数控机床论文范例6篇

前言:中文期刊网精心挑选了数控机床论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

数控机床论文

数控机床论文范文1

论文摘要:本人于2007年4月份进入广东省广州昊达机电有限公司进行毕业前的综合实践,从事有关变频器的工作。本文介绍了采用数控车床的主轴驱动中变频控制的系统结构与运行模式,并简述了无速度传感器的矢量变频器的基本应用。

前言

数控车床是机电一体化的典型产品,是集机床、计算机、电机及其拖动、自动控制、检测等技术为一身的自动化设备。其中主轴运动是数控车床的一个重要内容,以完成切削任务,其动力约占整台车床的动力的70%~80%。基本控制是主轴的正、反转和停止,可自动换档和无级调速。

在目前数控车床中,主轴控制装置通常是采用交流变频器来控制交流主轴电动机。为满足数控车床对主轴驱动的要求,必须有以下性能:(1)宽调速范围,且速度稳定性能要高;(2)在断续负载下,电机的转速波动要小;(3)加减速时间短;(4)过载能力强;(5)噪声低、震动小、寿命长。

本文介绍了采用数控车床的主轴驱动中变频控制的系统结构与运行模式,并阐述了无速度传感器的矢量变频器的基本应用。

第1章变频器矢量控制阐述

70年代西门子工程师F.Blaschke首先提出异步电机矢量控制理论来解决交流电机转矩控制问题。矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。这样就可以将一台三相异步电机等效为直流电机来控制,因而获得与直流调速系统同样的静、动态性能。矢量控制算法已被广泛地应用在siemens,AB,GE,Fuji等国际化大公司变频器上。

采用矢量控制方式的通用变频器不仅可在调速范围上与直流电动机相匹配,而且可以控制异步电动机产生的转矩。由于矢量控制方式所依据的是准确的被控异步电动机的参数,有的通用变频器在使用时需要准确地输入异步电动机的参数,有的通用变频器需要使用速度传感器和编码器。目前新型矢量控制通用变频器中已经具备异步电动机参数自动检测、自动辨识、自适应功能,带有这种功能的通用变频器在驱动异步电动机进行正常运转之前可以自动地对异步电动机的参数进行辨识,并根据辨识结果调整控制算法中的有关参数,从而对普通的异步电动机进行有效的矢量控制。

第2章数控车床主轴变频的系统结构与运行模式

2.1主轴变频控制的基本原理

由异步电机理论可知,主轴电机的转速公式为:

n=(60f/p)×(1-s)

其中P—电动机的极对数,s—转差率,f—供电电源的频率,n—电动机的转速。从上式可看出,电机转速与频率近似成正比,改变频率即可以平滑地调节电机转速,而对于变频器而言,其频率的调节范围是很宽的,可在0~400Hz(甚至更高频率)之间任意调节,因此主轴电机转速即可以在较宽的范围内调节。

当然,转速提高后,还应考虑到对其轴承及绕组的影响,防止电机过分磨损及过热,一般可以通过设定最高频率来进行限定。

图2-1所示为变频器在数控车床的应用,其中变频器与数控装置的联系通常包括:(1)数控装置到变频器的正反转信号;(2)数控装置到变频器的速度或频率信号;(3)变频器到数控装置的故障等状态信号。因此所有关于对变频器的操作和反馈均可在数控面板进行编程和显示。

2.2主轴变频控制的系统构成

不使用变频器进行变速传动的数控车床一般用时间控制器确认电机转速到达指令速度开始进刀,而使用变频器后,机床可按指令信号进刀,这样一来就提高了效率。如果被加工件如图2-2所示所示形状,则由图2-2中看出,对应于工件的AB段,主轴速度维持在1000rpm,对应于BC段,电机拖动主轴成恒线速度移动,但转速却是联系变化的,从而实现高精度切削。

在本系统中,速度信号的传递是通过数控装置到变频器的模拟给定通道(电压或电流),通过变频器内部关于输入信号与设定频率的输入输出特性曲线的设置,数控装置就可以方便而自由地控制主轴的速度。该特性曲线必须涵盖电压/电流信号、正/反作用、单/双极性的不同配置,以满足数控车床快速正反转、自由调速、变速切削的要求。第3章无速度传感器的矢量控制变频器

3.1主轴变频器的基本选型

目前较为简单的一类变频器是V/F控制(简称标量控制),它就是一种电压发生模式装置,对调频过程中的电压进行给定变化模式调节,常见的有线性V/F控制(用于恒转矩)和平方V/F控制(用于风机水泵变转矩)。

标量控制的弱点在于低频转矩不够(需要转矩提升)、速度稳定性不好(调速范围1:10),因此在车床主轴变频使用过程中被逐步淘汰,而矢量控制的变频器正逐步进行推广。

所谓矢量控制,最通俗的讲,为使鼠笼式异步机像直流电机那样具有优秀的运行性能及很高的控制性能,通过控制变频器输出电流的大小、频率及其相位,用以维持电机内部的磁通为设定值,产生所需要的转矩。

矢量控制相对于标量控制而言,其优点有:(1)控制特性非常优良,可以直流电机的电枢电流加励磁电流调节相媲美;(2)能适应要求高速响应的场合;(3)调速范围大(1:100);(4)可进行转矩控制。

当然相对于标量控制而言,矢量控制的结构复杂、计算烦琐,而且必须存贮和频繁地使用电动机的参数。矢量控制分无速度传感器和有速度传感器两种方式,区别在于后者具有更高的速度控制精度(万分之五),而前者为千分之五,但是在数控车床中无速度传感器的矢量变频器的控制性能已经符合控制要求,所以这里推荐并介绍无速度传感器的矢量变频器。

3.2无速度传感器的矢量变频器

无速度传感器的矢量变频器目前包括西门子、艾默生、东芝、日立、LG、森兰等厂家都有成熟的产品推出,总结各自产品的特点,它们都具有以下特点:(1)电机参数自动辩识和手动输入相结合;(2)过载能力强,如50%额定输出电流2min、180%额定输出电流10s;(3)低频高输出转矩,如150%额定转矩/1HZ;(4)各种保护齐全(通俗地讲,就是不容易炸模块)。

