前言:中文期刊网精心挑选了煤矿自动化控制范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
煤矿自动化控制范文1
关键词: 自动化控制;煤矿通风;PLC技术
中图分类号:C931.9文献标识码: A 文章编号:
引言:
随着经济的发展和科学技术的进步,计算机和自动化技术不但得到很快的发展并且在很多行业中得到了十分广泛的应用。尤其是近些年来,自动化控制技术在煤矿生产中逐渐应用起来,各地矿井在煤矿的开采和生产过程中选用开放、安全的自动化产品,并且构建起了覆盖整个矿井的生产系统和监控系统,提升了矿井的成功开采率以及矿区的安全指数。自动化控制技术的应用完成了煤矿开采所需要的所用功能,并且成功的搭建起了覆盖整个矿井的生产系统和监控网络系统,真正实现了煤矿生产的自动化。特别是我国煤矿通风中自动化技术的应用也得到了不断发展。
1.自动化控制技术的概况
自动控制技术是20世纪发展最快、影响最大的技术之一,也是21世纪最重要的高技术之一。今天,技术、生产、军事、管理、生活等各个领域,都离不开自动控制技术。就定义而言,自动控制技术是控制论的技术实现应用,是通过具有一定控制功能的自动控制系统,来完成某种控制任务,保证某个过程按照预想进行,或者实现某个预设的目标。在经济的不断发展和人类能源的需求下,就要求我们的生产效率不断地提升。在我国支柱产业煤炭产业上,自动化控制系统技术的应用就尤为重要了,他不断能解决我国矿井的成功开采率低的问题,同时也能解决很多矿井中的安全隐患。
2.自动化控制技术的特点
2.1 自动化控制系统采用最先进的Rockwell 的网络三层结构,在信息层应用以太网连接一些信息系统,从而进行信息的收集;在自动化系统以及系统的控制层面,使用的是DH+、RI/O 以及控制网等系统进行控制,更好的完成了 I/O 控制和闭锁以及各个部分之间的报文传送,这样就是在很大程度上保证了控制信息的实时和准确性;在自动化控制系统的设备层面,采用具备 DN 接口的先进设备,这样可以方便安装,在一定程度上降低了成本,并且可以实现对出现的故障进行快速的诊断。
2.2 采用十分先进的客户模型技术,这样可以使得自动化控制系统获得十分良好的性能以及远远优于其他系统的灵活性。客户模型技术最突出的优势就是支持输入数据的多信道广播以及对等通信数据的多信道广播,这样就会使控制数据在相同的时刻传送到操作的每一个程序,同时使的网络资源得到最大限度的利用。此外客户模型技术支持状态切换的报文发送,这样就为矿井的工作提供更加优良的确定性。
2.3 自动化控制系统应用 ControlNet 的先进技术,支持客户模型技术,使得其数据发送具有最大限度的确定性甚至是可重复性,此外自动化控制系统在运行时具有 5Mb/s 的传输速率,结构十分的灵活、方便。
2.4自动化控制系统应用 ND 技术,同时也是支持客户模型技术,这样就会将处在最低层的设备与控制器直接进行相连,有效的降低了成本同时这种方式的应用还十分方便安装,减少系统停机时间。
3.自动化控制技术在煤矿通风系统中的应用
煤矿通风系统中自动化控制技术的应用采用“集中控制,分散检测”的方式,进行若干监控分站的设立,对煤矿各个位置的风压、风量、有毒气体含量、温度等状况作出动态的检测,并将所获取的数据通过通信电缆来传送至煤矿通风主站,实施集中的管理与监视。而待通风主站对监控分站数据进行接收后,便就煤矿风力分布状况作出相应推算,进而明确风量控制的最佳方案。之后,转化方案为控制指令,向监控分站控制系统做出反馈,并依靠变频装置,来控制通风机风量,从而实现煤矿通风的自动化控制。对煤矿通风系统中自动化控制技术的应用进行设计,将其划分为传感器系统、通风系统、中央控制系统三部分来实现系统自控功能。首先是传感器系统设计,信号发生器为首要考虑装置,煤矿通风自动化控制系统需要完成对不同信号的传输与接收,包括指令与监控数据。其次是通风系统设计,这一系统中对于风量的调节可通过两种方法来实现,第一种是通过改变风门或百叶窗角度,来调节与控制风量;第二种则是通过对通风机的电机转速作出改变来完成的,设置变频装置,便可对通风机电机转速作出有效改变。还有就是中央控制系统设计,中央控制系统的任务主要是采集和处理监测站数据,并以实际需要为依据来对通风量作出动态的控制。此外,监控、报警等功能也要依靠中央控制系统来加以负责。
4.PLC技术在煤矿上的应用
