安全目标已从安全防护转向系统坚韧。路线图提出了实现目标的5个策略,为行业、政府、学术界指明了发展方向和工作思路。(1)建立安全文化。定期回顾和完善风险管理实践,确保建立的安全控制有效。网络安全实践成为能源行业所有相关者的习惯,,(2)评估和监测风险。实现对能源输送系统的所有架构层次、信息物理融合领域的连续安全状态监测,持续评估新的网络威胁、漏洞、风险及其应对措施。(3)制定和实施新的保施。新一代能源传输系统结构实现“深度防御”,在网络安全事件中能连续运行。(4)开展事件管理。开展网络事件的监测、补救、恢复,减少对能源传输系统的影响。开展事件后续的分析、取证以及总结,促进能源输送系统环境的改进。(5)持续安全改进。保持强大的资源保障、明确的激励机制及利益相关者密切合作,确保持续积极主动的能源传输系统安全提升。为及时跟踪2011路线图实施情况,能源行业控制系统工作组(ESCSWG)提供了ieRoadmap交互式平台。通过该平台共享各方的努力成果,掌握里程碑进展情况,使能源利益相关者为路线图的实现作一致努力。

 

2美国电力行业信息安全的管理结构

 

承担美国电力行业信息安全相关职责的主要政府机构和组织包括:国土安全部(DHS)、能源部(1)0£)、联邦能源管理委员会(FEUC)、北美电力可靠性公司(NERC)以及各州公共事业委员会(PUC)。2.1国土安全部美国国土安全部是美国联邦政府指定的基础设施信息安全领导部I'j'负责监督保护政府网络安全,为私营企业提供专业援助。2009年DHS建立了国家信息安全和通信集成中心(NationalCyhersecurityandCommunicationsIntegrationCenter,NCCIC),负责与联邦相关部门、各州、各行业以及国际社会共享网络威胁发展趋势,组织协调事件响应。

 

2.2能源部

 

美国能源部不直接承担电网信息安全的管理职责,而是通过指导技术研发和协助项目开发促进私营企业发展和技术进步能源部的电力传输和能源可靠性办公室(Office(>fElectricityDelivery<&EnergyReliability)承担加强国家能源基础设施的可靠性和坚韧性的职责,提供技术研究和发展的资金,推进风险管理策略和信息安全标准研发,促进威胁信息的及时共享,为电网信息安全战略性综合方案提供支撑。

 

能源部2012年与美国国家标准技术研究院、北美电力可靠性公司合作编制了《电力安全风险管理过程指南》(ElectricitySubsectorCybersecurityRiskManagementProcess)151;2014年与国土安全部等共同协作编制完成了《电力行业信息安全能力成熟度模型》(ElectricitySubsectorcybersecurityCapabilityMaturityModel(ES-C2M2)丨6丨,以支撑电力行业的信息安全能力评估和提升;2014年资助能源行业控制系统工作组(ESCSWG)形成了《能源传输系统网络安全采购用语指南》(CybersecurityProcurementlanguageforEnergyDeliverySystems)171,以加强供应链的信息安全风险管理。

 

在201丨路线图的指导下,能源部启动了能源传输系统的信息安全项目,资助爱达荷国家实验室建立SCADA安全测试平台,发现并解决行业面临的关键安全漏洞和威胁;资助伊利诺伊大学等开展值得信赖的电网网络基础结构研究。

 

2.3联邦能源管理委员会

 

联邦能源管理委员会负责依法制定联邦政府职责范围内的能源监管政策并实施监管,是独立监管机构。2005年能源政策法案(EnergyPolicyActof2005)授权FERC监督包括信息安全标准在内的主干电网强制可靠性标准的实施。2007年能源独立与安全法案(EnergyIndependenceandSecurityActof2007(EISA))赋予FERC和国家标准与技术研究所(National丨nstituteofStandardsan<丨Technology,NIST)相关责任以协调智能电网指导方针和标准的编制和落实。2011年的电网网络安全法案(GridCyberSecurityAct)要求FKRC建立关键电力基础设施的信息安全标准。