无速度传感器的矢量控制变频器不仅改善了转矩控制的特性,而且改善了针对各种负载变化产生的不特定环境下的速度可控性。图3-1所示,为某品牌无速度传感器变频器产品在低频和正常频段时的转矩测试数据(电机为5.5kW/4极)。从图中可知,其在低速范围时同样可以产生强大的转矩。在实验中,我们同样将2Hz的矢量变频控制和V/F控制变频进行比较发现,前者具有更强的输出力矩,切削力几乎与正常频段(如30Hz或50Hz)相同。3.3矢量控制中的电机参数辨识

由于矢量控制是着眼于转子磁通来控制电机的定子电流,因此在其内部的算法中大量涉及到电机参数。从图3-2的异步电动机的T型等效电路表示中可以看出,电机除了常规的参数如电机极数、额定功率、额定电流外,还有R1(定子电阻)、X11(定子漏感抗)、R2(转子电阻)、X21(转子漏感抗)、Xm(互感抗)和I0(空载电流)。

参数辨识中分电机静止辨识和旋转辨识2种,其中在静止辨识中,变频器能自动测量并计算顶子和转子电阻以及相对于基本频率的漏感抗,并同时将测量的参数写入;在旋转辨识中,变频器自动测量电机的互感抗和空载电流。

在参数辨识中,必须注意:(1)若旋转辨识中出现过流或过压故障,可适当增减加减速时间;(2)旋转辨识只能在空载中进行;(3)如辨识前必须首先正确输入电机铭牌的参数。

3.4数控车床主轴变频矢量控制的功能设置

从图1-1中可以看出,使用在主轴中变频器的功能设置分以下几部分:

1矢量控制方式的设定和电机参数;

2开关量数字输入和输出;

3模拟量输入特性曲线;

4SR速度闭环参数设定。

第4章结束语

对于数控车床的主轴电机,使用了无速度传感器的变频调速器的矢量控制后,具有以下显著优点:大幅度降低维护费用,甚至是免维护的;可实现高效率的切割和较高的加工精度;实现低速和高速情况下强劲的力矩输出。

参考文献

1.王侃夫.数控机床控制技术与系统[M].北京:机械工业出版社,2002.

2.杜金城.电气变频调速设计技术[M].北京:中国电力出版社,2001.

数控机床论文范文2

伺服系统是数控机床的重要组成部分,它既是数控系统CNC系统与刀具、主轴间的信息传递环节,又是能量放大与传递的环节。它的性能在很大程度上决定了数控机床的性能。例如,数控机床的最高移动速度、跟踪精度、定位精度等重要指标均取决于伺服系统的动态和静态性能。伺服系统按控制方式分为开环控制系统、半闭环控制系统和闭环控制系统三类。在普通机床的数控化改造中,一般选用价格较低的开环控制系统。该系统的执行元件——伺服电机,通常采用步进电机或永磁式交流伺服电机。

步进电机是采用脉冲数字信号进行控制的,每转一转步距误差自动变为零,易于控制,价格最低。其选择的关键是对参数进行确定。确定参数的具体方法是:先计算电机的步距角,其次确定其步距精度,然后再对它的转矩进行选择,最后选定步进电机驱动器。

永磁式交流伺服电机常用于进给驱动系统中,它容量大,结构简单,运行可靠,效率高,但启动特性欠佳。其选择方法是:先确定电机的额定转速,其次选择其负载惯量,然后再确定它的额定转矩,进行电机预选,最后通过进一步的速度、加减速转矩及连续工作转矩的验算确定预选电机是否符合要求。

2数控系统的选择

数控系统是数控机床的中枢,是其中最关键的环节。目前,市场上数控系统的类型较多,选择时要保证能购得最适合的系统,就必须要充分考虑改造中各方面的因素。

首先,要考虑被改造机床的功能要求。根据机床的功能要求选择数控系统,以使数控系统所具有的功能要与准备改造的机床所能达到的功能相匹配。既要避免因偏面追求数控系统的高性能指标,而选择了功能远远多于改造机床功能的系统,造成功能过剩、资金浪费,且在一定程度上还可能潜伏下由于数控系统复杂程度的增加而带来故障率升高的隐患。又要保证所选数控系统能满足机床全部功能要求,不要出现一些因必须的系统功能短缺,影响其它功能的使用,使机床的优良性能发挥不出来。

其次,要考虑数控系统的制造厂商。老牌著名跨国公司主要有德国的西门子、日本的发那科和三菱、法国的NVM等,国内公司主要有中华数控、中国珠峰、北京航天等。目前,进口系统的性能尚优于国产系统,但价格也较高,因此适用于大型高精度机床。国产系统功能较简单,性能较稳定,价格便宜,对一般车床、铣床已能可靠使用,且近几年国产系统也有长足进步,与世界先进技术的差距越来越小。如中华数控公司,就凭借已其达到国际领先水平,且具有自主版权的数控技术和现代化的产业基地在中国大地迅速崛起。该公司的中华数控系统曾在2004年举行的第一届全国数控技能大赛上与西门子、发那科等著名系统同台全方位竞技,充分发挥了其强大功能优势。使用此系统的参赛选手,有多人取得了很好的成绩。可见,国内系统功能也会越来越完善。

第三,要考虑数控系统与其它配件的匹配。如果数控系统、电机及驱动器的品种、牌号太杂,在连接各部件时,就可能会出现输入与输出信号的不匹配及在传送中信号产生滞后等现象。因此,选择时要优先考虑能提供进给伺服系统和主轴驱动的厂家的数控系统。

另外,在资金允许的条件下,尽量向著名厂家型号系列靠拢。一般著名厂商此类系统零件筛选更严格,制造工艺更规范可靠,性能稳定,能更好地预防电器元件的故障或提前失效引起的设备故障,也有利于维修。