PLC技术在煤矿提升机自动化控制系统中的应用。所谓的PLC就是可编程控制器,是一种数字运算操作的电子系统,能够进行逻辑运算、顺序控制以及算数运算等操作,具有适应性强、编程简单、抗干扰强的优点。采用PLC控制变频器,与传统的继电器控制相比,提升机制动更加平稳,操作更加简单,提高了控制精度,降低了生产过程中的故障率。
控制保护PLC功能是控制保护PLC根据外部输入的有关开关量、模拟量、光电编码器脉冲等信号进行逻辑运算、数值运算,完成提升机的启动、运行、停车等整个提升过程的运行控制及保护,他可以实行:行程控制、提升控制及中间闭锁、安全回路控制、井筒信号控制及联锁、过卷监视及控制、速度监视及控制、速度包络线监视及控制、逐点的速度监视及控制、液压站控制和恒减速控制、钢丝绳滑动监视及控制、传动装置监视及控制、闸瓦磨损监视及控制、电源故障监视及控制、控制系统故障监视、报警及控制、故障诊断、记录、过电压保护、过电流保护、错向保护等功能,为了提高PLC 控制保护功能的可靠性,对于关键的故障监测点,应采取多通道、多元件及软件、硬件并用等手段,实现“多重化”的控制保护功能。
PLC技术在煤矿提升机自动化控制系统中的应用。它可以在煤矿实现报警显示、二次不能开车、立即电气制动和立即安全制动的功能。PLC技术的使用,会在工作参数出现异常时,如当冷却器温度过高时,保护系统进行报警显示;当提升机的设备出现异常,有电机绕组过热,提升机不能进行再次的启动;当提升机在工作中,出现故障时,提升机将立即进行制动,停止运行;安全制动是保护系统的最后环节,当提升机或是安全回路本身出现故障时都能准确地实施安全制动。总之,随着数字控制技术的发展和PLC技术水平的提高,PLC技术在提升机控制系统中的应用越来越广泛。数字监控器也逐渐取代了机械式监控器和井筒开关,并作为提升机安全运行的后备保护,在提升机的生产过程中发挥的作用也越来越大。PLC技术在控制系统中的使用大大地提高了提升机的控制性能,也提高了系统自动化水平和安全可靠性,有利于提高系统的运行效率,促进矿井的安全、和谐、健康发展。
5.结束语
自动化控制技术是时代进步、科技发展的产物,在煤矿通风系统中的应用前景十分广阔。在实际的煤矿生产中,往往因煤矿通风系统存在这样那样的问题,而给煤矿抗灾能力和正常生产带来直接的影响。但考虑到煤矿通风系统在煤矿生产系统中的重要地位,保持其最佳的运行状态十分必要,而应用自动化控制技术则能够在一定程度上对煤矿通风系统运行中的各项难度进行解决。而PLC技术的使用,我们可以实现报警显示、二次不能开车、立即电气制动和立即安全制动的功能,进一步加强和完善了煤矿中自动化控制技术,使我国的支柱产业煤炭产业的得到安全稳定的发展。我们只有建立合理、完善的煤矿自动化控制系统,才能为煤矿效益提高与安全生产提供有力保障。
参考文献:
[1]高俊祥,高孝亮.自动化控制技术在煤矿通风系统中的应用[J].煤矿安全,2011 (1)
煤矿自动化控制范文2
【关键词】综合自动化控制系统;煤矿企业;系统构成
前言
煤炭在我国能源结构中所占的主体地位将仍然持续于未来大半个世纪,但我国90%的煤炭都以井工开采为主,生产隐患多,生产效率低,生产成本高,各种矿井事故(如瓦斯突出与爆炸事故、矿井突水事故、机电事故、顶板事故等)层出不穷,因此,有必要研究新型技术逐渐代替部分人力的作用。随着计算机技术的快速发展,自动化控制技术逐渐被运用到各个行业与领域中,基于现代化管理与安全监测系统的需要,在煤矿行业中安装采用综合自动化控制系统已成必然趋势。自该项技术在煤矿应用一二年以来,显著提高了矿井生产效率与安全系数,因此,大力发展自动化控制技术是新型现代化矿山企业建设与实现安全高产高效的必然途径。以下笔者将从煤矿综合自动化控制系统特点、构成与实现三方面进行详细阐述。
1 煤矿综合自动化控制系统的特点
煤矿综合自动化控制系统作为煤矿自动化总平台,实现了在地面对煤矿井上下诸多设备的可靠控制。
(1)采用光纤组建了煤矿井下工业以太网并形成环网,全矿井下胶带、轨道、供电、排水、通风、矿井提升、选煤等自动控制子系统均以现场总线等形式就近接入工业以太环网,同时,采用OPC及组态软件等技术接入软件平台,形成全矿井自动控制信息传输及处理的总集成平台,基于该平台实现了在地面集控中心对井下胶带、供电、排水、轨道、通风、压风、提升、选煤等设备的远程开停控制和在线监测,井下诸多环节和岗位实现了无人值守,大大减少了井下现场人员,提高了矿井安全水平。