 

2007年FERC批准由北美电力可靠性公司制定的《关键基础设施保护》(criticalinfrastructprotection,CIPW标准为北美电力可靠性标准之中的强制标准,要求各相关企业执行,旨在保护电网,预防信息系统攻击事件的发生。

 

2.4北美电力可靠性公司

 

北美电力可靠性公司是非盈利的国际电力可靠性组织。NERC在FERC的监管下,制定并强制执行包括信息安全标准在内的大电力系统可靠性标准,开展可靠性监测、分析、评估、信息共享,确保大电力系统的可靠性。

 

NERC了一系列的关键基础设施保护(CIP)标准181作为北美电力系统的强制性标准;与美国能源部和NIST编制了《电力行业信息安全风险管理过程指南》,提供了网络安全风险管理的指导方针。

 

归属NERC的电力行业协凋委员会(ESCC)是联邦政府与电力行业的主要联络者,其主要使命是促进和支持行业政策和战略的协调,以提高电力行业的可靠性和坚韧性'NERC通过其电力行业信息共享和分析中心(ES-ISAC)的态势感知、事件管理以及协调和沟通的能力,与电力企业进行及时、可靠和安全的信息共享和沟通。通过电网安全年会(GridSecCon)、简报,提供威胁应对策略、最佳实践的讨论共享和培训机会;组织电网安全演练(GridEx)检查整个行业应对物理和网络事件的响应能力,促进协调解决行业面临的突出的网络安全问题。

 

2.5州公共事业委员会

 

美国联邦政府对地方电力公司供电系统的可靠性没有直接的监管职责。各州公共事业委员会负责监管地方电力公司的信息安全,大多数州的PUC没有网络安全标准的制定职责。PUC通过监管权力,成为地方电力系统和配电系统网络安全措施的重要决策者。全国公用事业监管委员协会(NationalAssociationofRegulatoryUtilitycommissioners,NARUC)作为PUC的一■个联盟协会,也采取措施促进PUC的电力网络安全工作,呼吁PUC密切监控网络安全威胁,定期审查各自的政策和程序,以确保与适用标准、最佳实践的一致性

 

3美国电力行业信息安全的硏究资源

 

参与美国电力行业信息安全研究的机构和组织主要有商务部所属的国家标准技术研究院及其领导下的智能电网网络安全委员会、国土安全部所属的能源行业控制系统工作组,重点幵展电力行业信息安全发展路线图、框架以及标准、指南的研究。同时,能源部所属的多个国家实验室提供网络安全测试、网络威胁分析、具体防御措施指导以及新技术研究等。

 

3.1国家标准技术研究院(NIST)

 

根据2007能源独立与安全法令,美_国家标准技术研究院负责包括信息安全协议在内的智能电网协议和标准的自愿框架的研发能电网互操作标准的框架和路线图》(NISTFrameworkaridRoadmapforSmartGridInteroperabilityStandard)1.0、2.0和3.0版本,明确了智能电网的网络安全原则以及标准等。2011年3月,NIST了信息安全标准和指导方针系列中的旗舰文档《NISTSP800-39,信息安全风险管理》丨叫(NISTSpedalPublication800—39,ManagingInformationSecurityRisk),提供了一系列有意义的信息安全改进建议。2014年2月,根据13636行政令,了《提高关键基础设施网络安全框架》第一版,以帮助组织识别、评估和管理关键基础设施信息安全风险。

 

NIST正在开发工业控制系统(ICS)网络安全实验平台用于检测符合网络安全保护指导方针和标准的_「.业控制系统的性能,以指导工业控制系统安全策略最佳实践的实施。

 

3.2智能电网网络安全委员会

 

智能电网网络安全委员会其前身是智能电网互操作组网络安全工作组(SGIP-CSWG)ra。SGCC一直专注于智能电网安全架构、风险管理流程、安全测试和认证等研究,致力于推进智能电网网络安全的发展和标准化。

 

