前言:中文期刊网精心挑选了电站继电保护论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
电站继电保护论文范文1
【关键词】继电保护现状发展
一、继电保护发展现状
电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力,因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段。
建国后,我国继电保护学科、继电保护设计、继电器制造工业和继电保护技术队伍从无到有,在大约10年的时间里走过了先进国家半个世纪走过的道路。50年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术,建成了一支具有深厚继电保护理论造诣和丰富运行经验的继电保护技术队伍,对全国继电保护技术队伍的建立和成长起了指导作用。阿城继电器厂引进消化了当时国外先进的继电器制造技术,建立了我国自己的继电器制造业。因而在60年代中我国已建成了继电保护研究、设计、制造、运行和教学的完整体系。这是机电式继电保护繁荣的时代,为我国继电保护技术的发展奠定了坚实基础。
自50年代末,晶体管继电保护已在开始研究。60年代中到80年代中是晶体管继电保护蓬勃发展和广泛采用的时代。其中天津大学与南京电力自动化设备厂合作研究的500kV晶体管方向高频保护和南京电力自动化研究院研制的晶体管高频闭锁距离保护,运行于葛洲坝500kV线路上,结束了500kV线路保护完全依靠从国外进口的时代。
在此期间,从70年代中,基于集成运算放大器的集成电路保护已开始研究。到80年代末集成电路保护已形成完整系列,逐渐取代晶体管保护。到90年代初集成电路保护的研制、生产、应用仍处于主导地位,这是集成电路保护时代。在这方面南京电力自动化研究院研制的集成电路工频变化量方向高频保护起了重要作用,天津大学与南京电力自动化设备厂合作研制的集成电路相电压补偿式方向高频保护也在多条220kV和500kV线路上运行。
我国从70年代末即已开始了计算机继电保护的研究,高等院校和科研院所起着先导的作用。华中理工大学、东南大学、华北电力学院、西安交通大学、天津大学、上海交通大学、重庆大学和南京电力自动化研究院都相继研制了不同原理、不同型式的微机保护装置。1984年原华北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用[5],揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。在主设备保护方面,东南大学和华中理工大学研制的发电机失磁保护、发电机保护和发电机?变压器组保护也相继于1989、1994年通过鉴定,投入运行。南京电力自动化研究院研制的微机线路保护装置也于1991年通过鉴定。天津大学与南京电力自动化设备厂合作研制的微机相电压补偿式方向高频保护,西安交通大学与许昌继电器厂合作研制的正序故障分量方向高频保护也相继于1993、1996年通过鉴定。至此,不同原理、不同机型的微机线路和主设备保护各具特色,为电力系统提供了一批新一代性能优良、功能齐全、工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果。可以说从90年代开始我国继电保护技术已进入了微机保护的时代。
二、继电保护的未来发展
继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化发展。
2.1计算机化
随着计算机硬件的迅猛发展,微机保护硬件也在不断发展。原华北电力学院研制的微机线路保护硬件已经历了3个发展阶段:从8位单CPU结构的微机保护问世,不到5年时间就发展到多CPU结构,后又发展到总线不出模块的大模块结构,性能大大提高,得到了广泛应用。华中理工大学研制的微机保护也是从8位CPU,发展到以工控机核心部分为基础的32位微机保护。
南京电力自动化研究院一开始就研制了16位CPU为基础的微机线路保护,已得到大面积推广,目前也在研究32位保护硬件系统。东南大学研制的微机主设备保护的硬件也经过了多次改进和提高。天津大学一开始即研制以16位多CPU为基础的微机线路保护,1988年即开始研究以32位数字信号处理器(DSP)为基础的保护、控制、测量一体化微机装置,目前已与珠海晋电自动化设备公司合作研制成一种功能齐全的32位大模块,一个模块就是一个小型计算机。采用32位微机芯片并非只着眼于精度,因为精度受A/D转换器分辨率的限制,超过16位时在转换速度和成本方面都是难以接受的;更重要的是32位微机芯片具有很高的集成度,很高的工作频率和计算速度,很大的寻址空间,丰富的指令系统和较多的输入输出口。CPU的寄存器、数据总线、地址总线都是32位的,具有存储器管理功能、存储器保护功能和任务转换功能,并将高速缓存(Cache)和浮点数部件都集成在CPU内。
电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护、控制装置和调度联网以共享全系统数据、信息和网络资源的能力,高级语言编程等。这就要求微机保护装置具有相当于一台PC机的功能。在计算机保护发展初期,曾设想过用一台小型计算机作成继电保护装置。由于当时小型机体积大、成本高、可靠性差,这个设想是不现实的。现在,同微机保护装置大小相似的工控机的功能、速度、存储容量大大超过了当年的小型机,因此,用成套工控机作成继电保护的时机已经成熟,这将是微机保护的发展方向之一。天津大学已研制成用同微机保护装置结构完全相同的一种工控机加以改造作成的继电保护装置。这种装置的优点有:(1)具有486PC机的全部功能,能满足对当前和未来微机保护的各种功能要求。(2)尺寸和结构与目前的微机保护装置相似,工艺精良、防震、防过热、防电磁干扰能力强,可运行于非常恶劣的工作环境,成本可接受。(3)采用STD总线或PC总线,硬件模块化,对于不同的保护可任意选用不同模块,配置灵活、容易扩展。
继电保护装置的微机化、计算机化是不可逆转的发展趋势。但对如何更好地满足电力系统要求,如何进一步提高继电保护的可靠性,如何取得更大的经济效益和社会效益,尚须进行具体深入的研究。
2.2网络化