(2)煤矿安全监控、人员定位等监测监控系统在地面接入煤矿自动化平台,实现了矿井自动化信息、安全生产监测信息的集成、共享和Web等功能,实现了对井下所有掘进头、工作面的瓦斯自动检测和超限自动断电、告警,实现了对井下所有重要地点的风速、温度、风门、局扇开停的自动监测,实现了对井下人员分布情况的在线监测和统计。
(3)建立了矿井自动化监控中心,具有大屏幕显示功能,控制功能,数据统计汇总功能,网络功能等,操作员站之间具备相互冗余功能。
(4)建立了矿井工业电视监视系统,将井下和地面各主要地点摄像机的信号传输到地面视频服务器,在集控中心显示和切换图像,为地面远程控制提供了必备的监视手段。
(5)建立了矿井移动通信系统,实现了井下现场与集控中心的清晰通话,为地面远程控制提供了畅通的联络手段。
(6)完成了煤矿综合自动化控制系统与煤矿管理网络安全对接,将煤矿井下现场的自动化信息、安全监测信息、井下视频与管理信息系统联通,通过Web等方式实现了各类信息在全公司的资源共享。
2 煤矿综合自动化控制系统构成与网络架构
2.1 煤矿综合自动化控制系统构成
矿山综合自动化系统以矿用千兆冗余工业以太环网为通讯平台,采用3层网络结构,将数据、视频、音频、通讯一条线路同网传输,基于VLAN、IGMP等工业以太网技术,通过优化资源配置,合理分配各系统的资源和带宽,确保重要数据的实时性和可靠性及各种情况下通信的畅通。通过光纤通信为骨干通信平台,将主井提升子系统、选煤厂控制系统、井下人员定位系统、带式输送机监控系统、井下供电无人值守系统、电力调度子系统等统一集成在一个骨干光纤软件平台上,构成一个统一的煤矿综合自动化信息管理平台。
2.2 煤矿综合自动化控制系统网络架构
煤矿综合自动化控制系统的主干通信网络使用千兆环型工业以太网,使用核心交换机将井上信息管理平台与井下各类自动控制系统互连,骨干网提供工业以太网接口,保证整个系统具有良好的可扩展性,骨干网一旦出现故障,可以迅速自适应恢复通信,保证整个系统的稳定性与可靠性。煤矿综合自动化控制系统的网络系统由井下网络和井上网络2部分构成,网络均为环型拓扑结构,2部分网络使用核心交换机完成互联。全矿骨干网络使用1000M工业以太网构建,为全矿各子系统提供方便灵活的工业以太网接口,地面、井下子系统均可以方便接入。
图1 煤矿综合自动化控制系统结构
煤矿综合自动化控制系统井上部分由核心交换机和以太环网组成,以太网使用千兆带宽,保证系统通信的稳定性与安全性,其他子系统接入附近的交换机,主网络通过地面网关交换机接入调度指挥控制中心网络。井下控制网络通过环形工业千兆太环网,构成井下生产过程控制自动化的统一软件平台。煤矿综合自动化控制系统结构图如1所示。
3 煤矿综合自动化子系统软件功能的实现
煤矿综合自动化控制系统使用统一的平台集成了电力调度子系统、压风机子系统、锅炉房子系统、中央回风井通风机子系统、副井提升子系统、井下带式输送机集中控制系统、考勤、人员定位和无线通讯系统等不同功能子系统。不同的子系统软件的实现主要采用组态软件完成,组态软件根据现场情况进行快速二次开发,真实模拟现场动画效果,有效处理数据。例如煤矿综合自动化控制系统中的井下主排水系统的监控软件需要实现水泵的在线监测和自动化控制。能对水泵的各项运行工况参数在线实时监测、统计和显示,通过智能专家系统使水泵始终处于高效的运行状态,通过故障参数进行分析预警,防止事故,控制操作程序,防止误操作,同时可根据操作员指令或预定控制程序,按要求自动完成水泵的定时启动、定水位启动、自动切换启动、智能经济运行等操作,自动控制分时运行、削峰填谷,即可现场操作控制,也可远程操作控制,实现水泵的高效经济运行和现场无人值守运行。通过组态软件可以快速高效的实现上述功能,利用组态软件设计的井下主排水系统监控界面形象直观,具体界面如图2所示。
图2 井下主排水系统监控界面
4 结语
煤矿综合自动化控制系统在地面远程控制井下设备,实现现场无人值守,不仅减人提效,也是煤矿“无人为安”思想的体现,对煤矿安全生产的发展具有重大意义。通过在煤矿建立综合自动化控制系统,可以实现在煤矿地面控制中心对井下胶带运输、轨道运输、供电、排水、压风、地面选煤设备的开停控制,并减少井下现场作业人员数量,从而可取得较好的经济效益和社会效益。
参考文献:
[1]王健.浅谈煤矿综合自动化的发展及应用[J].科技信息,2011(08).
