otn传输技术论文范例6篇

前言:中文期刊网精心挑选了otn传输技术论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

otn传输技术论文

otn传输技术论文范文1

关键词:otn;PTN;传送网

1 引言

随着4G以及光宽带小区业务的到来与发展,运营商的传送承载网络中数据业务占据的份额越来越多,未来主导的业务形式也将是数据业务。移动现有的SDH以及PTN网络已经不能高效的完成对大量数据业务的承载了。面对着大带宽的数据业务需求,分组传送网(PTN)与光传送网(OTN)联合组网的形式已成为下一代城域网的主流。

2 OTN和PTN技术的概述

2.1 OTN技术

OTN技术是融合了WDM及SDH两种技术各自优点的新一代波分技术,遵循G.709协议制定的标准,重新对OUT的线路侧接口进行,封装,而且可以按需灵活地引入电交叉和光交叉。这一改变使其在OAM、业务调度能力等方面大幅领先DWDM,因此OTN技术被看作是最有竞争力的下一代骨干网传送技术。

OTN技术擅长于解决IP业务的超长距离、超大带宽传输问题,可以为大量的2.5 Gbit/s、10 Gbit/s甚至40 Gbit/s等大颗粒业务提供传输通道。但是OTN的带宽分配也是刚性的,带宽利用率不高,难以对较小颗粒业务进行处理。

2.2 PTN技术

PTN技术是结合了分组技术与SDH/MSTP、OAM、网络体验优点的产物;以分组业务为核心并支持多业务提供,具有更低的总体使用成本;秉承SDH的传统优势,包括快速的业务保护和恢复能力、端到端的业务配置和管理能力、便捷的OAM和网管能力、严格的QoS保障能力等;高精度的时钟同步和时间同步解决方案。PTN采用分组交换,支持低价业务处理,支持包括2M、155M、FE等多种颗粒,系统容量主要包括GE及10GE,支持可靠的组网保护,安全性高,OAM功能丰富,可以达到电信级的承载标准。PTN的核心技术决定了其在承载IP类业务上具备天然的优势。

无论是从业务的长距传输,还是从未来IP类业务的迅猛增长角度来考虑,采用OTN+PTN联合组网模式均显得非常必要。OTN+PTN联合组网模式凭借其强大的IP业务接入、汇聚及灵活调度能力,将有利于推动城域传送网向着统一的、融合的扁平化网络演进,是各个运营商组建下一代传送网的最佳选择。

3 OTN+PTN联合组网的注意事项

3.1 设备互通性问题

OTN+PTN联合组网,OTN作为透明的传送平台,为汇聚层及接入层(或接入层)的PTN提供传送通道,两者之间服务层和客户层的关系,相互独立,非常类同于已经大量部署的WDM和SDH网络关系。OTN承载PTN,就像WDM承载SDH一样。

3.2 精确时间同步问题

时间同步是3G移动制式提出的新需求,从地面传送时间同步的技术体质来看,主要通过IEEE 1588v2协议完成精确的时间同步。对于目前的PTN组网模式,时间源首先部署在本地网核心机房RNC侧,RNC先将时间同步信息传递给核心层PTN,核心层PTN再依次传递给其他层的PTN设备进行全网的精确时间同步。而对于采用OTN+PTN联合组网的模式,RNC将先把时间同步信息传递给核心层的OTN,再由核心层的OTN依次传递给其它层的设备进行全网的精确时间同步。然而OTN不具备承载1588v2这项基础技术,无法做到PTN网络那样进行全网的精确时间同步。从主流厂家OTN传送时间同步的技术来看,目前实现方案主要有三种:1GE/10GE的透传方案、OSC带外传送方案以及OTN带内开销传送方案,实际组网中可根据需求以及不同方案传送的优缺点进行选择或组合应用。