3机床机械部件的改造

数控机床的机械部分在刚度、精度、速度、摩擦磨损等方面较普通机床有更高的要求。因此,不能简单地认为将数控装置与普通机床连接在一起就达到了机床数控改造的目的。而是应该从机床自身的价值考虑,分析改造要达到的目标和所需投入。从该机床在本单位产品制造中的地位和重要程度来分析改造价值。对被改造机床的结构、性能、精度等技术现状作全面分析。其中包括机床原来的结构设计是否符合改造要求,部件结构是否仍然完好,各坐标轴的机械传动结构及导轨副的形式等是否适用,各项精度是否满足要求,机床在加工中是否存在故障和历史上有无出现过重大故障。从该机床的投入产出率估算,确定最终改造方案。

3.1主传动系统的改造

在对主传动系统进行改造时,一般应尽量保留原主轴箱齿轮变速换档机构,只把主轴的正转、反转和停转由原来的机械控制改变为由数控系统控制。当然,如果为了扩大变速范围,实现加工过程中的自动变速,也可以将原来的单速电机更换为多速电机,这样可以使机床性能更好。但多速电机的功率是随转速的变化而变化的,所以电机功率要大,且还要增加一套电机变速系统,改装比较麻烦。对普通机床进行简易数控改造时,最好不要用这种方法。另外,为了使改装后的机床主传动和进给传动保持必然的联系,要在主轴箱内安装一个与主轴同步旋转的旋转脉冲编码器。如普通车床改装为数控车床时,在主轴箱内装主轴脉冲编码器,以保证改造后的车床具备螺纹加工的功能。

3.2进给传动系统的改造

在对进给传动系统进行改造时,一般都应该把原来的进给变速传动装置及操纵机构全部拆除。而每个方向的进给传动都改由各自独立的功率步进电机,经减速齿轮直接与带动滑板移动的丝杠连接,分别实现各坐标方向的运动,进行各坐标的控制。例如普通机床的简易化数控改装,通常都是把原来由主轴箱到进给箱的传动路线切断,且将溜板箱拆除,直接把齿轮减速箱和功率步进电机安装在纵向丝杠的右端和横向丝杠的外端。

在对机床进给传动系统改装的同时,也要对此传动系统中的传动装置元件进行相应的改造。具体如下:

(1)丝杠。丝杠是将回转运动转换为直线运动的传动装置。改造时,为了满足数控机床上较高精度零件的加工要求,应该用滚珠丝杠螺母副替换原普通机床上的梯形丝杠螺母副。滚珠丝杠螺母副把传动丝杠与螺母之间的滑动摩擦变为了滚动摩擦,使摩擦损失减小,精度保持性、传动平稳性、传动效率等都得以提高。其传动效率可达到92%~98%,是普通丝杠螺母副的3~4倍。

(2)拖板。拖板是数控系统直接控制的对象。不论是点位控制、直线控制,还是轮廓控制,被加工零件的最终坐标精度都将受到拖板运动精度、灵敏度和稳定性的影响。除拖板及相配件精度要高外,由驱动电机到丝杠间的传动齿轮也要采用间隙消除结构。以满足传动精度和灵敏度的要求。常用的消隙方法有刚度调整法和柔性调整法两种。刚性调整法传动刚度较好,结构简单,但调整起来很费时;柔性调整法,一般用弹簧弹力自动消除齿侧间隙,传动刚度较低,传动平稳性差,结构复杂。改造中,可根据机床加工目标选用。具体选用可参考有关资料。

(3)机床导轨。为了使改造后的机床有较高的开动率和精度保持性,应充分考虑机床导轨的耐磨性。当前国内普通机床床身等大件多采用普通铸铁,其摩擦系数较大。改造中,在对达不到预定要求的原机床导轨进行修磨、刮研后,要在上面贴上耐磨、吸振的聚四氟飞烯软带。

4刀架的改造

刀架是否需要进行改造,要根据改造后机床主要加工对象来确定。若采用一把刀即可完成本机床上的加工,就没有必要对刀架进行改造。若需采用多把刀,如普通车床改装后需要三、四把刀才能完成全部车工工序,就必须对刀架部件进行改造。即拆掉原手动刀架,装上电气或液压驱动,由数控装置控制的自动刀架。

机床的数控化改造要考虑的因素很多。除了上面提到的主要内容外,由于机床控制方式的改变,还要对其进行电气部分的重新设计,机械部分的大修和专项修理,解决调试、安装等多方面存在的问题。总之,在改造过程中,一定要全面综合地考虑问题。只有这样才能改造出性能价格比最优的机床。

摘要:从中、小企业设备的实际情况出发,对在普通机床的数控化改造中,如何对数控系统、伺服系统进行选择,如何对其机械部分进行改造等问题进行了介绍。

关键词:普通机床;数控化;数控机床;改造

Abstract:Onthebasisoftheconditionoftheequipmentinsmallenterprisesormiddleenterprises,intheprocessofrestructuringthegeneralmachinetoolintoNC,theproblemsthathowtoselecttheNCsystem,servosystemandhowtorestructurethestructuresofthemachinetoolandsoonareintroduced.

Keyword:Ordinaryenginebed;Numericalcontrol;Numerically-controlledmachinetool;Transformation

参考文献:

[1]李铁尧.金属切削机床[M].北京:机械工业出版社,1989.

[2]罗永顺.普通机床数控化改造设计中关键问题的研究[J].机床与液压,2005,(6):193-195.

[3]吴孜越.C620普通车床的数控化改造[J].机床与液压,2005,(8):211-213.

数控机床论文范文3

【论文摘要】:数控技术是用数字信心对机械运动和工作过程控制的技术。数控技术的应用不但给传统制造业带来了革命性的变化,更使制造业成为工业化的象征。

数控机床是集高、精、尖技术于一体,集机、电、光、液于一身的高技术产物。具有加工精度高、加工质量稳定可靠、生产效率高、适应性强、灵活性好等众多优点,在各个行业受到广泛欢迎,在使用方面,也是越来越受到重视。但由于它是集强、弱电于一体,数字技术控制机械制造的一体化设备,一旦系统的某些部分出现故障,就势必使机床停机,影响生产,所以如何正确维护设备和出现故障时能及时抢修就是保障生产正常进行的关键。