煤矿自动化控制范文3
关键词:煤矿;自动化技术;电气自动化;控制系统;优化设计
1煤矿井下电气自动化控制系统的应用
1.1在采煤机中的应用
采煤机是煤矿开采过程中最为关键的机械设备之一,其安全性直接影响着整个采煤工作,因此,一般来说对采煤机工作人员的要求比其他设备高。目前来说,采煤机本身构造较为复杂,再加上其所处工作环境并不理想,一旦出现问题,则会影响到整条生产线。尽管目前高新技术的应用提升了煤矿开采的效率,但也带来了一些前所未有的潜在危险。电气自动化控制系统的引入,不仅可以及时监测采煤机在采煤过程中的状态,还可以解决一些隐患问题,从而消除一系列安全隐患,在保障安全的前提下提高产率[1]。采煤机电气自动化控制系统框图如图1所示。
1.2在矿井提升机中的应用
作为煤矿开采过程中一种关键的设备,矿井提升机一般来说工作环境较为复杂,也极易出现故障。电气自动化控制系统的引入,有效解决了这一大难题,使得矿井提升机的工作效率大大提升,并且极大地减少了耗电量,提升了煤矿企业的经济效益。
1.3在皮带输送机中的应用
皮带输送机在煤矿开采的过程中极为常见,但这种设备存在较大的弊端,即高电压、高功率,因此煤矿开采过程中经常出现因供电不足而导致皮带输送机工作不稳定的情况,严重时则会产生不可逆转的后果。因此,煤矿企业应当合理引入电气自动化控制系统,对电压和功率进行实时监控(见图2),尽可能排除对皮带输送机影响较大的一些因素。只有这样,才能及时发现、解决皮带输送机所出现的问题,有效提升皮带输送机运行的效率。
1.4在流体负荷设备中的应用
煤矿开采作业中所用的流体负荷设备一般包括风机、压机泵等。电气自动化控制系统的引入,使得工作人员对流体负荷设备的操控更加灵活,不仅可以保障设备处于正常工作状态,还可以大大降低煤矿开采过程中的能耗。
1.5在井下环境监控中的应用
以往开采工作中对井下环境的监控一般是工作人员定时使用设备进行人工监控,不能实时监测,很有可能造成一系列的安全事故,例如在第一次与第二次监控的间隔期,瓦斯浓度超标,发生爆炸,这不但给企业造成一定的经济损失,而且难以保障工作人员的安全。假如引入电气自动化控制系统,工作人员就可以进行实时监测,并对超过一定标准的参数进行报警,从而消除安全隐患,保障人员的生命安全。
2煤矿井下电气自动化控制系统的优化
2.1选型的优化
当前来说,电气自动化控制系统根据其应用性能的不同有着许多种类,因此,煤矿企业应当根据具体情况来进行选型。a)应当对煤矿井下系统构造有一定的了解。各个矿井所处的环境是不同的,因此煤矿企业应当根据自身具体环境来选择合适的电气设备型号和自动化系统。比如中国目前主流的西门子PLC(ProgrammableLogicController,可编程逻辑控制器)系统,可根据具体需求分为很多种;再比如在环境较为复杂的矿井中,煤矿企业应当采用一些中型电气自动化控制设备,如SIEMENS-S7-300等。b)应当明确所采用的I/O点的种类。根据煤矿作业过程中设备所要求系统的复杂程度及具体需求,确定I/O点的种类和数量,确定好之后,以此为前提来确定具体的设备情况,再根据数量来确定软件和硬件的数量,避免设备被浪费,从而避免对电气自动化控制系统造成不利影响。c)编程工具的选择。中国煤矿企业当下所使用的编程工具众多,主要有手持型编程、图形编程和软件控制编程等几种类别[2]。这几种类别中手持型编程最为简单,这种编程类别由于其自身的预设程序是有限的,应用范围较窄,而且效率也比较低,通常需要人工控制,只可以满足小型设备的要求。图形编程相对于手持型编程来说更为直观,其采用的是简洁明了的梯形图,所以经常被应用于中型设备中。大型设备的控制程序一般采用的是软件控制编程,这种方式对使用者来说最为高效,但开发投资成本较高,并且软件开发难度较大。
2.2软件的优化