计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,使人类生产和社会生活的面貌发生了根本变化。它深刻影响着各个工业领域,也为各个工业领域提供了强有力的通信手段。到目前为止,除了差动保护和纵联保护外,所有继电保护装置都只能反应保护安装处的电气量。继电保护的作用也只限于切除故障元件,缩小事故影响范围。这主要是由于缺乏强有力的数据通信手段。国外早已提出过系统保护的概念,这在当时主要指安全自动装置。因继电保护的作用不只限于切除故障元件和限制事故影响范围(这是首要任务),还要保证全系统的安全稳定运行。这就要求每个保护单元都能共享全系统的运行和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,确保系统的安全稳定运行。显然,实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络联接起来,亦即实现微机保护装置的网络化。这在当前的技术条件下是完全可能的。
对于一般的非系统保护,实现保护装置的计算机联网也有很大的好处。继电保护装置能够得到的系统故障信息愈多,则对故障性质、故障位置的判断和故障距离的检测愈准确。对自适应保护原理的研究已经过很长的时间,也取得了一定的成果,但要真正实现保护对系统运行方式和故障状态的自适应,必须获得更多的系统运行和故障信息,只有实现保护的计算机网络化,才能做到这一点。
对于某些保护装置实现计算机联网,也能提高保护的可靠性。天津大学1993年针对未来三峡水电站500kV超高压多回路母线提出了一种分布式母线保护的原理,初步研制成功了这种装置。其原理是将传统的集中式母线保护分散成若干个(与被保护母线的回路数相同)母线保护单元,分散装设在各回路保护屏上,各保护单元用计算机网络联接起来,每个保护单元只输入本回路的电流量,将其转换成数字量后,通过计算机网络传送给其它所有回路的保护单元,各保护单元根据本回路的电流量和从计算机网络上获得的其它所有回路的电流量,进行母线差动保护的计算,如果计算结果证明是母线内部故障则只跳开本回路断路器,将故障的母线隔离。在母线区外故障时,各保护单元都计算为外部故障均不动作。这种用计算机网络实现的分布式母线保护原理,比传统的集中式母线保护原理有较高的可靠性。因为如果一个保护单元受到干扰或计算错误而误动时,只能错误地跳开本回路,不会造成使母线整个被切除的恶性事故,这对于象三峡电站具有超高压母线的系统枢纽非常重要。
由上述可知,微机保护装置网络化可大大提高保护性能和可靠性,这是微机保护发展的必然趋势。
2.3保护、控制、测量、数据通信一体化
在实现继电保护的计算机化和网络化的条件下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可从网上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。因此,每个微机保护装置不但可完成继电保护功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,亦即实现保护、控制、测量、数据通信一体化。
目前,为了测量、保护和控制的需要,室外变电站的所有设备,如变压器、线路等的二次电压、电流都必须用控制电缆引到主控室。所敷设的大量控制电缆不但要大量投资,而且使二次回路非常复杂。但是如果将上述的保护、控制、测量、数据通信一体化的计算机装置,就地安装在室外变电站的被保护设备旁,将被保护设备的电压、电流量在此装置内转换成数字量后,通过计算机网络送到主控室,则可免除大量的控制电缆。如果用光纤作为网络的传输介质,还可免除电磁干扰。现在光电流互感器(OTA)和光电压互感器(OTV)已在研究试验阶段,将来必然在电力系统中得到应用。在采用OTA和OTV的情况下,保护装置应放在距OTA和OTV最近的地方,亦即应放在被保护设备附近。OTA和OTV的光信号输入到此一体化装置中并转换成电信号后,一方面用作保护的计算判断;另一方面作为测量量,通过网络送到主控室。从主控室通过网络可将对被保护设备的操作控制命令送到此一体化装置,由此一体化装置执行断路器的操作。1992年天津大学提出了保护、控制、测量、通信一体化问题,并研制了以TMS320C25数字信号处理器(DSP)为基础的一个保护、控制、测量、数据通信一体化装置。
2.4智能化
近年来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,在继电保护领域应用的研究也已开始。神经网络是一种非线性映射的方法,很多难以列出方程式或难以求解的复杂的非线性问题,应用神经网络方法则可迎刃而解。例如在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一非线性问题,距离保护很难正确作出故障位置的判别,从而造成误动或拒动;如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。其它如遗传算法、进化规划等也都有其独特的求解复杂问题的能力。将这些人工智能方法适当结合可使求解速度更快。天津大学从1996年起进行神经网络式继电保护的研究,已取得初步成果。可以预见,人工智能技术在继电保护领域必会得到应用,以解决用常规方法难以解决的问题。
三、结束语
建国以来,我国电力系统继电保护技术经历了4个时代。随着电力系统的高速发展和计算机技术、通信技术的进步,继电保护技术面临着进一步发展的趋势。国内外继电保护技术发展的趋势为:计算机化,网络化,保护、控制、测量、数据通信一体化和人工智能化,这对继电保护工作者提出了艰巨的任务,也开辟了活动的广阔天地。
电站继电保护论文范文2
1 车载移动式变电站的继电保护配置机构
车载移动式变电站是在自主控制一元机械前提下配合互联网二元机械,在IEC 61850通讯标准的基础上完成数据的分析和互通性,并具备继电维护和信息管控等作用的技术化变电站。车载移动式变电站包括三大层面:实际间隔阶层设备、中心互联网通讯层面、幕后操控层面。
1.1 进程层面
进程层面的组成成分是智力末端、对口设施和单元,其关键是互换机械,进程层面对继电的维护大体经过迅速跳闸设备。