1.数控机床的维护

对于数控机床来说,合理的日常维护措施,可以有效的预防和降低数控机床的故障发生几率。

首先,针对每一台机床的具体性能和加工对象制定操作规程建立工作、故障、维修档案是很重要的。包括保养内容以及功能器件和元件的保养周期。

其次,在一般的工作车间的空气中都含有油雾、灰尘甚至金属粉末之类的污染物,一旦他们落在数控系统内的印制线路或电子器件上,很容易引起元器件之间绝缘电阻下降,甚至倒是元器件及印制线路受到损坏。所以除非是需要进行必要的调整及维修,一般情况下不允许随便开启柜门,更不允许在使用过程中敞开柜门。

另外,对数控系统的电网电压要实行时时监控,一旦发现超出正常的工作电压,就会造成系统不能正常工作,甚至会引起数控系统内部电子部件的损坏。所以配电系统在设备不具备自动检测保护的情况下要有专人负责监视,以及尽量的改善配电系统的稳定作业。

当然很重要的一点是数控机床采用直流进给伺服驱动和直流主轴伺服驱动的,要注意将电刷从直流电动机中取出来,以免由于化学腐蚀作用,是换向器表面腐蚀,造成换向性能受损,致使整台电动机损坏。这是非常严重也容易引起的故障。

2.数控机床一般的故障诊断分析

2.1检查

在设备无法正常工作的情况下,首先要判断故障出现的具置和产生的原因,我们可以目测故障板,仔细检查有无由于电流过大造成的保险丝熔断,元器件的烧焦烟熏,有无杂物断路现象,造成板子的过流、过压、短路。观察阻容、半导体器件的管脚有无断脚、虚焊等,以此可发现一些较为明显的故障,缩小检修范围,判断故障产生的原因。

2.2系统自诊断

数控系统的自诊断功能随时监视数控系统的工作状态。一旦发生异常情况,立即在CRT上显示报警信息或用发光二级管指示故障的大致起因,这是维修中最有效的一种方法。近年来随着技术的发展,兴起了新的接口诊断技术,JTAG边界扫描,该规范提供了有效地检测引线间隔致密的电路板上零件的能力,进一步完善了系统的自我诊断能力。

2.3功能程序测试法

功能程序测试法就是将数控系统的常用功能和特殊功能用手工编程或自动变成的方法,编制成一个功能测试程序,送人数控系统,然后让数控系统运行这个测试程序,借以检查机床执行这些功能的准确定和可靠性,进而判断出故障发生的可能原因。

2.4接口信号检查

通过用可编程序控制器在线检查机床控制系统的接回信号,并与接口手册正确信号相对比,也可以查出相应的故障点。

2.5诊断备件替换法

随着现代技术的发展,电路的集成规模越来越大技术也越来越复杂,按常规方法,很难把故障定位到一个很小的区域,而一旦系统发生故障,为了缩短停机时间,在没有诊断备件的情况下可以采用相同或相容的模块对故障模块进行替换检查,对于现代数控的维修,越来越多的情况采用这种方法进行诊断,然后用备件替换损坏模块,使系统正常工作,尽最大可能缩短故障停机时间。

上述诊断方法,在实际应用时并无严格的界限,可能用一种方法就能排除故障,也可能需要多种方法同时进行。最主要的是根据诊断的结果间接或直接的找到问题的关键,或维修或替换尽快的恢复生产。3数控机床故障诊断实例

由于数控机床的驱动部分是强弱电一体的,是最容易发生问题的。因此将驱动部分作简单介绍:驱动部分包括主轴驱动器和伺服驱动器,有电源模块和驱动模块两部分组成,电源模块是将三相交流电有变压器升压为高压直流,而驱动部分实际上是个逆变换,将高压支流转换为三相交流,并驱动伺服电机,完成个伺服轴的运动和主轴的运转。因此这部分最容易出故障。以CJK6136数控机床和802S数控系统的故障现象为例,主要分析一下控制电路与机械传动接口的故障维修。

如在数控机床在加工过程中,主轴有时能回参考点有时不能。在数控操作面板上,主轴转速显示时有时无,主轴运转正常。分析出现的故障原因得该机床采用变频调速,其转速信号是有编码器提供,所以可排除编码器损坏的可能,否则根本就无法传递转速信号了。只能是编码器与其连接单元出现问题。两方面考虑,一是可能和数控系统连接的ECU连接松动,二是可能可和主轴的机械连接出现问题。由此可以着手解决问题了。首先检查编码器与ECU的连接。若不存在问题,就卸下编码器检查主传动与编码器的连接键是否脱离键槽,结果发现就是这个问题。修复并重新安装就解决了问题。

数控机床故障产生的原因是多种多样的,有机械问题、数控系统的问题、传感元件的问题、驱动元件的问题、强电部分的问题、线路连接的问题等。在检修过程中,要分析故障产生的可能原因和范围,然后逐步排除,直到找出故障点,切勿盲目的乱动,否则,不但不能解决问题。还可能使故障范围进一步扩大。总之,在面对数控机床故障和维修问题时,首先要防患于未燃,不能在数控机床出现问题后才去解决问题,要做好日常的维护工作和了解机床本身的结构和工作原理,这样才能做到有的放矢。

参考文献

[1]陈蕾、谈峰,浅析数控机床维护维修的一般方法[J],机修用造,2004(10)

[2]邱先念,数控机床故障诊断及维修[J],设备管理与维修,2003(01)

[3]王超,数控机床的电器故障诊断及维修[J],芜湖职业技术学院学报,2003(02)

[4]王刚,数控机床维修几例[J],机械工人冷加工,2005(03)

数控机床论文范文4

关键词:普通机床;数控化;数控机床;改造

Abstract:Onthebasisoftheconditionoftheequipmentinsmallenterprisesormiddleenterprises,intheprocessofrestructuringthegeneralmachinetoolintoNC,theproblemsthathowtoselecttheNCsystem,servosystemandhowtorestructurethestructuresofthemachinetoolandsoonareintroduced.