软件是电气自动化控制系统的关键部分,它的优化直接决定了电气自动化控制系统的工作效果。通常,煤矿企业应当根据硬件对软件进行同步优化。a)结构方面的优化。PLC系统的开发一般分为模组开发和程序开发,应当根据实际生产情况对PLC系统进行实时调整,从而选择最优方案。(a)可以根据不同的任务需求将PLC系统划分为多个模块,对每一个模块进行针对性调整,然后再将其叠加形成完整的程序控制;(b)需要结合煤矿生产线的具体运行情况对电气自动化控制系统进行实时调整,从而有效提高煤矿生产效率,使得设备运行稳定。b)对程序开发的过程进行优化。应当把I/O节点的优化放在关键位置,分配节点时应当根据矿井中生产线的具体情况进行合理调整,这样不仅可以集中对单个节点进行控制,还有利于后期设备维护工作的进行[3]。
2.3硬件的优化
硬件方面的优化是煤矿生产中PLC系统优化的核心内容,硬件的结构组成是保障PLC系统安全稳定运行的基础。所以企业应当将电气自动化控制系统的硬件优化放在首位。a)应当对输入电路进行合理优化。一般来说,煤矿企业应该将使用的电气自动化控制系统的输入电压设置为80~240V,以此来扩大电气设备的适用范围,以及保障电气设备可以稳定地运行。此外,煤矿企业还应当对输入装置中的脉冲干扰进行屏蔽,一般通过电源净化等方式来实现。b)应当对输出电路进行合理优化。应当根据煤矿井下生产线的具体情况,对晶体管进行灵活应用,从而对电路进行输出控制,提高其反应灵敏度。例如煤矿井下压力泵机房的PLC系统,若其输出频率在6min/次以上,煤矿企业应当增加继电器来辅助其输出,这样才能有效保护电路系统。再者,如果PLC系统的输出设备敏感度较高,一旦断电,就有可能使得芯片结构损坏。对此,可以增加续流二极管辅助调控,尽可能保护芯片。c)应当对抗干扰设备进行优化。由于煤矿开采所处的环境比较恶劣,煤矿井下电气自动化控制系统应当对外界的干扰具有一定的抵御能力,这也是煤矿企业优化管理的一大重点[4]。
3结语
随着科学技术的飞速发展,电气自动化控制系统在煤矿开采过程中的应用越来越广,大大地提升了煤矿开采的效率,提高了开采质量。但目前采煤作业方面电气自动化控制系统存在一些软硬件等方面的问题还没有得到解决。因此,煤矿企业应当针对当前问题,增加对技术及设备等方面的投入,不断对电气自动化控制系统进行优化改进,从而满足当下煤矿生产的需求,进一步在提升煤矿企业经济效益的前提下保障作业人员的生命安全。
参考文献:
[1]张海将.煤矿井下电气设备自动化控制的应用与优化[J].电子技术与软件工程,2019(15):105-106.
[2]李志庆.刍议煤矿井下电气设备自动化控制应用与优化[J].当代化工研究,2019(4):79-80.
[3]毛艳青.煤矿电气自动化控制系统设计[J].机械研究与应用,2019,32(6):157-158.
煤矿自动化控制范文4
关键词:自动化;煤矿通风;管理控制
煤矿井下通风状况关系到矿井的生产全,采用自动调节和控制的技术,加强矿井通风技术,提高安全生产能力,将矿井通风过程中的自动控制和调节的技术加以提升,是当前防止矿井安全事故、达到矿井通风自动化运行的重要技术手段。对于减轻事故发生的危害程度,提高矿井的安全系数,具有关键的作用。从当前常用的矿井通风系统的自动化管理方面进行分析,主要包括检测通风状况和监测环境质量等方面,常见的检测是针对通风系统风量,常用的自动化通风系统包含了通风、信号、传感器系统,主要由中央控制系统符合运行和协调。
1、煤矿通风系统自动化控制