3.3 保护问题

网络的安全性高于一切,无论采用OTN、PTN组网,都需要对网络的保护进行统一的考虑。OTN设备部署在网络的骨干核心层(或骨干核心和汇聚层),PTN设备部署在汇聚和接入层(或接入层),各个层面之间往往需要大量的业务互通和调度,对于业务需要进行端到端或分段的保护。

3.4 接口问题

在城域网和本地网中,往往数据业务占据了业务的主流,特别是GE、10GE业务更是占据了主导地位。当采用OTN+PTN联合组网模式时,存在着大量的PTN与OTN客户侧接口通过GE、10GE接口进行业务对接,应注意在组网中接口的一致性问题。

3.5 网管问题

从网管的角度来看,一般而言,目前业内主流厂家的PTN与OTN均可以实现共网管平台,以方便网络的维护。在PTN与OTN联合组网模式下,各个层面之间需要大量的业务互通和调度,因此无论是在业务的开通上,还是在网管自身的维护需要上,都提出了更高的要求。

3.6 网络的维护问题

在城域网和本地网中,设备层次多,组网复杂,给网络的故障定位带来不小的难度。当采用OTN+PTN联合进行组网时,PTN与OTN技术都继承了SDH强大的层次化OAM管理机制,业务封装都会有相应的丰富的开销进行监控,PTN的OAM包括客户层OAM、信道层OAM、通道层OAM和段层OAM,OTN支持6级的TCM、SM、PM等,每一层都提供故障和性能的OAM,以实现在不同层面实时、精确的故障定位功能。

4 OTN+PTN的组网结构

4.1 PTN核心层

⑴核心层每个RNC机房设备2端PTN交叉落地设备;

⑵2端PTN负责落地业务的分担和备份;

⑶落地设备和RNC之间采用1+1 LAG保护。

4.2 OTN骨干核心层

⑴骨干层组建OTN网络,利用OTN进行GE/10GE颗粒业务的调度和保护;

⑵各骨干节点上联至所属PTN落地设备的GE/10GE通道数量应按需配置,节约投资。

4.3 汇聚及接入层

⑴汇聚层组建10GE或40GEPTN汇聚环,双节点下挂GE或10GE速率的PTN接入环;

⑵汇聚接入层具备灵活的IP化业务接入能力;

⑶汇聚接入层具备电信级的运维和保护。

核心节点PTN设备只需与相关RNC节点互联,不需要组建环路。各节点相对独立且通路按需配置,尤其在多RNC节点的大型城域网中,可显著降低网络建设和升级成本。具体的组网结构如图1所示。

5 结束语

OTN与PTN这种新型的组网方式,可以解决因4G和光宽带业务等大带宽业务引起的传送网承载能力的问题。然而,OTN+PTN联合组网的技术不太成熟,还有很多未知的问题需要进一步深入研究和探讨。随着技术的进一步成熟和发展,OTN、PTN技术将在下一代的光传送网中发挥着举足轻重的作用。

[参考文献]

[1]谢宝帅,张永军.基于PTN与OTN联合组网的带宽调整机制研究[J].中国科技论文,2012:1-2.

[2]PTN网络及OTN网络融合应用研究.厂商资料,2011.

otn传输技术论文范文2

【摘要】目前,通信业处于急剧变革的时代,业务的发展导致电信网产生巨大的变革,未来的业务发展也对传输网络的技术提出了新的要求。本文主要分析阐释了“多业务传送平台(MSTP)、自动交换光网络(ASON)、城域波分(DWDM)、光传送网OTN、末端接入技术”等五种主流技术及它们的应用。

【关键词】传输网络技术通信技术平台网络

随着通信技术在信息化建设领域的发展,传输网络技术的发展也是日新月异。各种光传输技术(如ASON、MSTP、DWDM等)的逐渐成熟并且进入商品化,传输通信网络带宽需求正大幅度提高,利用SDH等传统传输网络技术构建的通信基础网络已成为新的网络发展瓶颈。此外,由于信息的生产、传播、交换以及应用对国民经济和国家安全有决定性的影响,所以与其它行业相比,传输通信更具有特殊意义。在此主要讨论传输通信网络目前的主流技术及其应用。