①对电能运作的电气容量开展同时管控,例如电压值、谐波量、电压值、相位等,并且经过互换机械以互联网互换形式传播数据。
②检控运作器械的各项数据,测验断路器、隔离装置、变压器等器械的运作情况等。
③实施和推动运作管控。
1.2 空隙层面
空隙层面的任务是对器械开展维护和管控工作,在对空隙层面信息的同时搜集以及管控指令下达的顺序等,进行运作以其他管控作用,肩负着承前启后的通讯任务。
1.3 管控层面
管控层面的首要器械是活动设备、主要机械、约束转化器械等。首要作用是对总站信息数字的及时汇报,对信息库的更新,并把搜集到的数据传递到管控核心接收任务,向空隙层面和进程层面下达命令。此外,能够依据不一样运作形式,提前配合离线定制整定计算法则,确立几种确定数值的方法,确立体系运作中突发的问题,维护对应转换到提前设置好的一系列确定数值范围。车载移动式变电站依据主体开展维护设备设置的工作,例如线路维护、主线维护和变化维护等,和应用一般交互感受器时相同,只是把以往维护设备的沟通量装入插件转变为信息搜集光纤插口,用以太网络一并传递GOOSE和搜集样本的数值。
2 车载移动式变电站的运行情况和继电保护配置
2.1 车载移动式变电站的运行情况
①车载移动式变电站的供应体系的一般运作大体是指体系中的线路以及其装置都在最高效率下运作,所投射出的各种运动都在一般范围以内。
②电能供应体系失常运作的定义是体系即使不可以依照一般形式运作,也不可能引发体系出现突况。若车载移动式变电站中的电能供应体系处于失常运作状态时,则继电维护设备可以精确的传递有关的数据信息,并且在状况产生之前做好对失常运作的装置进行合理解决的准备。因此经过对状况趋于减小以及对状况产生的准时报告,完成体系中继电维护设备功能的目的,所以在车载移动式变电站电能体系中继电维护设备是保障电能体系运作可行的最关键设备。总而言之,车载移动式变电站中电能供应体系的可行性取决于继电维护设备设置的科学性。
2.2 车载移动式变电站继电保护配置
在车载移动式变电站的进步变化中,继电维护从以往的虚拟形式维护进步到了当前的信息式维护形式。车载移动式变电站中自主控制一元机械与互联网二元机械的配合,保障了各电能装置的数据分析和交流。此中划分层面设备中的继电维护,它的变压器维护以及线路维护等都在此进程层面中,所以就能够对MU车载移动式运作的参数状态以及搜集样本进行直观获得,不再需要经过进程层面中的互换机械。空隙层面中的为多空隙主线维护设置,其参数状态的得到要经过进程层面的互换机械。车载移动式变电站的区域维护管控部分,在幕后管控层面。区域维护管控部分监视电脑空隙层面互换机械,空隙层面信息搜集体系主线维护进程层面互换机械,变压器和管控设备线路维护整合部分MU智力运作盒幕后管控层面、空隙层面、进程层面。
①在对层次进行分配时,可以直接与MU车载移动式操作进行消息交流而不需要单独的观察其他信息,就可以对输电线路和变压器进行系统性的保护。并且在没有网络的条件下,也可以通过另外的程序进行安全操作,这样就可以消除网络中断时带来的安全威胁。车载移动式变电站在输电安全的措施上的这种改进,消除了传统输电时对于网络突发状况带来的安全隐患。
②车载移动式变电站,在其后台程序中对于降低输电线的负荷,监控和保护电源以及线路重合闸等设备起到了系统性的集中性作用,保障了既定方案的顺利实行。车载移动式变压站的后台程序可以将变压器、输电线、母线等设备监控与保护进行统一的管理而形成一个整体,使得操作变得简单可行,加快了变电站的运行,这样就大大缩短了设备保护的时间,解决了设备运行时出现故障时需要全方位检修的问题。
③车载移动式变电站可以根据实际需要车载移动式的调整保护定值和保护范围,从而避免了人为操作时而引发的跳闸问题。传统的保护定值是由相关工作人员进行调整的,而车载移动式变电站可以根据需要车载移动式的进行调整,也可以根据需要由工作人员进行更改,这样根据实际运行情况在二者之间进行选择,使得操作的机动性变得更强,在某一方面出现问题时可以及时通过其他方式来操作来保护输电线路,保障旁路运行。由于继电保护装置反馈信息是数字化的,只在光纤中传播,只能读入数字电压和电流信号。因此,测试数值信息读入的同步性就非常重要。
3 保护车载移动式变电站继电保护配置的措施
3.1 电压限定延时的过电流保护
在输电设施中,经常会由于这样或那样的问题造成线路的短路,进而使得线路中出现不正常的电流电压流通,比如电流过大和电流过小的情况,有时尽管这样的变化幅度不是很大,但是为了保护电路长期稳定的安全运行,在出现电流过大的电流时,车载移动式变电站应该及时关闭变电机的运行,当出现电流过小时,输电设施应该出现故障信号,来显示此刻线路中不正常的运行。为了区分这两类问题,可以在线路中加入低压元件,这样就可以及时显示线路运行故障出自哪方面,从而有针对性的切除故障。
3.2 变压器保护配置
变压器的保护可以 通过层次性的装置进行分布性联合性保护,而变压器的后备保护则主要采用的是集中对其进行保护的装置,对于不过电保护装置的保护则是通过安装的方式,就是在变压器出现故障时通过数字信息发给光缆进而促使电路跳闸,然后跳闸命令通过数据信息反馈给GOOSE和上传到网络。
3.3 线路保护
在保护输电系统的线路时,车载移动式变电站主要采用多层次分层保护的装置,而电力系统的后背装置的保护则采用的是中央处理式装置。对于线路的保护和断路管理器的通信,则主要采用的是数据信息通过光缆将数据提交到通信保护装置,来达到车载移动式对线路的统一保护作用。
3.4 复合电压过电流保护
在车载移动式变电站的变电输电系统中,当线路中电流过大或者当变压器的反应与规定不同时,就必须进行复合电压过流保护装置对线路保护。该装置主要在变电站主要在不均匀短路时开始工作,短路不对称引起线路中的电流发生不稳定变化,而使得继电器工作,这种情况会引起线路的出现低压,然后中间继电器开始[第一论文 网专业提供毕业论文写作和写作毕业论文论文的服务,欢迎光临dylw.neT]运工作,这样就能够令线路开始正常运作保护线路安全通畅运行。此时,通过设定初始信号就可以使继电器常用开关闭合而开启运行。同时,当线路短路时,会造成继电器失压,而清除线路故障之后,继电器的长闭开关就会闭合,这样就能显著提升电压元件的反应度。
4 结 语