Keyword:Ordinaryenginebed;Numericalcontrol;Numerically-controlledmachinetool;Transformation

近年来,随着各行业对机加工产品要求的不断提高和数控技术的飞速发展,数控机床以其精度高、效率高和劳动强度低等诸多普通机床无法比拟的优势,成为当今制造业的主流加工设备。目前,一个企业设备数控化程度的高低已经直接影响到了它的生存。那些拥有大量普通机床的工厂,正面临着巨大的挑战。这些厂家效益不好的主要原因,一方面是大量普通机床闲置造成浪费,另一方面是没有足够的资金购买新的数控设备。因此,投入较少的资金,把原有机床进行升级改造,使之变成数控机床,就成了解决这一问题的最好办法。现在,机床的改造,特别是把普通机床改造成经济型数控机床,已经成为了我国广大企业设备投资的重要组成部分。现将机床改造中要考虑的主要问题介绍如下:

1伺服系统的选择

伺服系统是数控机床的重要组成部分,它既是数控系统CNC系统与刀具、主轴间的信息传递环节,又是能量放大与传递的环节。它的性能在很大程度上决定了数控机床的性能。例如,数控机床的最高移动速度、跟踪精度、定位精度等重要指标均取决于伺服系统的动态和静态性能。伺服系统按控制方式分为开环控制系统、半闭环控制系统和闭环控制系统三类。在普通机床的数控化改造中,一般选用价格较低的开环控制系统。该系统的执行元件——伺服电机,通常采用步进电机或永磁式交流伺服电机。

步进电机是采用脉冲数字信号进行控制的,每转一转步距误差自动变为零,易于控制,价格最低。其选择的关键是对参数进行确定。确定参数的具体方法是:先计算电机的步距角,其次确定其步距精度,然后再对它的转矩进行选择,最后选定步进电机驱动器。

永磁式交流伺服电机常用于进给驱动系统中,它容量大,结构简单,运行可靠,效率高,但启动特性欠佳。其选择方法是:先确定电机的额定转速,其次选择其负载惯量,然后再确定它的额定转矩,进行电机预选,最后通过进一步的速度、加减速转矩及连续工作转矩的验算确定预选电机是否符合要求。

2数控系统的选择

数控系统是数控机床的中枢,是其中最关键的环节。目前,市场上数控系统的类型较多,选择时要保证能购得最适合的系统,就必须要充分考虑改造中各方面的因素。

首先,要考虑被改造机床的功能要求。根据机床的功能要求选择数控系统,以使数控系统所具有的功能要与准备改造的机床所能达到的功能相匹配。既要避免因偏面追求数控系统的高性能指标,而选择了功能远远多于改造机床功能的系统,造成功能过剩、资金浪费,且在一定程度上还可能潜伏下由于数控系统复杂程度的增加而带来故障率升高的隐患。又要保证所选数控系统能满足机床全部功能要求,不要出现一些因必须的系统功能短缺,影响其它功能的使用,使机床的优良性能发挥不出来。

其次,要考虑数控系统的制造厂商。老牌著名跨国公司主要有德国的西门子、日本的发那科和三菱、法国的NVM等,国内公司主要有中华数控、中国珠峰、北京航天等。目前,进口系统的性能尚优于国产系统,但价格也较高,因此适用于大型高精度机床。国产系统功能较简单,性能较稳定,价格便宜,对一般车床、铣床已能可靠使用,且近几年国产系统也有长足进步,与世界先进技术的差距越来越小。如中华数控公司,就凭借已其达到国际领先水平,且具有自主版权的数控技术和现代化的产业基地在中国大地迅速崛起。该公司的中华数控系统曾在2004年举行的第一届全国数控技能大赛上与西门子、发那科等著名系统同台全方位竞技,充分发挥了其强大功能优势。使用此系统的参赛选手,有多人取得了很好的成绩。可见,国内系统功能也会越来越完善。

第三,要考虑数控系统与其它配件的匹配。如果数控系统、电机及驱动器的品种、牌号太杂,在连接各部件时,就可能会出现输入与输出信号的不匹配及在传送中信号产生滞后等现象。因此,选择时要优先考虑能提供进给伺服系统和主轴驱动的厂家的数控系统。

另外,在资金允许的条件下,尽量向著名厂家型号系列靠拢。一般著名厂商此类系统零件筛选更严格,制造工艺更规范可靠,性能稳定,能更好地预防电器元件的故障或提前失效引起的设备故障,也有利于维修。

3机床机械部件的改造

数控机床的机械部分在刚度、精度、速度、摩擦磨损等方面较普通机床有更高的要求。因此,不能简单地认为将数控装置与普通机床连接在一起就达到了机床数控改造的目的。而是应该从机床自身的价值考虑,分析改造要达到的目标和所需投入。从该机床在本单位产品制造中的地位和重要程度来分析改造价值。对被改造机床的结构、性能、精度等技术现状作全面分析。其中包括机床原来的结构设计是否符合改造要求,部件结构是否仍然完好,各坐标轴的机械传动结构及导轨副的形式等是否适用,各项精度是否满足要求,机床在加工中是否存在故障和历史上有无出现过重大故障。从该机床的投入产出率估算,确定最终改造方案。

3.1主传动系统的改造

在对主传动系统进行改造时,一般应尽量保留原主轴箱齿轮变速换档机构,只把主轴的正转、反转和停转由原来的机械控制改变为由数控系统控制。当然,如果为了扩大变速范围,实现加工过程中的自动变速,也可以将原来的单速电机更换为多速电机,这样可以使机床性能更好。但多速电机的功率是随转速的变化而变化的,所以电机功率要大,且还要增加一套电机变速系统,改装比较麻烦。对普通机床进行简易数控改造时,最好不要用这种方法。另外,为了使改装后的机床主传动和进给传动保持必然的联系,要在主轴箱内安装一个与主轴同步旋转的旋转脉冲编码器。如普通车床改装为数控车床时,在主轴箱内装主轴脉冲编码器,以保证改造后的车床具备螺纹加工的功能。

3.2进给传动系统的改造

在对进给传动系统进行改造时,一般都应该把原来的进给变速传动装置及操纵机构全部拆除。而每个方向的进给传动都改由各自独立的功率步进电机,经减速齿轮直接与带动滑板移动的丝杠连接,分别实现各坐标方向的运动,进行各坐标的控制。例如普通机床的简易化数控改装,通常都是把原来由主轴箱到进给箱的传动路线切断,且将溜板箱拆除,直接把齿轮减速箱和功率步进电机安装在纵向丝杠的右端和横向丝杠的外端。