1多业务传送平台MSTP

1.1MSTP的技术特点。MSTP是一重可以对多种业务进行处理和传送的传输技术,可在传输设备上直接提供以太网或ATM接口,并且对数据业务具有收敛、汇聚功能,适合承载以TDM业务为主的混合型业务,有利于降低网络综合成本。MSTP技术适合应用于汇聚层和接入层。

1.2MSTP的应用分析。目前MSTP主要承载IP网的中继电路、扩大数据网的覆盖范围(如作为IP城域网的接入节点)、数据业务(IP、ATM/FR)的接入等。

2自动交换光网络ASON

2.1ASON的技术特点。基于ASON/GMPLS的网格状(Mesh)组网架构的智能光网络是光网络最重要的发展方向之一。ASON技术特点主要有分布式控制层面,网格状(Mesh)组网架构,基于GMPLS流量工程,支持1+1保护、M:N保护和Mesh恢复等多种保护和业务恢复方式。

2.2ASON的应用分析。

①组网方式以单个控制域为主。目前由于域间协议(E-NNI)尚不成熟,多域联合组网存在互联互通问题,建议在单域范围内组网。目前技术比较成熟的网络规模一般在50节点以下,考虑到标准成熟期内网络扩容,初期组网规模控制在25个节点以下。

②ASON网络与传统网络融合。在组网时应充分利用原有SDH网络作为ASON网络的补充。如需要对原有SDH网络进行较大规模的ASON升级,技术和经济上都是不合适的,可采用智能化集中控制网管的方式把这些传统SDH设备划归为一个控制域,由集中控制网管来实现智能化的集中管理。

③ASON网络运维。ASON网络投入运行后,维护人员需要更新原有的维护方法,维护好网络并提出网络优化的需求。以下方面是网络维护的重点:a、实时监控网络运行;b、主动响应网络故障。

④承载业务。ASON网络如能覆盖全地市,可与现有的SDH网络互为备份,分担业务,其上可承载大客户专线、3G移动业务、固话业务等。

3城域波分DWDM

3.1DWDM的技术特点。采用光分插复用(OADM)设备构成的DWDM环网,波长透明性使DWDM技术适合本地传输网的多业务传送,并在容量和可扩展性方面具有优势。

城域DWDM利用波长转换器适配各种传输信号,传输容量大;通过子速率复用,实现单波长多业务,提高单波长的带宽利用率高。可以利用DWDM环网为数据业务提供物理层的快速保护,可以向用户提供多种级别的业务服务。此外,在现行城域OADM/OXC传送平面的基础上,增加自动交换光网络(ASON)的控制层面功能,可以提供波长级或波长组级别业务的大颗粒分配。城域CWDM最显著的特点是能够显著降低城域传送网的建设成本和运行维护成本,支持多业务接口;标称频率涵盖了单模光纤系统的O、E、S、C、L等五个波段,系统波长数支持8波和16波。3.2DWDM的应用分析。DWDM应用于汇聚层。主要解决IP汇聚点到BRAS之间的带宽不足,网络结构大多为物理路由的环形,采用光通道保护方式。可承载IP、租波长业务、IPTV业务等大颗粒业务。

充分考虑业务需求的分布和发展趋势,结合地理、光缆资源情况,选择合适的建设方案。为降低建设成本,在满足业务需求的前提下,优先选用GE接口,选择合适的波道速率,如果IP业务需要升级到10GE,优先选择10G波分系统。根据实际情况可以采用OADM方式,保证城域波分系统可平滑扩容。

鉴于DWDM系统扩展的成本大大降低,以及支持的业务种类丰富、带宽充裕,应用DWDM技术,采用IPOVERDWDM方式传送数据业务,尤其对于骨干层管道资源、纤芯资源比较紧张的传输网络显得尤为必要。