在NIST的领导下,SGCC编制并进一步修订了《智能电网信息安全指南》(NISTIR7628,GuidelinesforSmartGridCybersecurity),提出了智能电网信息安全分析框架,为组织级研究、设计、研发和实施智能电网技术提供了指导性T.具。

 

3.3国家电力行业信息安全组织(NESC0)

 

能源部组建的国家电力行业信息安全组织(NationalElectricSectorCybersecurityOrganization,NESCO),集结了美国国内外致力于电力行业网络安全的专家、开发商以及用户,致力于网络威胁的数据分析和取证工作⑴。美国电力科学研究院(EPRI)作为NESC0成员之一提供研究和分析资源,开展信息安全要求、标准和结果的评估和分析。NESCO与能源部、联邦政府其他机构等共同合作补充和完善了2011路线图的关键里程碑和目标。

 

3.4能源行业控制系统工作组(ESCSWG)

 

隶属国土安全部的能源行业控制系统工作组由能源领域安全专家组成,在关键基础设施合作咨询委员会框架下运作。在能源部的资助下,ESCSWG编制了《实现能源传输系统信息安全路线图》、《能源传输系统网络安全釆购用语指南》。3.5能源部所属的国家实验室

 

3.5.1爱达荷国家实验室(INL)

 

爱达荷W家实验室成立于1949年,是为美国能源部在能源研究、国家防御等方面提供支撑的应用工程实验室。近十年来,INL与电力行业合作,加强了电网可靠性、控制系统安全研究。

 

在美国能源部的资助下,INL建立了包含美国国内和国际上多种控制系统的SCADA安全测试平台以及无线测试平台等资源,目的对SCADA进行全面、彻底的评估,识別控制系统脆弱点,并提供脆弱点的消减方法113】。通过能源部的能源传输系统信息安全项目,INL提出了采用数据压缩技术检测恶意流量对SCADA实时网络保护的方法hi。为支持美国国土安全部控制系统安全项目,INL开发并实施了培训课程以增强控制系统专家的安全意识和防御能力。1NL的相关研究报告有《SCADA网络安全评估方法》、《控制系统十大漏洞及其补救措施》、《控制系统网络安全:深度防御战略》、《控制系统评估中常见网络安全漏洞》%、《能源传输控制系统漏洞分析>严|等。

 

3.5.2太平洋西北国家实验室(PNNL)

 

太平洋西北国家实验室是美国能源部所属的阔家综合性实验室,研究解决美国在能源、环境和国家安全等方面最紧迫的问题。

 

PNNL提出的安全SCADA通信协议(secureserialcommunicationsprotocol,SSCP)的概念,有助于实现远程访问设备与控制中心之间的安全通信。的相关研究报告有《工业控制和SCADA的安全数据传输指南》等。PNNL目前正在开展仿生技术提高能源领域网络安全的研究项。

 

3.5.3桑迪亚国家实验室(SNL)

控制系统网络安全范文5

当前的铁路计算机网络已经形成了铁路总公司、铁路局、基层站的三位一体的网络体系,基本上已经覆盖了整个的铁路网络。并且随着多个的管理信息系统的应用,也让铁路运输系统得到了有效的提升。现代物流的不断发展,对于铁路计算机内部的系统也提出了更高的要求,并且铁路的系统网络在运行的时候已经将互联网运用到铁路系统的运行中。但是随着多个管理系统以及互联网应用到铁路的管理系统中,随之而来的也伴有非常多的安全问题,给铁路计算机的网络安全带来了新的安全威胁。况且,铁路的计算机网络虽然比较健全,但是抵御危险的系统还不够完善。基于此种情况,就有必要对铁路计算机机的网络结构进行改善,让现在的铁路计算机网络系统能够克服传统的铁路系统所不能克服的危险,加强网络防御系统的构建,保证铁路计算机网络的安全。