在对机床进给传动系统改装的同时,也要对此传动系统中的传动装置元件进行相应的改造。具体如下:

(1)丝杠。丝杠是将回转运动转换为直线运动的传动装置。改造时,为了满足数控机床上较高精度零件的加工要求,应该用滚珠丝杠螺母副替换原普通机床上的梯形丝杠螺母副。滚珠丝杠螺母副把传动丝杠与螺母之间的滑动摩擦变为了滚动摩擦,使摩擦损失减小,精度保持性、传动平稳性、传动效率等都得以提高。其传动效率可达到92%~98%,是普通丝杠螺母副的3~4倍。

(2)拖板。拖板是数控系统直接控制的对象。不论是点位控制、直线控制,还是轮廓控制,被加工零件的最终坐标精度都将受到拖板运动精度、灵敏度和稳定性的影响。除拖板及相配件精度要高外,由驱动电机到丝杠间的传动齿轮也要采用间隙消除结构。以满足传动精度和灵敏度的要求。常用的消隙方法有刚度调整法和柔性调整法两种。刚性调整法传动刚度较好,结构简单,但调整起来很费时;柔性调整法,一般用弹簧弹力自动消除齿侧间隙,传动刚度较低,传动平稳性差,结构复杂。改造中,可根据机床加工目标选用。具体选用可参考有关资料。

(3)机床导轨。为了使改造后的机床有较高的开动率和精度保持性,应充分考虑机床导轨的耐磨性。当前国内普通机床床身等大件多采用普通铸铁,其摩擦系数较大。改造中,在对达不到预定要求的原机床导轨进行修磨、刮研后,要在上面贴上耐磨、吸振的聚四氟飞烯软带。

4刀架的改造

刀架是否需要进行改造,要根据改造后机床主要加工对象来确定。若采用一把刀即可完成本机床上的加工,就没有必要对刀架进行改造。若需采用多把刀,如普通车床改装后需要三、四把刀才能完成全部车工工序,就必须对刀架部件进行改造。即拆掉原手动刀架,装上电气或液压驱动,由数控装置控制的自动刀架。

机床的数控化改造要考虑的因素很多。除了上面提到的主要内容外,由于机床控制方式的改变,还要对其进行电气部分的重新设计,机械部分的大修和专项修理,解决调试、安装等多方面存在的问题。总之,在改造过程中,一定要全面综合地考虑问题。只有这样才能改造出性能价格比最优的机床。

参考文献:

[1]李铁尧.金属切削机床[M].北京:机械工业出版社,1989.

[2]罗永顺.普通机床数控化改造设计中关键问题的研究[J].机床与液压,2005,(6):193-195.

[3]吴孜越.C620普通车床的数控化改造[J].机床与液压,2005,(8):211-213.

数控机床论文范文5

1.1数控机床的工作场地选择

(1)避免阳光的直接照射和其它热辐射、避免太潮

湿或粉尘过多的场所,尽量在空调环境中使用,保持室温20℃左右。由于我国处于温带气候、受季风影响、温

度差异大,对于精度高、价格贵的数控机床,应置于有空调的房间中使用。(2)要避免有腐蚀气体的场所。因

腐蚀气体易使电子元件变质,或造成接触不良,或造成

元件短路,影响机床的正常运行。(3)要远离振动大的设备(如冲床、锻压设备等)。对于高精度的机床还应采用防振措施(如防振沟等)。(4)要远离强电磁干扰源,使

机床工作稳定。

1.2数控机床的电源

数控系统对电源要求较严,一般要求工作电压为220V±10%。针对我国供电工况,对于有条件的企业,可

为数控机床采取专线供电或增设稳压装置,以减少供电品质差的影响,为数控系统的正常运行提供有力保证。

1.3数控机床配置合适的自动编程系统

手工编程对于外形不太复杂或编程量不大的零件

程序,简单易行。当工件比较复杂时(如凸轮或多维空

间曲面等),手工编程周期长(数天或数周)、精度差、易

出错。因此,快速、准确地编制程序就成为提高数控机床使用率的重要环节;为此,有条件的用户最好配置必

要的自动编程系统,提高编程效率。

1.4数控机床配置必要的附件和刀具

为了充分发挥数控机床的加工能力,必须配备必要

的附件和刀具。切忌花了几十万元钱买来一台数控机床,因缺少一个几十元或几百元的附件或刀具而影响整

机的正常运行。由于单独签订合同购买附件的单价大大高于随同主机一起供货的附件单价,因此,有条件的企业尽量在购买主机时一并购置易损部件及其它附件。

1.5加工前的准备

加工前要审查工件的数控加工工艺性,应重视生

产技术准备工作(包括工件数控加工工艺分析、加工程

序编制、工装与刀具配置、原材料准备及试切加工等)

以缩短生产准备时间,充分提高数控机床的使用效率。

合理安排适合在数控机床加工的各种工件,安排好数控机床加工运转所需的节拍。

1.6为维修保养做好准备

建立一支高水平的维修队伍,保存好设备的完整

2.数控机床的常见故障

2.1故障发生的阶段

故障是指设备或系统因自身原因而丧失规定功能的现象。发生故障具有相同的规律,一般分为三个区域:

(1)初期运行区,故障率较高,故障曲线呈上升趋势,此区故障多数属于设计制造和装配缺陷造成的。(2)正常

运行区,此时故障曲线趋近水平,故障率低,此区故障一

般是由操作和维护不良造成的偶发事故。(3)衰老区,此区故障率大,故障曲线上升快,主要原因是运行过久、机

件老化和磨损过度造成的。

2.2故障的分类

按结构分为机械和电气两类;按故障源分为机械故障和控制故障两类;就其数控系统而言分为硬件故障、软件故障、干扰故障三类。要判断是机械方面故障

还是控制系统故障,其分析方法是:先检查控制系统,

看程序能否正常运行,显示和其它功能键是否正常,有无报警现象等;再检查电机和检测元件,是否能正常运转,有无间歇或抖动现象,有无定位不准等问题。如果没有上述问题,则可初步判断故障原因在机械方面,着重检查传动环节。检查传动环节时应使电机断电,用手动并配合打表检查机器。