4光传送网OTN

4.1OTN的技术特点。所谓OTN,从功能上看,就是在光域内实现业务信号的传送、复用、路由选择、监控,并保证其性能指标和生存性。它同SDH传送网一样,满足传送网的通用模型,遵循一般传送网组织原理、功能结构的建模和信息的定义,采用了相似的描述方式,因此,许多SDH传送网的功能和体系原理都可以移至OTN。OTN综合了SONET/SDH的优点和DWDM的带宽可扩展性。

5末端接入技术

5.1光纤接入技术

主要实现技术主要包括点对点技术(如点对点光以太网)和点对多点无源光网络技术(如EPON、GPON等)两大类。

大客户接入选择“155Mb/sSDH设备+光纤”的接入模式,能提供较好的网络保护、灵活的组网方式和强大的网管功能,运营商可以向大客户提供高质量、高可靠性、多类型的业务,满足用户的不同需求。此方案传输系统建设成本较高。

EPON技术基本成熟,有少量试验网应用。GPON技术能够很好的承载TDM和语音业务,是未来主要宽带光纤接入技术之一,技术标准处于完善之中。

5.2无线接入技术

①WiMAX具有建网快、带宽大的优点,可快速提供各种业务接入,可以组建城域网范围内的综合业务网络,今后具备进一步漫游接入的潜力。WiMAX有四个应用场景和发展阶段。分别为固定接入、游牧式接入、便携式接入及全移动方式。目前即将商用的为固定接入方式,支持视距、非视距传输,支持点到多点传输和Mesh组网,支持多种业务类型。

otn传输技术论文范文3

城域传送网是非常复杂的网络,每个城市和每个城市都因现状不同而有所不同,从网络分层结构来说,城域传送网一般分为核心传送层、汇聚层和接入层。对于网络规模较小的城市,可根据实际情况简化网络层次。下面从通用角度分析城域传送网的特点。

多业务。城域传送网需要同时支持多种业务,单一平台支持多种协议和处理混合业务的特征是城域光传送网络获得足够竞争优势的关键因素,也是最重要的特点。多业务支持是城域光传送网络的基石,可为运营商带来许多竞争优势,如后向兼容性(如SDHoverWDM)、成本显著降低(减少了网络分层和设备)、网络管理简化和配置工作量减少等。

安全可命性和可增位性。城域传送网涉及到大量的客户和服务,网络的安全可靠性直接影响到客户,传送网应支持网络节点的备份和线路保护,提供网络安全措施,同时多种生存性有利于运营商向用户提供更好的业务定义。同时城域传送网应当要充分考虑业务扩展能力,能针对不同的用户需求提供丰富的宽带增值业务,使网络可持续赢利。

动态性。与骨干传送网相比,城域传送网的动态性较强,多种数据业务的动态性和不可预见性使得城域传送网的相关需求加强,目前的发展趋势是越来越多的客户需要带宽更灵活的业务。他们需要快速的业务配置、更短期的、可灵活增加的服务合同和基于QoS的价格,将来还可能出现对带宽按需分配等新业务的需求。

网络扩展性。由于受用户需求和地理分布动态变化的影响,城域的数据业务具有多变性,城域传送网要建设成完整统一、组网灵活、易扩充的弹性网络平台,留有充分的扩充余地,能够随着需求变化,可允许运营商不断地按照业务需求增加带宽,而不需要进行网络整体升级。

2

城域传送网是覆盖城区、郊区或者部分规模较小的市县,为城域多业务提供综合传送平台的网络,是承载城域范围内的固定、移动和数据等多种业务的基础传送网络,它一般以多业务光传送网络为基础、以多种接入技术为辅,为多种业务和通信协议提供综合传送承载平台。城域传送网向上与省际和省内干线相连,向下负责综合业务引入,完成集团用户、商用大楼、智能小区的业务接入和电路出租的任务。