进行煤矿通风系统的自动化安装和运行,主要是为了保持井下空气状况的安全和稳定,通过通风巷道,将井上和井下的空气加以交换,给工人提供较为舒适的工作环境,保持矿井内部的空气的新鲜,将井下的有害气体以及热量、水蒸气等加以排出,得到适合安全生产的矿井工作条件。检测的内容包括瓦斯的含量的监控,系统通风量的及时调整,瓦斯含量如果发生了异常的升高或者涌出,应该警惕是否有安全事故或者隐患存在。目前采用的人工管理的方法,对于监控和调度的自动化程度来说,是不足以维护煤矿安全运行的。自动化控制水平高的煤矿通风系统,能够控制风量计算模型,运用科学合理的通风系统的管理来保证系统运行的安全可靠。
2、自动化控制系统整体设计
2.1自动化系统采用的是集中控制和分散检测的方式,建立了动态检测煤矿的监控分站,对煤矿内部的气体、风压、温度等状况进行检测,由煤矿通风总站将数据加以传输,得到了关于监控分站的各种数据的汇总,然后采用推算的算法,得到了煤矿风量的分布的情况,将风量控制方案,反馈给变频装置等监控分站中的重要位置,达到通风系统的自动化控制的目的。2.2自动系统的原理,是以煤矿通风主站、分站,进行检测和控制,通过风压、风量、气体、温度的传感器将系统的数据加以传输、汇总、分析和运行。自动系统包含了通风系统、中央控制以及传感器系统等内容。传感器系统包含了信号发生器等,将不同的信号加以传输和接受,得到了监控的指令和数据。信号经过传输分为频分制和时分制度,按照计划将各路信号按照频率进行接收和发送。频分制的电路较为简单,故障较少,频率的接收和发送使用载频器进行定型生产,吸纳后通过动力线传递线进行传输,并对元件进行检测。矿井的环境状况等通过风量的控制得到精确的测量,测量到的数据包括了风量、风压和温度以及有毒的气体,巷道中被放置了很多传感器,如风速检测元件可以对风量进行精确的遥测。这些元件包括了恒流式风速仪、恒温风速仪、三杯电涡流式传感器、光耦感应器传感器等。采用热敏元件的温度遥测可归为红外线辐射技术,风压的遥测可以采用差压变送器进行。而红外线吸收可以使用光谱法或者定点位电解法进行CO气体浓度的遥测。2.3通风系统的自动化设置,采用风门和百叶窗的方式加以风量的控制和调节。频率发送器将风门和叶片的状态加以发送,最终传送到地面控制室,根据叶片和风门转动发出的吸纳后,通过改变通风机的转速产生的变频信号,可以得到局部井下通风机的定时控制,另外,在定时器装置的外部安装爆破冲击装置,实现自动通风,采用工作面作业机器运行的方式,引发气体浓度或者空气的温度的变化,最终对工作面的作业机器的元件进行控制,保证其良性运转。2.4中央控制系统采用的是微型计算机作为核心装备的设置方案,这种设置扩展能力较强,接口较大,在自动化控制中能够优化控制过程,精度较高,速度较快,对通风自动化系统的需求是绰绰有余的。中央控制系统包含了报警和监控功能,能够帮助监控站发出指令,处理反馈的监控信息,修改监控获取的数据,执行选定的控制方案,对通风设备的工作进行监视。当异常情况发生的时候,相应的处理程序就会启动并且报警。
3、自动化通风系统控制应用
值班人员根据显示屏上的风量大小、风压数值、有毒气体含量等相关参数进行数据的检测,然后负责将传感器的数据进行曲线绘制,将数据曲线变化加以统计和汇总,得到系统的工作情况,帮助工作人员发现问题或者故障,最后将数据报表进行打印,供使用者查询。进行通风系统的通风机的运行过程中,一旦出现故障,应启动备用风机,通过系统发出的控制指令,将故障风机电源关闭,并实行自检,确认无误后再重新启动。
结语:
通风系统要实现监控的自动化运行,无人值守,突法事件的处理,需要对控制单元采用风量计算算法等,这种设计方案能够实现对通风系统的运行的实时监控,大大提高煤矿工作安全,降低通风系统运营成本,因此应在自动化运行中加以推广。
参考文献:
[1]邬如梁.自动化控制技术在煤矿通风系统中的应用[J].煤炭技术,2013,32(4):62-63,72.
[2]幸大学.自动化控制技术在煤矿通风系统中的应用[J].煤炭技术,2013,(10):88-89,90.