大力发展车载移动式变电站技术,并充分将这些技术运用于实际,车载移动式变电站的新技术不仅能与传统的继电保护相融合,更能在危机情况下进行脱机控制,这样给继电保护带来了较为灵活的机动性,结合传统的继电保护系统和装置,对新型的车载移动式变电站进行系统性的完善,这样的系统不仅能够使变电站在出现故障时能够安全稳定的运行,还能快速的对故障部位进行清除与维修,解决了传统继电保护在设备发生故障时输电严重影响输电效率的问题。
参考文献:
电站继电保护论文范文3
关键词:数字化变电站;继电保护;信息流;可靠性;应用;影响;分析
中图分类号:TM774 文献标识码: A
前言:本章主要针对适用于数字化变电站继电保护原理的校验方法进行了说明,分别从一次设备、二次保护设备和测试仪器等方面做了比较详细的分析。如对于电子式电流互感器和电子式电压互感器,我们从其极性试验、伏安特性试验、绝缘试验、变比试验、交错平衡试验等与常规校验的不同处进行了讲解;而针对数字化的保护装置,我们又对相应的测试仪选择要求和校验方法通过几个比较典型的保护进行了说明;之后又考虑到主变保护在电站安全运行中的突出作用,我们又对主变保护特别是主保护中的差动保护进行了讲解,针对数字化变电站内投用继电器对差动特性的校验方法,我们也在本章进行了较为详细的说明。通过这一章的实践,我们给出了可以确保数字化变电站安全、可靠投运的校验方法。
1.1 数字化变电站结构与组成
数字化变电站是指变电站内一次电气设备实现数字化通信,数字化一次设备和二次智能装置均按照全站统一的标准平台(IEC61850标准)进行数据建模及通信,并在此平台的基础上实现相互之间的互操作性。其特征是采用数字化的一次电气设备;全数字化的二次装置以及全站统一的标准平台。在结构上,数字化变电站可以分为站控层、间隔层和过程层。目前,从 IEC61850 标准的应用情况上来说,变电站层已经比较成熟,并已经具备普遍推广的条件。间隔层和过程层中的 GOOSE 信号传递技术通过不断的尝试,已经进入了实用阶段。而过程层中的采样值传递技术还不成熟,在这方面IEC61850 标准也在不断的更新中。在一些较低的电压等级中,已经实现了全站全数字化,而在一些较高电压等级的变电站中,也已经实现了除采样值传递以外的全站数字化。将上述概念应用到实际的变电站系统中,由于在实际运用中,最重要的就是保证系统的可靠性,因此,继电保护系统就显得尤为重要
1.2 数字化变电站与常规变电站的比较
从上一节数字化变电站结构与组成的介绍中可以清楚的发现数字化变电站较之常规变电站在一次设备、二次设备及其回路方面有着显著的不同。首先,数字化一次设备取代传统的一次设备,它与继电保护装置、智能操作箱等配合可实现对一次系统运行工况的实时监测、控制、调节和保护。其次,互感器是电力系统二次设备的信息源,电子式互感器替换传统电磁式互感器会带来二次系统结构的重大变革。对于二次系统来说,电子式互感器与传
统互感器的最大区别在于两个方面:
(1) 电子式互感器由于不受磁饱和特性的影响,在可能出现的最大短路电流
下不会达到饱和点,因而其误差很小,有利于提高测量精度和保护动作的可靠性。
(2) 电子式互感器能够直接提供数字信号。正是这个区别,将会对变电站继
电保护和综合自动化系统产生深刻的影响:简化了二次设备的结构,消除了测量
数据传输过程中的系统误差,数据共享更加容易,设备连接更加开放、灵活。虽
然目前研制的光电式互感器为了兼容旧的二次设备而仍然有模拟输出接口,但二
次系统全数字化是必然的趋势。
再次,由于电子式互感器输出的是离散的数字信号,而非连续的模拟信号;如果不能保证接入保护继电器的是同一时刻A、B、C三相电流所对应的数字量,哪怕三个量在时间上仅是毫秒级的差别,也会对零序电流保护产生足以使其误动作的误差,造成严重后果。因此,确保互感器输出的数字量能够同步的送入保护继电器是保证继电保护正确动作的重要一环,为此在数字化变电站的继电保护系统中必须增加常规变电站所不具有的合并单元,以此实现同步采样。
最后,为了充分发挥数字化变电站的优势,由光纤组成的网络代替了常规变电站中用金属导线连接各种二次设备组成的二次回路,同一个测量点、同一时刻的电流电压瞬时值所对应的数字信号,作为同一组数据用同一路光纤传输到测量和继电保护装置,继电保护和自动化装置发出的跳合闸命令也利用光纤传递至智能操作箱以实现最终操作,一次设备的运行状态、运行参数、二次保护装置的动作情况等信息也以数字信号的形式在变电站层、间隔层和过程层中按 IEC61850标准自由传输,实现了相关数据最广泛的共享。同时,光纤的使用还克服了常规变电站中二次导线回路可能出现的接地、短路、开路和寄生回路等现象,大大提高了继电保护系统的可靠性。综上所述,数字化变电站具有以下几方面的显著特征:
1). 一次设备的数字化和智能化。变电站内传统的电磁式互感器被电子式互感器所替代,直接向外提供数字式光纤以太网接口;站内采用具备向外进行数字通信的智能断路器、变压器等设备,或者在这些一次设备就地加装智能终端实现信号的数字式转换与状态监测,达到一次设备数字化和智能化的要求。
2). 二次设备的数字化和网络化。数字化变电站的二次设备除了具有传统数字式设备的特点外,还具备对外光纤网络通信接口,与传统变电站信息传输以电缆为媒介不同,数字化变电站二次信号传输基于光纤以太网实现。
3). 变电站通信网络和系统实现 IEC61850 标准统一化。数字化变电站全站通信网络和系统实现均采用 IEC61850 标准,该标准的完整性、系统性、开放性保证了数字化变电站站内设备具备互操作性的特征。运行管理系统的自动化。
1.3 数字化变电站继电保护系统设备介绍
1.3.1 电子式互感器
互感器的作用为保证电力系统的安全、经济运行,需要对电力系统及其电力设备的相关参数进行测量,以便对其进行必要的计量、监控和保护。互感器由连接到电力传输系统一次和二次之间的一个或多个电流或电压互感器组成,用以传输正比于被测量的量,供给测量仪器、仪表和继电保护或控制装置。
互感器的作用主要有以下几个方面:
1、将电力系统一次测得电流、电压信息传递到二次侧与测量仪表和计量装置配合,可以测量一次系统电流、电压和电能。
2、当电力系统发生故障时,互感器能正确反映故障状态下的电流、电压大小,与继电保护和自动化装置配合,可以对电网各种故障构成保护和自动控制。通常的测量和保护装置不能直接接到高电压、大电流的电力回路上。