3.数控系统的常见故障分析

(1)位置环。这使数控系统发出控制指令,并与位

置检测系统的反馈值相比较,进一步完成控制任务的

关键环节;它有很高的工作频度,并与外设相联接,容易发生故障。常见的故障有:1)位控环报警:可能是测量回路开路,测量系统损坏,位控单元内部损坏。2)不

发指令就运动,可能是漂移过高,正反馈,位控单元故

障,测量元件损坏。3)测量元件故障,一般表现为无反馈值;机床回不了基准点;高速时漏脉冲产生报警,可

能的原因是光栅或读头脏了;光栅坏了。

(2)伺服驱动系统。它与电源电网、机械系统等相关联,工作中一直处于频繁的启动和运行状态,也是故

障多发部位。其主要故障有:1)系统损坏。一般由网络电压波动太大或电压冲击造成。地区电网质量不好,会给

机床带来电压超限,尤其是瞬间超限,若无专门的电压监控仪,则很难测到。在查找故障原因时,要加以注意,

还有一些是由于特殊原因造成的损坏。2)加工时工件表面达不到要求,走圆弧插补轴换向时出现凸台,电机低

速爬行或振动,这类故障一般是由于伺服系统调整不当,各轴增益系统不相等或与电机匹配不合适引起,解

决办法是进行最佳化调节。3)保险烧断,或电机过热,以至烧坏,这类故障一般是机械负载过大或卡死。

(3)电源部分。电源失效或故障的直接结果是造成系统的停机或毁坏整个系统。一般在欧美国家,这类问

题较少,在设计方面的因素考虑的不多;但在中国由于电源波动较大、质量差,还隐藏有高频脉冲类的干扰,加上人为的因素(如突然拉闸断电等),这些原因可造成电源故障失控或损坏。再者,数控系统部分运行数

据、设定数据以及加工程序等一般存贮在RAM存贮器内,系统断电后依靠电源的后备蓄电池或锂电池保持。

因而,停机时间比较长,拔插电源或存贮器都可能造成数据丢失,使系统不能运行。

(4)可编程序控制器逻辑接口。数控系统的逻辑控制(如刀库管理,液压启动等),主要由PLC实现,必须采

集各控制点的状态信息(如断电器,伺服阀,指示灯等),它与外界繁多的各种信号源和执行元件相连接,

变化频繁,发生故障的可能性较多,故障类型较多。

(5)其它。由于环境条件,例如干扰,温度,湿度超过允许范围,操作不当,参数设定不当,都可能造成停

机或故障。不按操作规程拔插线路板,或无静电防护措施等,也可能造成停机故障甚至毁坏系统。

4常见故障的排除方法

(1)初始化复位法。一般情况下,由于瞬时故障引起的系统报警,可用硬件复位或开关系统电源依次清

除故障;若系统工作存贮区由于掉电、拔插线路板或电池欠压造成混乱,则必须对系统进行初始化清除,清除前应注意作好数据拷贝记录;若初始化后故障仍无排除,则需进行硬件诊断。

(2)参数更改、程序更正法。系统参数是系统功能的依据,参数设定有误可能造成系统的故障或某功能

无效。有时由于用户程序错误亦可造成故障停机,对此可以采用系统的块搜索功能进行检查,改正所有错误,确保正常运行。

(3)调节、最佳化调整法。调节简单易行的办法,可通过对电位计的调节,修正系统故障。通过调节速度调

节器的比例系数和积分时间,可使伺服系统达到既有较高的动态响应特性,又不发生振荡的最佳工作状态。在现场没有示波器或记录仪的情况下,根据经验,先正向调节使电机起振,然后向反向慢慢调节,直到消除震荡即可。

(4)备件替换法。采用好的备件替换诊断出的坏线路板,并做相应的初始化启动,使机床迅速投入正常运转,

然后将坏板修理或返修,这是目前最常用的排故办法。

(5)改善电源质量法。目前一般采用稳压电源,以改善电源波动。对于高频干扰可用电容滤波法,通过这

些预防性措施可减少电源板的故障。

(6)维修信息跟踪法。一些大的制造公司根据实际工作中属于设计缺陷造成的偶然故障,可以不断修改和完善系统软件或硬件。这些修改以维修信息的形式不断提供给维修人员,以此做为故障排除的依据,有利于正确彻底地排除故障。

础上已设计了一套新型应力应变测试系统,该系统集

数据采集和处理功能于一体,减少了中间环节,操作更便捷、更简单且测试结果更精确[22]。

结束语

SHPB装置是研究材料动载特性的理想工具,SHPB

测试装置的发展是力学、材料学、计算机等技术在应用

领域的综合集成。各学科的协同发展将有力地推动

SHPB技术应用范围的扩大以及SHPB测试技术的提高。

参考文献

[1]马哓青.冲击动力学[M].北京:北京理工大学出版社,1992.

[2]KolskyH.Aninvestigationofthemechanicalpropertiesofmaterials

atveryhighratesofloading[C].Proc.Phys.Soc.B62,1949:676~700.

数控机床论文范文6

1.1超程

当进给运动超过由软件设定的软限位或由限位开关决定的硬限位时,就会发生超程报警,一般会在CRT上显示报警内容,根据数控系统说明书,即可排除故障,解除超程。

1.2爬行

一般是由于进给传动链的状态不良、伺服系统增益过低及外加负载过大等因素所致。尤其要注意的是,伺服和滚珠丝杠连接用的联轴器,由于连接松动或联轴器本身的缺陷,如裂纹等,造成滚珠丝杠转动或伺服的转动不同步,从而使进给忽快忽慢,产生爬行现象。

1.3窜动

在进给时出现窜动现象,其可能原因有:1、接线端子接触不良,如紧固的螺钉松动;2、位置控制信号受到干扰;3、测速信号不稳定,如测速装置故障、测速反馈信号干扰等。如果窜动发生在正、反向运动的瞬间,则一般是由于进给传动链的反向间隙或者伺服系统增益过大引起。