3城域网中的相关技术分析

SDH多业务传送平台。SDH多业务传送平台(MSTP)是目前广泛应用的产品。为了适应城域网多业务的需求,SDH从单纯支持2Mb/s,155Mb/s等话音业务接口向支持以太网和ATM等多业务接口演进,将多种不同业务通过YC或VC级联方式映射入SDH时隙进行处理。SDH多业务平台将传送节点与各种业务节点融合在一起,各厂商只是融合程度不同。

MSTP的出发点是将2层或3层的功能作为SDH附加功能来完成的,其对2层或ATM层的处理都是与SDH处理相分离的,但都可以映射到SDH的VC时隙进行重组。从功能上看,MSTP除了具有SDH功能外,还具有2层、MAC层和ATM功能。

MSTP比较适合于已经敷设大量SDH网的运营公司,它可以方便有效地支持分组数据业务,实现从电路交换网到分组网的过渡,适合支持混合型业务特别是以TDM业务为主的混合型业务,同时可以保证网络管理的统一性。

弹性分组环技术。正在由IEEE802.17工作组制定的弹性分组环(RPR)技术,吸收了吉比特以太网的经济性、SDH系统50ms环保护特性。RPR采用类似以太网的帧格式,结合丝丝标记,基于MAC高速交换,简化IP前传。RPR技术可以支持更细的带宽粒度,网络成本较低,可以承载具有突发性的IP业务,同时支持传统语音传送,有比较好的带宽公平机制和拥塞控制机制。RPR环是在整个环上实现公平机制而不是在单独链路上,容易实行全局的公平机制。服务供应商可以利用源节点发送数据包的速率来控制上游节点和下游节点的速率。带宽策略允许在无拥塞的情况下,把环上任意两个节点之间所有的带宽分配给这两个节点,没有SDH那种固定电路系统的不灵活性,同时又比点到点的以太网更加有效。

目前RPR标准尚未完成,其中的一个重要问题是对时钟的透明传输,RPR同步机制与SDH不同,必须确保TDM时钟可以透明传输到对端。第二个挑战来自RPR定义的是一个环网结构下的技术,无法工作在复杂的网络环境下(甚至是环间互联),而实际的城域网络环境则是十分复杂的。

RPR技术适合于以数据业务为主、TDM业务为辅的网络,其应用范围将逐渐扩大,适合于新建网络。

城域WDM光网络。WDM技术不仅提高了光纤利用率,而且在业务信号复杂多变的城域网中对信号具有透明性,它可以对从不同设备出来的信号不进行速率和帧结构调整,直接进行透明传输。这可给用户、特别是租用波长的用户以最大的灵活性。同时,不同波长间的信号互不干涉,每个波长都可以自己灵活上下。WDM技术主要应用于城域骨干网。

城域OADM环网可以承载大量客户的多种协议和多种速率的业务,每个波长承载一种业务的方式将很快耗尽波长,为提高每个波长的带宽利用率,应尽量避免低速率业务单独占用一个光波长通道。一种新兴的经济有效的方法是将多个低速率客户信号复用到一个波长信道中,该技术被称为子波长复用,从而实现了每个波长携带多种业务。这种子波长复用器降低了城域网WDM系统的应用门槛,可以直接容纳低速率信号,给组网带来了灵活性。WDM环网解决了两个重要问题:光纤短缺和多业务的透明传输。成本是限制其应用的重要因素,目前它主要用来保护那些SDH还无法保护的业务,如ESCON,FiberChannel等。