3、互感器将一次侧高压设备与二次侧设备及系统在电气方面隔离,从而保证了二次设备和
人身安全,并将一侧的高电压、大电流转换为二次侧的低电压、小电流,使计量
和继电保护标准化。
电子式互感器分为电子式电流互感器和电子式电压互感器。按用途分,又可分为测量用电子式互感器和保护用电子式互感器。其中,电子式电流互感器按原理又可分为:光学电流互感器,空心线圈电流互感器及铁心线圈式低功率电流互感器。电子式电压互感器按原理又可分为:光学电压互感器及阻容分压型电压互感器。
结语:
继电保护装置作为能直接反映电力系统各电气设备不正常状态或者存在故障的,并作用于断路器跳闸或发出信号的一种自动装置,它通过预防事故或缩小事故范围来提高系统的运行可靠性,最大限度的保证了系统稳定运行和向用户安全连续供电的要求。因此,它是电力系统安全运行不可或缺的一个重要组成部分。研究数字化变电站继电保护系统的可靠性就显得尤为的重要了。
电站继电保护论文范文4
论文摘要:继电保护技术向计算机化、网络化、智能化、保护、控制、测量和数据通信—体化方向发展。并且电力作为当今社会的主要能源,对国民经济的发展和人民生活水平的提高起着极其重要的作用,本文对继电保护发展现状、电力系统中继电保护的配置与应用、继电保护装置的维护作了详细的介绍。
电力作为当今社会的主要能源,对国民经济的发展和人民生活水平的提高起着极其重要的作用。现代电力系统是—个由电能产生、输送、分配和用电环节组成的大系统。电力系统的飞速发展对电力系统的继电保护不断提出新的要求,近年来,电子技术及计算机通信技术的飞速发展为继电保护技术的发展注入了新的活力。如何正确应用继电保护技术来遏制电气故障,提高电力系统的运行效率及运行质量已成为迫切需要解决的技术问题。
1、继电保护发展现状
电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力,因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段。
建国后,我国继电保护学科、继电保护设计、继电器制造工业和继电保护技术队伍从无到有。在大约10年的时间里走过了先进国家半个世纪走过的道路。上世纪50年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术,建成了一支具有深厚继电保护理论造诣和丰富运行经验的继电保护技术队伍。对全国继电保护技术队伍的建立和成长起了指导作用。阿城继电器厂引进消化了当时国外先进的继电器制造技术,建立了我国自己的继电器制造业。因而在60年代中我国己建成了继电保护研究、设计、制造、运行和教学的完整体系。这是机电式继电保护繁荣的时代,为我国继电保护技术 的发展奠定了坚实基础。
2、电力系统中继电保护的配置与应用
2.1继电保护装置的任务
继电保护主要利用电力系统中原件发生短路或异常情况时电气量(电流、电压、功率等)的变化来构成继电保护动作。继电保护装置的任务在于:在供电系统运行正常时,安全地。完整地监视各种设备的运行状况,为值班人员提供可靠的运行依据;供电系统发生故障时,自动地、迅速地、并有选择地切除故障部分,保证非故障部分继续运行;当供电系统中出现异常运行工作状况时,它应能及时准确地发出信号或警报,通知值班人员尽快做出处理。
2.2继电保护装置的基本要求
1)选择性:当供电系统中发生故障时,继电保护除。首先断开距离故障点最近的断路器,以保证系统中其它非故障部分能继续正常运行。
2)灵敏性:保护装置灵敏与否一般用灵敏系数来衡量。在继电保护装置的保护范围内,不管短路点的位置如何、不论短路的性质怎样,保护装置均不应产生拒绝动作;但在保护区外发生故障时,又不应该产生错误动作。
3)速动性:是指保护装置应尽可能快地切除短路故障。缩短切除故障的时间以减轻短路电流对电气设备的损坏程度,加快系统电压的恢复,从而为电气设备的自启动创造了有利条件,同时还提高了发电机并列运行的稳定眭。
4)可靠性:保护装置如能满足可靠性的要求,反而会成为扩大事故或直接造成故障的根源。为确保保护装置动作的可靠性,必须确保保护装置的设计原理、整定训算、安装调试正确无误;同时要求组成保护装置的各元件的质量可靠、运行维护得当、系统简化有效,以提高保护的可靠性。
2.3保护装置的应用
继电保护装置广泛应用于工厂企业高压供电系统、变电站等,用于高压供电系统线路保护、主变保护、电容器保护等。高压供电系统分母线继电保护装置的应用,对于不并列运行的分段母线装设电流速断保护,但仅在断路器合闸的瞬间投入,合闸后自动解除。另外,还应装设过电流保护,对于负荷等级较低的配电所则可不装设保护。变电站继电保护装置的应用包括:
①线路保护:一般采用二段式或三段式电流保护,其中一段为电流速断保护,二段为限时电流速断保护,三段为过电流保护。
②母联保护:需同时装设限时电流速断保护和过电流保护。
③主变保护:主变保护包括主保护和后备保护,主保护一般为重瓦斯保护、差动保护,后备保护为复合电压过流保护、过负荷保护。
④电容器保护:对电容器的保护包括过流保护、零序电压保护、过压保护及失压保护。
随着继电保护技术的飞速发展,微机保护的装置逐渐投入使用,由于生产厂家的不同、开发时间的先后,微机保护呈现丰富多彩、各显神通的局面,但基本原理及要达到的目的基本一致。
3、继电保护装置的维护
值班人员定时对继电保护装置巡视和检查,并做好各仪表的运行记录。在继电保护运行过程中,发现异常现象时,应加强监视并向主管部门报告。建立岗位责任制,做到每个盘柜有值班人员负责。做到人人有岗、每岗有人。值班人员对保护装置的操作,一般只允许接通或断开压板,切换开关及卸装熔丝等工作,工作过程中应严格遵守电业安全工作规定。
做好继电保护装置的清扫工作。清扫工作必须由两人进行,防止误碰运行设备,注意与带电设备保持安全距离,避免人身触电和造成二次回路短路、接地事故。对微机保护的电流、电压采样值每周记录一次,每月对微机保护的打印机进行定期检查并打印。定期对继电保护装置检修及没备查评:
①检查二次设备各元件标志、名称是否齐全;
②检查转换开关、各种按钮、动作是否灵活无卡涉,动作灵活。接点接触有无足够压力和烧伤;
③检查控制室光字牌、红绿指示灯泡是否完好;
④检查各盘柜上表计、继电器及接线端子螺钉有无松动;
⑤检查电压互感器、电流互感器二次引线端子是否完好;