2铁路计算机网络安全系统的应用

随着信息化社会的不断发展,铁路的运输以及市场营销和物流行业的发展,铁路计算机网络安全也在不断的提升网络安全程度,保证铁路信息网络的最大化安全。铁路计算机的网络安全,需要建立行业证书安全系统、访问控制系统、病毒防护系统等方面的安全系统,这样才能够有效的保证铁路计算机系统的安全性,让铁路计算机的网络系统发挥最大化的作用。通过完善铁路计算机网络安全,可以有效保证铁路计算机在最大化的安全下运行。

3铁路计算机网络安全的建设途径

3.1三网隔离

为了保证生产网、内部服务网、外部服务网的安全,实现三网互相物理隔离,不得进行三网直接连接。尤其生产网、内部服务网的运行计算机严禁上INTERNET。

3.2建立良好的铁路行业数字证书系统

证书的管理系统有利于保证网络和信息安全。铁路行业的数字证书系统能够有效的提高铁路信息系统的安全,让铁路信息系统在一个安全的环境下运行。证书系统加强了客户身份的认证机制,加强了访问者的信息安全,并且发生了不安全的问题还有可以追查的可能。行业数字证书在铁路信息系统中有效的防止了非法人员篡改铁路信息的不良行为,并且对访问者提供了强大的保护手段。

3.3建立安全的访问控制系统

控制系统可以针对不同的资源建立不同的访问控制系统,建立多层次的访问控制系统。控制访问系统构成了铁路计算机网络的必经之路,并且可以将不良的信息进行有效的隔离与阻断,确保铁路网络信息的安全性。建立有效的访问控制系统,可以保证网络访问的安全性和数据传输的安全性,最大限度的保障铁路计算机的信息安全。

3.4建立有效的病毒防护系统

有效的病毒防护系统就相当于杀毒软件存在于电脑中的作用一样,可以有效的防止病毒的入侵,控制进出铁路信息网的信息,保证信息的安全性。病毒的防护系统可以将进出铁路信息系统的信息进行检查,保证了铁路客户端的安全。病毒防护系统防止了不法人员企图通过病毒来入侵铁路信息网络系统,让铁路信息网络系统能够在安全的环境下运行,保证了信息的最大化安全性。定期的病毒查杀,可以保证铁路网络信息系统的安全,让铁路信息网络系统得到有效的控制,保证客户的资料不被侵犯,保证铁路计算机网络的正常运行。

3.5加强人才培养和培训的力度

控制系统网络安全范文6

关键词:电力系统;计算机网络;信息安全;防护策略

引言

近年来,随着科技的飞速发展,互联网技术被应用于各个领域之中,互联网技术给人们日常生活与工作都带来了极大的便利。信息技术在电力系统之中的应用,可以提升对电力系统的管理工作效率,降低电力系统的管理难度。随着城市的发展,生活、生产用电量不断增长,这也造成了电力系统规模的不断扩大,为了确保电力系统的稳定运行,对网络信息技术的依赖性也越来越大。但是,网络信息技术中存在着信息安全问题,不能做好对计算机网络信息安全方面的防护工作,就会影响电力系统的顺利运行。

1计算机网络信息安全对电力系统的影响

计算机网络信息技术可以提升信息资源的利用效率,提高资源的共享能力,提升信息数据的传输效率。将计算机网络信息技术应用在电力系统之中,就能利用网络信息技术的优势,提高电力系统的输电、用电效率,有利于降低输电过程中的电能消耗。但是,基于计算机网络信息技术建立起的管理系统,很容易受到来自网络的黑客攻击或病毒侵害,如果不能给予相应的防护措施,电力系统中的相关数据就会受到严重损害,系统故障也会造成电力系统的运行故障。因此,电力系统利用计算机网络信息技术提高工作效率的同时,还必须重视起计算机网络信息安全问题,建立相应的防护系统,这样才能避免对电力系统造成的损害。