在目前的光网络中,数据业务的提供需要经过4层处理:首先将业务映射进IP包,并以ATM信元封装,然后将ATM信元映射进SDH帧,最后转换为光信号在光网络上传送(采用WDM/DWDM方式)。随着IP业务的飞速发展,这种结构的缺点日益暴露.人们开始研究将ATM层和SDH层从4层结构中剥离出去,将其功能融合到IP/MPLS层和WDM/OTN(光传送网)层中,将IP业务直接在WDM光路上传送(即IPoverOptical,目前主要为IPoverWDM/DWDM)。在传统的光网络中引入信令控制和动态交换功能,将IP层和光网络层置于同一控制平面下,对光网络实施配置连接管理,在此思想下,一种能够自动完成网络连接的新型网络ASON(自动交换光网络)应运而生。

自动交换光网络。ASON是在IPoverDWDM基础上发展起来的,底层仍为OTN,主要的不同就是在OTN上引入了控制平面。控制平面通过信令交换完成对传送平面的动态控制。控制平面的引入带来了以下好处:迅速实现业务提供,允许网络资源动态分配路由和带宽;容易管理,业务提供者无需为新的传输技术系统的配置管理而开发维护操作支持系统软件;具有扩展的信令能力,增加了补充业务;在出现故障时可实现快速的保护与恢复,比通常的传送网节省了冗余容量和资源;控制平面的协议比管理平面的协议有更丰富的原语组,可用于各种传输技术。

4通用标签交换(GMPLS)技术

为了使MPLS适应时分复用、波分复用等不同的应用环境,以支持在电路交换网中建立连接,IETF对MPLS中标签的概念和形式进行了相应的扩展,将时分系统和空间交换系统涵盖了进来,推出了通用标签交换--GMPLS。其具有许多新功能:

时隙、虚通道和波长等均可作为标签。GMPLS所管理的对象不仅是分组,还可以是FR.ATM,SDH和WDM等,且这些设备上的接口还可以细分为PSC(分组交换功能)、TSC(TDM交换功能)、LSC(波长交换功能)和FSC(光纤交换功能)等多种类型。

可以为离散单位分配带宽,因为时隙、波长和光纤等都是离散单位。

具有下行按需标签分配和使用上行标签的双向LSP建立能力,并且可以通过从上游节点向下游节点传送建议标签来简化倒换过程、减少双向LSP的建立时延。

可以设置标签组,以缩小下游标签的选择范围。当然,在引入GMPLS控制平面后,对传统数据通信网络(DCN)也提出了新的要求,特别是电路交换网络。首先,DCN必须保证能为控制器之间提供控制信息的传送,能够直接或间接地为两个LSR提供交换控制信息的信道:其次,所提供的信道必须是可靠的、安全的:最后,DCN必须支持IP,且必须具有较高的可靠性和QoS,以避免用户数据业务出错而影响控制数据,确保控制信息的顺利发送。

参考文献

[1]韦乐平《光同步数字传输网》人民邮电出版社2002

[2]Palais,《光纤通信》第五版,电子工业出版社

otn传输技术论文范文4

关键词:通信网络;智能电网;计算机技术

中图分类号:TM76 文献标识码:A 文章编号:1009-2374(2014)06-0015-03

建设智能电网已然成为当下我国乃至世界各国发展电力输送的一个必然趋势。由于智能电网具有稳定的电力输送框架基础,拥有基于通信网络和计算机系统平台来达到对发电、储电、变电、输电、配电、用电和相关调度等多个方面智能控制的一套完整系统。在实现以上操作过程中,我们利用其完全智能化的系统作业即可以通融电力行业和通信行业之间的业务,由始至终,不管是哪一阶段的实现都离不开通信网络技术的辅助作用;由此可见,通信网络技术在智能电网中的应用是至为重要的。

1 智能电网的发展背景

(1)我国电网的规划及建设无不在大电量消耗和电网建设费用高的压力之下完成,实际上对我国电网建设是否合理的问题上一直以来都会听到一些不同的声音,所面临的考验可想而知。

(2)电网的运行在直接应对供电用户的用电安全要求必然会很高,不管是在电网建设阶段还是后期的运行维护阶段都应该对电网设备的运行状况了如指掌,如电网设备的当前运行状况、维修程度以及更换相关零配件的最佳时机等等。