1.4过载

当进给运动的负载过大、参数设定错误、频繁正、反向运动以及进给传动链状态不良时,均会引起过载的故障。此故障一般机床可以自行诊断出来,并在CRT显示屏上显示过载、过热或过电流报警。同时,在进给伺服模块上用指示灯或者数码管显示驱动单元过载、过电流等报警信息。

1.5伺服电动机不转

当速度、位置控制信号未输出、或者使能信号(即伺服允许信号,一般为DC+24V继电器线圈电压)未接通以及进给驱动单元故障都会造成此故障。此时应测量数控装置的指令输出端子的信号是否正常,通过CRT观察I/O状态,分析机床PLC梯形图(或流程图),以确定进给轴的启动条件,观察如、冷却等是否满足。如是进给驱动单元故障则用交换法,可判断出相应单元是否有故障。

2伺服进给系统常见故障典型案例分析

(1)一台配套FANUC7M系统的加工中心,进给加工过程中,发现Y轴有振动现象。

为了判定故障原因,将机床操作方式置于手动方式,用手摇脉冲发生器控制Y轴进给,发现Y轴仍有振动现象。在此方式下,通过较长时间的移动后,Y轴速度单元上OVC报警灯亮。证明Y轴伺服驱动器发生了过电流报警,根据以上现象,分析可能的原因如下:

①电动机负载过重;②机械传动系统不良;③位置环增益过高;④伺服电动机不良,等等。

维修时通过互换法,确认故障原因出在直流伺服电动机上。卸下Y轴电动机,经检查发现2个电刷中有1个的弹簧己经烧断,造成了电枢电流不平衡,使电动机输出转矩不平衡。另外,发现电动机的轴承亦有损坏,故而引起-轴的振动与过电流。更换电动机轴承与电刷后,机床恢复正常。

(2)一台配套FANUC6ME系统的加工中心。轴在运动时速度不稳.由运动到停止的过程中,在停止位置出现较大幅度的振荡,有时不能完成定位,必须关机后,才能重新工作。

分析与处理过程:仔细观察机床的振动情况,发现,X轴振荡频率较低,且无异常声。从振荡现象上看,故障现象与闭环系统参数设定有关,如:系统增益设定过高、积分时间常数设定过大等。

检查系统的参数设定、伺服驱动器的增益、积分时间电位器调节等均在合适的范围,且与故障前的调整完全一致,因此可以初步判断,轴的振荡与参数的设定与调节无关。为了进一步验证,维修时在记录了原调整值的前提下,将以上参数进行了重新调节与试验,发现故障依然存在,证明了判断的正确性。

在以上基础上,将参数与调整值重新回到原设定后,对伺服电动机与测量系统进行了检查。首先清理了测速发电机和伺服电动机的换向器表面,并用数字表检查测速发电机绕组情况。检查发现,该伺服电动机的测速发电机转子与电动机轴之间的连接存在松动,粘接部分已经脱开;经重新连接后,开机试验,故障现象消失,机床恢复正常工作。

(3)一台数控铣床,采用FUNAC6M系列三轴一体型伺服驱动器,开机后,X轴工作正常,但是手动移动Z轴,发现在较小范围内,Z轴可以运动,但继续移动Z轴,系统出现伺服报警。

分析和处理过程:根据故障现象,检查机床实际工作情况,发现开机后Z轴可以少量运动,不久温度迅速上升,表面发烫。

分析引起以上故障的原因,可能是机床电气控制系统故障或机械传动系统不良。为确定故障部位,考虑到本机床采用半闭环结构,维修时首先松开伺服与丝杠的连接,并再次开机实验,发现故障现象不变,故确认报警是由于电气控制系统不良引起。

由于机床Z轴伺服带有制动器,开机测量制动器的输入电压正常,在系统、驱动器关机的情况下,对制动器单独加入电源进行试验,手动转动Z轴,发现制动器松开,手动转动轴平稳、轻松,证明制动器工作良好。

为了进一步缩小故障部位,确认Z轴伺服的工作情况,维修时利用不同规格的X轴在机床侧进行互换实验,发现换上的同样出现发热现象,且工作时故障现象不变,从而排除了伺服本身原因。

为了确认驱动器的工作情况,维修时在驱动器侧,对Z轴的驱动器进行互换实验,即将X轴驱动器与Z轴伺服链接,Z轴驱动器与X轴连接。经实验发现故障转移到X轴,Z轴工作恢复正常

根据以上实验,乐意确认以下几点:

①机床机械传动系统正常,制动器工作良好;

②数控系统工作正常,因为当Z轴驱动器带动X轴时,机床无报警;

③Z轴伺服工作正常,因为将它在机床侧与X轴互换后,工作正常;

④Z轴驱动器工作正常,因为通过X轴驱动器在电柜侧互换,控制Z轴后,同样发生故障。

综合以上判断,可以确认故障是由于Z轴伺服的电缆连接引起的。

仔细检查伺服的电缆连接,发现该机床在出厂时电枢线连接错误,即驱动器的L/M/N端子未与插头的A/B/C连接端一一对应,相序存在错误,重新连接后,故障消失,Z轴可以正常工作。

(4)一台配套FUNAC6ME系统的加工中心,X轴在静止时机床工作正常,无报警;但在X轴运动过程中,出现振动,伴有噪声。

分析与处理过程:由于机床在X轴静止时机床工作正常,无报警,初步判定数控系统与驱动器无故障。考虑到X轴运动时定位正确,因此,进一步判定系统X位置环工作正常。检查X轴的振动情况,经观察发现,振动的频率与运动速度有关,运动速度快振动频率较高,运动速度慢则振动频率低,初步认为故障与速度反馈环节有关。分析引起以上故障可能的原因有:

①测速发电机不良;②测速发电机连接不良;③直流伺服电动机不良。

维修时首先检查X轴伺服电动机的测速发电机连接,未发现不良。检查X轴伺服电动机与内装式测速发电机,发现换向器表面积有较多的碳粉,用压缩空气进行清理后,故障未消除。进一步利用数字万用表,测量测速发电机换向片之间的电阻值,经比较后发现,有一对极片间的电阻值比其他各对极片间的电阻值大了很多,说明测速发电机绕组内部存在断路现象。更换新的测速发电机后,机床恢复正常。