煤矿自动化控制范文5
对井下工作人员进行定位时,要获取准确的位置信息,就需要将目标的移动特征作为基准,构建出该目标的移动路线图。就现有的GPS定位技术来说,实现对矿井中工作人员实时定位与跟踪难度较大,但无线传感器则能够有效克服该类问题。对所获得的无线传感器数据进行井下编排和查询,可以获取相关人员的位置信息,掌握他们的移动路线以及活动情况,进行更为有效的控制与管理,有助于预防和排除各类安全事故隐患。无线传感器在使用时所采用的多点定位网络可以对分布方式进行有效优化,改变传统单水平轴线网络的布设方式,可以更好地适应煤矿复杂的开采条件。此外,在矿井自动化控制技术中,高精度算法设计也是其主要内容之一,无需信号源便可实现计算,在4m范围内,还可以对干扰信号进行防范和处理。对于高精度系统定位算法的设计而言,主要包含了定位精度、盲区范围等计算,随着计算方式的不断完善,自动化控制技术的运用必定会越来越广泛。
2煤矿通风系统中自动化控制技术的应用
2.1传感器系统设计
对于煤矿通风自动化控制系统而言,有必要实现对各类信号进行有效传输与接收处理,其中主要涵盖了监控数据与指令。多路信号的传输方式可分为时分制与频分制2个类型,其中,频分制是根据不同的频率,实现对各路信号的发送与接收;时分制则是按照不同的时间顺序,实现对各路信号的依次传送。由于频分制具有电路简单、故障较少等优势,因此选择该形式作为传输电路信号的主要方式。在频分制中,发送与接收频率是利用定型生产的载频器来实现的,并且通过专用线或500V的动力线来传递信号,在此基础上确定出需要检测的原件[4]。在控制通风风量之前,需要对通风机风量以及矿井有毒有害气体浓度、风压以及风量进行监测。通过差压变压器测量风压,对风速的测定可以利用三杯电涡流式传感器、热式风速仪、恒温风速仪等装置进行检测;井下的CO浓度则可以利用光谱法、光干涉、红外线吸收等方式测量;利用红外线辐射技术或热敏原件监测温度。
2.2通风系统设计
在通风系统设计中,风量调节的方法有:①通过改变百叶窗角度实现风量的调节与控制,通过频率发送器将叶片或风门的状态信号传递给地面控制室,根据信号,地面控制室便可调节风门或叶片的转动;②通过改变通风机的电机转速实现调节,可以设置变频装置有效改变通风机转速;另外,为了实现对井下通风机的局部自动化控制,还可采取定时控制的方式,在定时器装置的基础上增设爆破开关,以便在爆破之后实现自动通风。国际上大都选择检测元件控制局部通风机转速,将作业机器在实际运行过程中的空气温度、气体浓度作为依据,从而将这一控制实现。虽然该项技术在国内尚处于研究阶段,但无疑会成为通风系统设计发展的新思路。
3自动化控制通风系统优化方案
3.1计算通风性能
通风系统中最核心的内容是控制通风量,通过性能曲线可有效掌握通风机功率、全压、风机流量之间的关系,因此在煤矿实际生产过程中,可根据实际的生产情况选择风机类型。最常用的性能曲线数据的主要来源有:①通分机自身的数据;②在运行过程中实际测得的数据。需要指出的是,上述2类数据都是通过试验获得的,尚未形成理论表达。在计算风量时,仍需要对通风机的自身特性加以考虑。在计算机网络计算中引入自身特征曲线分析表达式,在计算通风性能时,需要考虑到联合机之间的影响以及外界不同的环境因素对风机所带来的不稳定性影响,因此,可选择二段曲线拟合法进行风机性能模拟。在实际运行环节中,通风系统中所产生的数据会转化为相应的曲线,接近于二次抛物线,考虑到通风机自身的工作环境与自身状况,在采用拉格朗日插值法时,还需要进行风机曲线的二段曲线拟合,从整体上对风机性能进行测评。
3.2通风系统的优化控制
在煤矿通风系统中常常出现短暂停风等现象,利用自动化控制在技术可有效解决该类问题[5]。具体来说,可在每一个风道上安装1个百叶窗样式的空风门,可避免在出现倒机现象时,不会对井下的风量产生任何影响。在煤矿通风系统优化之后,由于PLC对于外界的敏感度不高,即便受到辐射、干扰或者是出现瞬间断电等现象均可照常工作,因此,在条件相对较差的环境中也能得到很好的应用。在实现PLC功能时,主要包含了计时、逻辑运算、顺序等,其中也包含了模拟量与数字的输入与输出,另外也兼顾了记录与自检等功能。对于该类强而有力的设计,还可以实现1台生产机械操控1个生产过程的模式。在倒机过程中为确保井下通风的稳定性,还需要应用PLC自动控制软件,确保系统的安全性与可靠性。
4结语
煤矿自动化控制范文6
关键词:煤矿 直流提升机 自动化控制 信息化