(3)有关电网设备维修质量和相关电力作业费用是否合理也是一方面问题。

(4)电网建设会涉及电力营销,电力需求管理的服务水平、电力成本回收率和窃电行为造成损失都应及时得到收集和掌握。利用所收集电网的各种数据信息来作为电网和电力设备的建设投资指导,电力设备可在趋近于设备最大电容量或实际运行能力的前提下运作,可充分发挥电力设备的运作潜力。利用电网的即时重构及优化运作的方式,将电力设备能够在其自身可允许的实际电力容量范围内良性运行,以保证电力设备使用年限的达标。同时,充分采集电力设备的即时数据信息,确保设备在运作过程停电时间最少,对需求侧管理的力度进一步提升,保证实现基本的经济效益和社会效益,从而为合理的电网投资建设提供有效的决策依据。

为满足当先社会生产力的需要,智能电网的形成和发展将进一步拓展了在系统设计方面自动化监视功能,强化了基础数据信息的采集程序和整合程序;这也有助于系统对电网业务的深入分析与优化,逐步发展电网系统的智能化、自动化水平。如图1智能电网概念图所示我国电力系统呈现的网络功能构架,也是实现社会发展需要提高生产力水平的重要保障。

图1 智能电网概念图

通常意义上讲,我国智能电网系统主要被分为五个层面,即电网数据信息采集、数据信息传输、数据信息集成系统分析及优化、数据信息展现。

电网数据信息采集:即时数据信息是提供智能电网的重要依据,其内容一般包含三个方面,即电网的运作数据信息、电力设备的运作状态数据信息和用电客户的计量数据信息。我国在电力这一行业中,企业关于电网数据信息采集工作的侧重点依然在于电网的运作数据信息。如图2所示,我们只有着手于加强各阶段对智能电网的建设工作,将整个电网的可视化水平提高,并为智能化进程夯实基础。

图2 通信网络技术优化方案

数据信息传输:标准开放化的数字通信网络可保障用电客户的计量、电力设备状态数据信息和电网数据的安全传输。

数据信息集成系统分析及优化、数据信息展现:智能电网的数据信息集成系统分析及优化和数据信息的展现过程主要在于对计算机信息网络技术的应用。利用前期采集和通信网络传送来的数据信息作为电力规划与设计、电力系统运作和投资资产的方案优化提供更为科学的决策依据。电网的设计优化可利用对用电客户在负荷模式之下进行分析,而清晰地确定哪条负荷线路超载而需要改造;同时利用电力设备的寿命周期性分析,得到的结果可针对电网的检修计划方案进行优化,又可掌握每一位用电客户在负荷模式下能够采集的详细数据信息,来提升三相负荷的平衡性,而降低了电力输送对网络系统的损耗。

2 智能电网中的通信需求

传统的通信网络工程主要特征表现为具有区域性的网络体系,且如果在宽带不足的条件下不会具备对整个电网系统即时数据的实时监视功能。本文所讨论的通信网络技术在智能电网中的应用是现代电网对通信网络技术要求的不断提升,分析其具体表现有以下几点:(1)要求SCADA系统的数据信息传输效率高;(2)对于用电监测和计量的设备实现更高等级的自动化;(3)系统数据信息传输的通信宽带要求高;(4)要求电网系统运作拥有高标准可执行的通信规约;(5)要求电网系统运作拥有可拓展的监测程序。

通信网络技术的发展是以高新计算机技术应用作为基石,同时期电网技术在智能电网中应用数据的处理能力得到了进一步的提高,Internet网络和ICP/IP网络协议的广泛推广与应用致使每一位电力用户在不同地点和位置都可方便对各类信息进行查询。