⑥配线是否整齐,固定卡子有无脱落;
⑦检查断路器的操作机构动作是否正常。
根据每年对继电保护装置的定期查评,按情节将设备分为三类:经过运行检验,技术状况良好无缺陷,能保证安全、经济运行的设备为一类设备;设备基本完好、个别零件虽有一般缺陷,但尚能安全运行,不危及人身、设备安全为二类设备。有重大缺陷的设备,危及安全运行,出力降低,“三漏”情况严重的设备为三类。如发现继电保护有缺陷必须及时处理,严禁其存在隐患运行。对有缺陷经处理好的继电保护装置建立设备缺陷台帐,有利于今后对其检修工作。
随着电力系统的告诉发展和计算机通信技术的进步,继电保护技术的发展向计算机化、网络化、—体化、智能化方向发展,这对继电保护工作者提出了新的挑战。只有对继电保护装置进行定期检查和维护,按时巡检其运行状况,及时发现故障并做好处理,保证系统无故障设备正常运行,提高供电可靠性。
参考文献
电站继电保护论文范文5
为了防止智能变电站在运行过程中发生故障,本论文通过对智能变电站实际运行中发生的问题进行总结,从而达到快速处理现场问题的目的,通过智能站的实际运行情况得出,本论文提出的观点能够有效的解决上述问题,因此具有较强的实用性。随着智能变电站的不断发展以及相关技术的不断成熟,智能站建设已经在全国范围内开展,但是,较常规变电站相比,智能站具有跟多的问题,尤其是运行不稳定,常见的有远端模块烧毁,合并单元异常,智能终端异常,保护装置的通信异常等问题,对于大数据处理的变电站,大量信息可能导致网络系统瘫痪、数据延时、网络风暴等原因,在实际运行中,同样会出现很多问题,比如间隔层设备数据中断、位置状态无效、控制块断链、遥测遥信等无法上送后台、保护跳闸命令、遥控命令不能执行、保护装置与智能终端跳闸命令异常等各种问题。
2、运行操作原则以及注意事项
智能变电站在运行操作时,不仅仅要考虑到常规站操作中的各种操作要点外,还要需要注意以下问题:
2.1检修压板的操作原则以及注意事项
智能变电站的检修压板不同于常规站的检修压板,智能站的检修压板投入时,相应的保护功能会发生变化,而常规站的检修压板投入时,只是屏蔽信号的上传。因此检修机制是智能站中一项非常重要的技术,所谓的检修机制是指,当智能装置投入检修压板后,动作报文中的检修标志位变成1,当另一个保护装置接收到该报文后,首先与自己的检修位进行对比,只有检修位一致时,才能判断为有效。如果不一致,则判为无效处理,在智能变电站中检修机制一般考虑保护保护装置、合并单元、智能终端之间的配合关系,如果保护装置和合并单元的检修不一致,那么保护可以采样但不进行逻辑计算,如果保护装置和智能终端的检修不一致,断路器无法跳闸,具体的跳闸逻辑如下图表1。在图1中假设合并单元为X,保护装置为Y,智能终端为Z
图1 检修机制逻辑图
(1)误投入合并单元的检修压板时,将会导致保护功能失效,虽然可以看到采样,但是该采样不参与逻辑计算,从而闭锁保护功能,造成保护拒动,从而扩大事故范围。
(2)误投入保护装置的检修压板时,由于保护装置与合并单元的检修品质不一致,保护装置将采样值作为无效处理,从而导致保护功能闭锁,同样造成事故,即便保护发生动作,也无法跳掉断路器。
(3)误投入智能终端的检修压板时,由于智能终端和保护装置跳闸GOOSE报文的检修位不一致,所以智能终端视为无效处理,从而导致断路器无法跳闸。
2.2合并单元检修压板的操作原则以及注意事项
(1)在投入合并单元的检修压板之前,应该首先检查一次设备是否处于检修状态或者冷备用状态,同时检查是否与该合并单元有关继电保护装置的SV软压板已经退出,尤其是仍需要继续运行的继电保护装置。
(2)如果一次设备继续运行,在投入合并单元的检修压板时,应该首先确保所有的保护装置处于“退出”状态。
2.3智能终端检修压板的操作原则以及注意事项
(1)在一次设备不停电的情况下进行智能终端检修压板的操作可能导致断路器无法跳闸,因此在投入智能终端的检修压板之前应该确认智能终端的跳合闸硬压板已经退出。
(2)在投入智能终端的检修压板时,应该确认本智能终端对应的断路器是否处于分位,并且确认与本智能终端有关的所有保护装置的GOOSE接受软压板已经退出,尤其是运行装置的GOOSE接受软压板。
3、装置告警信息以及处理原则
3.1保护装置告警信息以及处理
保护装置具有较强的自检功能,能够实时监视自身程序的运行情况和与其他智能设备的通信情况,当保护装置发生异常时,能够及时发出报警信息,一些异常可能导致继电保护装置的不正确动作或者造成部分保护功能被闭锁,通常情况下保护装置可能发生以下几种问题。
(1)SV异常报警。保护装置在报出SV异常时,可能导致失去部分保护功能或者全部保护功能,此时我们应该现场退出相应的保护功能,当退出保护后检查合并单元的运行状态,保护至合并单元之间的光纤链路,合并单元和保护装置的光电转换口。
(2)GOOSE异常报警。保护装置在报出GOOSE异常时,往往会导致断路器的位置无法上传给保护,从而引起保护的不正确动作,在发生GOOSE异常时,可能原因有两种,第一种是保护与智能终端之间的GOOSE链路中断,第二种是保护与其他保护之间的GOOSE链路发生中断。在处理GOOSE锻炼时,首先检查智能终端的运行状态,再检查其他相关保护的运行状态,最后检查光纤是否断开或者光纤接口是否损坏。
(3)软、硬件异常告警。当保护装置发生软件、硬件异常时能够及时的自检出来,则根据保护的自检报出相应的处理,如该异常报警必须闭锁相应保护,还需要现场退出相关保护。
3.2合并单元告警信息以及处理
当合并单元发出异常告警的信息后,首先应该检查合并单元的指示灯,根据点亮的灯来判断告警的原因,如双母线接线形式下合并单元采集不到刀闸位置时会发出报警。如果无法通过点亮的灯来判断,则需要根据具体情况判断。
(1)同步异常告警。当合并单元的GPS发生异常时,合并单元面板的同步灯会点亮,此时我们可以重点检查对时装置,检查的方法是看GPS光纤是否有红光,如果有说明合并单元GPS接口异常,如果没有红光说明对时装置出现问题。
(2)采样异常告警。
当采样异常时,无法通过肉眼判断出问题所在,此时需要利用网络报文分析仪,通过报文分析来判断合并单元发送的采样值是否正确,需要综合保护装置来判断问题,当有电压级联时,还需要检查电压级联,检查的对象是母线合并单元。
(3)GOOSE告警。