矿井提升机主要承担矿物的提升、人员的上下和材料的运送等任务,它应能按照预定的力图和速度图,在四象限实现平稳启动、等速运行、减速运行、爬行和停车,而且在运行过程中要有极高的可靠性[1]。
1煤矿主井直流提升机的自动化控制
1.1主回路
主回路由高压配电系统、整流变压器、可控硅整流装置、快开、电抗器等构成,采用电枢电流换向(电枢可逆),磁场电流单向的方式;也可采用电枢电梳单向。磁场电流换向的方式。为减少电网的无功冲击和高次谐波的干扰,电枢回路配置成串联12脉动顺控。
1.2全数字调节部分
全数字调节部分以高性能单片机为核心,主要功能有:
(1)完成提升机速度和电流双闭环调节,如:①预设速度基准值;②限制加、减速过程的冲击;⑧速度自动调节;④电枢电流自动调节;⑤磁场电流自动调节;⑥预设电流限制值。
(2)实现电枢回路和磁场回路的各种故障保护,如:①磁场变压器超温;②磁场整流桥快熔熔断;③磁场过电流;④磁场回路对地漏电;·⑤磁场可控硅交流阻尼熔丝断;⑥磁场可控硅过热;⑦电枢变压器超温;⑧电枢整流桥快熔熔断;⑨电枢过电流;⑩电枢回路对地漏电;⑩电枢可控硅交流阻尼熔丝断;⑩电枢可控硅过热[2]。
1.3多PLC冗余控制部分
多PLC冗余控制部分用来完成提升机系统操作保护、行程监控和装、卸载控制等功能。(1)操作保护部分采用一台PLC,其主要功能是执行操作程序,并实现各种故障保护及闭锁。来自系统各部分的保护信号直接引入到PLC中,PLC将其处理后分为立即施闸、井口施闸、电气制动和报警四类,送监视器显示故障类型并控制声光报警系统报警并施闸。系统的安全回路有两套,一套由PLC构成,另一套为继电器直动回路。(2)行程监控部分由一台PLC、两个轴编码器(一个装在传动控制器上,另一个装在导向轮上)和井筒开关构成,两台轴编码器将提升机钢丝绳在线速度和行程位置转换成脉冲信号送人PLC,经PLC中的软件计算后处理成罐笼在井筒中的位置和在线速度,送到操作台监视器显示。这种以软件处理为主的行程跟踪方法在灵活性、可靠性及精度等方面都很高,只要选择分辨率较高的轴编码器,就可保证定位精度
1.4操作台和监视器
操作台由左操作台、右操作台和指示台三部分构成。左操作台上有制动手柄、高压送电按钮、磁场送电按钮、快开控制按钮、安全复位按钮、紧停按钮、灯试验按钮、闸试验按钮、过卷旁通按钮等;右操作台上有主令操作手柄、工作方式选择开关、控制方式选择开关和信号联络按钮等;指示台左侧为监视器,指示台上有深度指示器(发光管柱状图)、重要操作信号和故障信号指示灯以及运行参数(如:闸压、电枢电流、磁场电流、速度等)显示仪表。监视器可实现人—机对话,它可显示主回路、低压配电回路、提升系统、液压制动系统、装卸载系统和故障信息等画面,反映提升机所有的运行参数和运行状态以及故障类型和故障发生时间,监视器能使司机对提升机的运行状况一目了然,若发生故障,司机能及时从监视器上了解到故障的类型及位置,能及时通知维修人员排除故障,从而缩短排除故障时间,提高劳动生产率。
2煤矿主井直流提升机的信息化管理
关于软件设计,即选择控制规律和控制参数,与模拟连续系统综合校正方法的步骤基本相似。在对连续系统进行综合时,设计者根据对控制系统稳态和动态性能提出的要求,在时域中即是对动态误差(或误差系数)、阶跃响应的调节时间、超调量和振荡次数等的要求,在已知不可变部分的情况下,设计出系统的校正,使系统的实际性能指标达到预期的要求。对于计算机控制系统,模拟校正装置由数字计算机代替,模拟校正装置担负的计算和控制任务将由计算机来完成。因此,选择校正装置的结构和参数的工作就转变为设计由计算机实现的控制算法和控制程序。在用模拟调节器对直流提升机进行控制时,各项控制是同时进行的。在用数字计算机实现上述控制时,由于计算机在任一时刻只能做一项工作,所以各项控制是分时进行的[4]。
计算机控制系统实际上是一个混合系统,既可以在一定的条件下近似看成一个模拟系统,用模拟系统的分析方法进行分析和综合,再将设计结果离散化,转变为数字计算机的控制算法,也可以把系统经过适当的变换,变为纯粹的离散系统,用z变换等工具进行分析和综合,直接设计出控制算法。
结论
为了尽量减少启动、制动过程中的机械冲击及提升机控制精度,速度给定信号的加速、减速段为“S”形曲线,减速段行程通过PLC实际运算来调节减速度以保证其为一固定值,从而保证了停车点不变和停车点的精度。
参考文献:
[1]刘超,孟艳君,尚廷义等. 基于PLC的矿井提升机变频调速控制系统[J]. 牡丹江师范学院学报(自然科学版),2009(03).
[2]赵鹏. 基于PLC技术的煤矿皮带运输系统的控制改造[J]. 科技情报开发与经济,2011(10).