3 通信网络技术在智能电网中的应用

通信网络技术在智能电网中应用的首要任务是以配电网的自动化为先手,在主要电网路中可依托于现有的SDH网络和综合性较强的数据信息网做数据信息的接入工作,而就我国当下配电网自动化的内容仍然存在大片空白,下文以配电网络中通信网络技术在智能电网中的应用展开介绍。

(1)骨干层。采用工业级以太网交换机构成冗余光纤环形网络结构,用光纤链路连成环状拓扑结构。此结构充分利用了工业冗余环网结构的优点,当链路发生故障时网络传输的恢复时间被控制在50毫秒以内。而如果用普通民用以太网交换机构造链路冗余网络,其恢复时间长达30秒以上,显然无法满足数据传输不间断的要求,这也是工业以太网交换机比较明显的优势。

此环形拓扑结构便于工程扩充和维护,安全性能高。采用网络监控软件对网络控制器进行网络实时监控,同时和电网测控系统进行有机协调,保证互不影响。此外,信息通信网的骨干层,还可采用同步数字体系、波分复用(Wavelength Division Multiplexing,WDM)、光传送网(Optical Transport Network,OTN)、多业务传送平台(Multi-Service Transfer Platform,MSTP)、分组传送网(Packe tTransport Network,PTN)等多种信息传送技术。另外,无线通信方式(如微波和卫星)也是组建信息通信网骨干层的补充技术。

(2)接入层。两种情况。第一种情况是测控点数据量较多、且距离光纤网络较近的区域,推荐采用工业以太网交换机配光缆构成环形网络结构。此结构具有与骨干层结构一样特点,当链路发生故障时,通信网络传输的恢时间被控制在50毫秒之内。第二种情况则是测控点及数据量较少、且跟离光纤网络较远的区域,推荐采用数字工业级配载波设备构成树型或链型网络结构。此结构充分利用了载波通信系统的优点,使用现有电缆资源作为通信介质;地埋电缆和架空电缆均适用选择不同的耦合设备。载波通信通道建立时间小于300毫秒,电缆干扰的情况有四个频点可供通信设备选用,设备端接受灵敏度可达-70dB,并可在无中继的情况下传输5km。载波设备有多种通信接口可供选择,如RS232、RS485等接口,方便级联进上层网络。

此外,信息通信网的接入层是相对于骨干层而言的,处于整体网络接入的位置。接入层类似于人体的神经组织,也可以理解为神经末梢,它将所收集的信息通过骨干层网络传送到对端。接入层按照传输介质不同,可分为有线接入和无线接入两种方式,彼此之间相互补充。在智能电网中,有线接入还包括无源光网络(Passive Optical Network,PON)、电力线载波等,无线接入则包括TD-SCDMA、WCDMA、CDMA2000、WiMAX、Wi-Fi、ZigBee等。

智能电网建设必以安全可靠的通信网络作为基础,需选择安全可靠的设备来组网。世界各国在配电网中的工业设备中往往采用以太网+TCP/IP协议作为其通信与控制的标准。一般来看,以太网+TCP/IP协议在工业控制网络中主要是为负责不同厂站网络区段之间关键自动化设备的联系,安全性和可靠性要求较高。

4 结语

我国将全国电网建设的目标制定为:实现信息化、数字化、自动化和互动化的智能电网络,国家及地方电力部门都将以此分为不同阶段进行推进化建设和发展。在整个建设与发展过程中,通信网络技术在智能电网中的作用至关重要,我们也期待在未来有关国家电网建设工作对于通信网络技术的应用更为广阔和延伸。

参考文献

[1] 赵大平,张海亮.智能网络通信技术在微型智能电

网中的应用[A].2011电力通信管理暨智能电网通

信技术论坛论文集[C].2011.

[2] 周勇.智能电网的发展现状、优势及前景[J].黑

龙江电力,2009,(6).

[3] 王永干.推进信息化领域的行业融合促进智能电网

发展[J].电网与清洁能源,2010,(3).