2电力系统中计算机网络信息安全的常见问题

2.1计算机病毒

计算机病毒是计算机网络信息安全中的常见问题之一,当计算机系统感染病毒,计算机病毒就会破坏系统中的程序数据,一些病毒也会损坏文件数据的完整性,这就会导致电力系统中的重要信息丢失,影响控制系统的正常运行。另外,一些危害较大的计算机病毒具有自我复制能力,随着系统软件的每次运行,病毒程序就会加以复制,进而加大计算机病毒的查杀难度,也会提升病毒对系统的破坏性。目前,电力系统中有大量基于计算机网络信息技术的监测、控制系统,当作为控制平台的计算机受到病毒入侵,系统稳定性就会受到影响,严重者就会出现电力系统的运行故障,不仅影响着正常供电,运行故障也会给电力系统的设备造成损害。

2.2黑客入侵

随着电力系统规模的扩大,在电力系统中使用的控制平台也从局域网络环境转为互联网环境,外网的使用就会加大受到黑客入侵的风险。黑客入侵会造成电力系统控制权的丧失,黑客入侵后,会利用电力系统中的安全漏洞,进而干扰电力系统的管控工作,同时也会造成重要信息数据的丢失。如果被黑客窃取的数据资料流入市场,也会让电力企业出现重大经济损失,进而扰乱电力市场,不仅危及着电力系统的运行安全,也干扰这社会秩序的稳定。

2.3系统本身的漏洞

利用计算机网络信息技术建立的监测、控制平台,需要定期进行版本的更新,不仅可以完善系统平台的功能性,也是对现存系统漏洞的修补。系统平台不能定期更新、维护,就会更容易被黑客侵入,也会提升系统报错的发生几率,影响系统的稳定性。如表1所示。

3电力系统工作方面中的不足

在电力系统中,工作人员操作相关软件系统时,也存在一些问题,这也会增加网络信息安全隐患。一些电力企业对网络信息安全的重要性并没有形成深刻的认识,网络安全问题对电力系统的危害没有引起领导层的重视,单纯的做好了计算机网络建设,并没有加入对网络信息安全方面的防护措施。另外,在使用中,许多工作人员缺乏计算机方面的专业知识,缺乏网络安全意识,就加大了日常工作行为造成网络安全问题的几率。工作人员缺乏相应的用网安全知识,随意进行网络浏览或插接带有病毒的硬件,这就会对网络信息安全造成威胁,严重者导致整个控制系统的瘫痪。另外,我国政府在对电力系统网络安全方面的管理制度也存在不足,缺少相关的法律法规加以约束,制定的法律法规中没有统一明确的标准,对现有问题的涉及范围较小,不能完全覆盖所有网络信息安全问题,这也就降低了法律法规的警示作用。

4电力系统网络信息安全的具体防护策略

4.1加装杀毒软件

在使用计算机和进行网络浏览的过程中,杀毒软件是保护计算机网络信息安全的重要工具。因此,在电力系统网络信息安全管理工作中,必须确保电力系统中的监测控制系统均要安装杀毒软件。可以根据电力系统实际情况来选择杀毒软件的类型,在日常管理中,工作人员要定期进行对计算机系统的查毒、杀毒操作,确保每名工作人员都掌握杀毒操作的方法,学习安全浏览网络、使用硬件的方法。要对工作人员加以培训,提升工作人员对网络信息安全的认识水平,对未知软件、邮件的阅读、安装提示加以防范,及时的查杀、删除,网络上挂载的文件也要慎重下载,尽量登录正规网站,减少未知网站的阅览。目前市场上常用的杀毒软件可参考表2。

4.2引用相关计算机网络防护技术

在电力系统的控制系统平台之中,还可以为相关软件加入网络信息安全技术,可以利用防火墙技术对外网与内网之间架设一道网络安全防护,进而减少外网环境中不安全因素对系统的入侵,提升用网安全性,加强对系统高危漏洞的修复,也能有效减少黑客、病毒对系统安全的危害。在电力系统控制端架设防火墙,通过防火墙限制用户数量,可以有效的避免黑客的入侵,进而防止电力系统控制权限被他人盗用。另外,在软件系统中也可以加入其它网络安全产品,例如VPN系统、文档加密系统、电子秘钥等安全产品,这样可以有效减少计算机网络信息方面的安全隐患,避免对电力系统正常运行的影响。相关网络安全防护措施如表3所示。