当合并单元发生GOOSE告警时,应该检查GOOSE的链路状态,由于单元的GOOSE只与交换机进行联系,所以首先检查交换机以及到交换机之间的光纤链路,如果还无法确定问题,需要检查信号发送端装置的运行状态。
3.3智能终端告警信息以及处理
当智能终端出现异常告警情况时,运行人员应该立即检查智能终端的指示灯,判断智能终端能够完成正常的跳合闸功能,第一时间应检查GOOSE链路情况,并根据检查结果确定解决方案。
(1)GOOSE断链,出现GOOSE断链的可能有母差的直跳、线路保护的直跳或其他有关保护跳该断路器的光纤链路发生断链。
(2)出现控制回路断线。控制回路断线告警信号由智能终端通过GOOSE发直接到测控,然后由测控负责上送到后台监控,该信号只反映断路器的控制回路是否正常,如果出现这个问题,应检查断路器的二次控制回路,并通知专业人士立即处理。
4、总结
随着智能化变电站的不断发展,对智能变电站的运行要求也越来越严格,如何更好的预防和处理智能变电站在运行中出现的问题,是运行人员当下工作的主要任务,而本文提出的一切问题以及解决方案能够为智能变电站的安全稳定运行提供理论依据,因此,本论文具有以下几个特点:
1、理论性高,本论文参考了各种智能化变电站的相关书籍以及结合现场要求、厂家研发人员的意见,因此提出的观点具有实际文献作为参考。
电站继电保护论文范文6
关键词: 继电保护;安全运行;定值整定;对策
Abstract: the relay protection plan is the top priority of the relay protection system, fixed value setting correct or not, relates directly to the relay action is correct or not, give full play to the relay protection device in the role of the relay protection in the power grid is at fault can quickly and correctly to reflect, so as to ensure the safe operation of the power grid. In this paper the relay protection substation of the existing problem in the understanding, especially to relay protection setting value in setting the phenomenon is described, and the cause of the analysis on the basis of analysis, put forward the solution of the path.
Keywords: relay protection; Safety operation; Fixed value setting; countermeasures
中图分类号:TM58 文献标识码:A 文章编号:
引言
随着电网的迅猛发展给继电保护系统提出了更高的要求,而计算机、电子和通讯技术的发展又给继电保护系统注入了新的活力。在继电保护的实践中,定值的计算与整定涉及到设计、施工、计算、变电(试验)等等方面分工,这些工作如果协调不到位,哪怕是一个环节出现问题,都将导致继电保护整定定值有误,进而导致电网中存在安全隐患,甚至引起电网事故。因此,做好继电保护的整定对于保障设备安全和生产的正常进行是十分重要的。为了完成本文,笔者走访了盐城市的红光变、冈西变及北龙变的三所变电站,对继电保护中存在的定值误整定的现象进行了调研。
1常用的继电保护基本原理
应用于输电线路的常用保护有以下两类:一类是反应输电线一端电气量的保护。如反应电流增大而动作的电流保护,有相电流保护、零序电流保护;反应电压下降而动作的低电压保护;反应测量阻抗减小而动作的距离保护,有相间距离保护和接地距离保护。这类保护通常是阶段式的,无时限动作的I段由于无法识别线路末端故障和相邻元件出口故障间的区别,所以为保证选择性,I段保护范围必须小于线路全长。剩下部分必须由带时限动作的n段来保护,为保证选择性,其保护范围不能伸出相邻线路I段范围,否则与相邻线路的II段会发生竞争,失去选择性,动作时间一般比相邻I段高一时限。III段保护一般起后备保护作用(在终端线也可以起主保护作用),其定值一般按躲正常负荷情况整定,所以比较灵敏,但动作时间按阶梯原则整定,越靠近电源端会越长。这类阶段式保护通常受电网结构与运行方式的影响较大,其整定计算比较复杂。
另一类保护是反应输电线两侧或多侧电气量的保护,如反应内部故障与外部故障时两侧(多侧)电流相位或功率方向差别的差动保护,有纵联差动保护、相差高频保护、方向高频保护等。这类保护不受运行方式的影响,能明确区分区内区外故障,并瞬时动作,不需要与相邻线路配合,整定计算也相对简单。输电线路的上述保护原理也可以作为变压器等元件设备的保护原理,除此之外,还有根据元件设备特点实现反应非电气量的保护,如当变压器油箱内部的绕组短路时,反应于油被分解所产生的气体而构成的瓦斯保护,以及反应于电动机绕组的温度升高而构成的过热保护等。
2继电保护人员配备问题
继电保护人员是完成继电保护整定工作的主体,整定人员的水平、经验、工作态度及工作时的精神状态,都会影响整定工作完成的效果。对继电保护工作的管理,首先应从整定人员管理入手,当前主要存在以下问题。
2.1部分供电公司无专职的继电保护整定人员,人员变动频繁,整定计算人员专业技能水平不一,不能保证继电保护整定工作整体水平的持续提高。
2.2整定计算原则及整定计算过程中的问题。不同的整定人员按规程进行整定计算,在此过程中由于选择的整定方案及整定原则的不同,可能造成整定结果有差异。如对具体保护装置内控制字、压板等理解不一致,控制字中复压闭锁方向应如何取舍,电流回路断线闭锁差动是否投入,线路重合闸时间如何确定,35kV联络线是否需要投两端保护,主变压器后备保护限时速断电流保护是否投入,计算中可靠系数、返回系数取值等,都有可能造成继电保护整定计算的差异。
在2010年,某110kV变电站的10kV分段开关跳闸,引起10kVⅠ段母线失压,造成了大面积的停电,在社会造成了恶劣的影响。其直接原因,是运维人员在倒闸操作时漏退一块压板所致,事后对该供电公司管辖的各变电站的继电保护定值单和保护压板的投退情况检查时,发现部分变电站的母线分段保护是作为线路的后备保护使用的,在另外部分变电站,却是作为母线充电保护使用的,可想而知,这起保护误跳事故的发生是必然的。
改进措施:根据各地区电网的具体结构特点,编写制定统一的地区电网保护整定原则,针对不同厂家的保护装置具体说明,对继电保护人员培训、整定人员计算核查都有较强的指导意义,且可为保护整定人员提供学习参考和整定核查依据。
3继电保护中存在的定值误整定现象分析
3.1旁路保护定值的误整定显现突出。一是线路定值修改、增删后,旁路定值未作相应修改、增删;二是因线路保护种类较多,旁路保护也不统一,因而旁路保护代线路保护的形式繁多。当旁路保护与线路保护类型不同时,有时旁路保护定值、压板或装置面板插槽位置未作相应修改。三是母联兼旁路的方式,开关作母联运行时,作旁路运行时相关保护未退出,仍然是代出线方式;开关作旁路运行时,作母联运行时的相关保护未退出,仍然是母联方式。
3.2公用设备保护的定值整定有误一是变电所现场故障录波器整定定值单与现场实际不符;二是故障录波器内部定值与整定定值单不符,如线路名称、启动量等;三是母差及失灵保护也出现上述现象。
3.3主变压器保护出现定值错误现象。例如,某110KV变电所在进行1#主变保护更换时,中、低保护定值整定T1时限跳母联、T2时限跳本侧开关,T3全切功能不用。但在进行保护装置调试时,因定值未及时收到,故三段时限全部做了,且Ⅱ、Ⅲ段实现全切。在定值整定以后又未做压板独立性检查试验检查,只看到保护能动就行了。在进行2#主变保护更换时,T2时限跳本侧开关(1#、2#主变保护定值基本一致)功能不能够实现。经检查发现:在厂家配线时,其根据技术协议,未配T2时限跳本侧的出口线,而定值又偏偏用了该功能,加之保护调试时态度不够认真,试验未能做全,导致了该主变保护定值出错。此外,因主变过负荷闭锁有载调压功能的实现不同厂家的装置其原理接线不一样,如压板与过负荷输出接点并联,此时要实现闭锁功能,压板必须退出,一旦投入,任何时候均能调压;如压板与过负荷输出接点串联,此时要实现闭锁功能,压板必须永远投入,一旦退出,任何时候均不能调压。但运行人员、甚至保护工作人员往往仅限于字面理解,误投或误退压板。
3.4定值、图纸管理不健全。某些变电所定值、图纸不全或不是当前有效版本,也查不到相应的试验记录,无相关设备台帐。
4解决继电保护定值误整定现象的对策
4.1要做好设计、施工、计算、变电(试验)等方面协调配合工作。一是加强定值计算人员与保护人员之间的相互学习和沟通。计算人员应对装置有一定的了解,变电保护人员应对定值单的内容有一定了解;二是设计、基建、技改主管部门应及时、准确地向保护计算、整定人员提供有关计算参数(技术协议、保护类型、启动方案等)、图纸,施工部门在调试完保护设备后也应及时将有关保护资料移交运行部门;三是整定计算人员下达定值时,应对照实际定值内容,全面下达定值,尽量避免因定值不全导致现场整定时发生歧义;四是现场保护工作人员应加强对保护内部接线(包括装置内部的逻辑图)的全面掌握,每套保护的功能(包括压板)均要独立检验,如发现装置与整定内容不符,应及时通知计算人员以便及时作出相应的更改。在更改线路保护定值的同时,必须更改旁路保护的定值;在新上线路间隔时,必须考虑到公用设备的定值修改。定值修改必须全盘考虑,按有关规定进行,并应作详细记录。同时,加强对运行人员在各种运方下二次设备知识的培训。
4.2重视旁路保护定值。尽管对单个变电所而言,旁路代路时间较短,但对整个电网而言,如旁路保护定值不正确,则意味着很多时间内均有局部电网的定值不正确。因此,应象对待线路保护定值那样重视旁路保护,同时应形成这样的概念:在更改线路保护定值的同时,必须更改相应的旁路保护定值。如代线路保护与旁路保护类型不同,应将相应的定值、压板或装置面板插槽位置进行彻底检查。应对运行人员进行旁路、母联互相切换方式的知识培训。
4.3低层班组、保护专职应加强对变电所公用定值的管理与核查。若须变动,应及时与上级有关部门沟通,确保其正确性。上级部门在下达公用设备的定值时,应根据不同的装置类型,全面下达其定值单,包括不用的,以免下面在执行时产生歧义。同时,变电人员和计算人员应加强相互的学习和交流,也应了解技术协议上的配置要求。现场整定人员应对整个保护动作回路做全面的检查,验收试验应按照定值单做全,压板的独立性一定要检查。
4.4图纸设计人员在设计时就应规范线路压变二次输出电压值,保护调试人员应全面掌握电压回路的动作逻辑,及时反馈给定值计算人员,定值计算人员应全面下达各种定值,而不是只下达通用部分,别的让保护人员自己发挥。
4.5明确各单位继保人员(如调度中心与检修公司、生技部与二次班等)的分工,并承担起相应的责任,应按时间顺序和保护类型、以元件(线路、主变、故障录波器、备自投等)为单位建立起设备、定值、图纸及其试验的台帐,定值更改及检验都应作相应的记录。现场应建立起专人负责制,加强对上述技术档案的管理。
5做好继电保护的标准化工作
做好继电保护端子、压板的标准化设计工作,并及时在电网内推广、应用,不仅能提高继电保护的运行维护水平,而且为继电保护的不断发展奠定良好的基础。标准化的设计,进一步完善继电保护的配置、选型,做好标准化设计,为今后的保护设计(包括厂家的制造)、运行、检修、管理打好基础。但同时我们也要看到,由于电网的结构越来越复杂,有些线路有串补,有些线路没串补;有些是可控串补,有些是固定串补;有些是和直流很近的交流线路,还有些是高压海缆等等,如果保护简简单单的搞全网统一,可能会出现问题。做标准化设计时,建议要求统一保护的屏标准、端子标准、二次回路标准,但是保护功能搭配要灵活,以满足电网发展的需要。
6结束语
随着科学技术的飞速发展,继电保护在变电站中的作用也越来越重要,它不仅保护着设备本身的安全,而且还保障了生产的正常进行,因此,做好继电保护的整定对于保障设备安全和生产的正常进行是十分重要的。加强继电保护管理,健全沟通渠道,及加强继电保护定值整
定档案管理等工作是提高继电保护定值整定的必要措施。
参考文献