前言:中文期刊网精心挑选了工程热物理论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
工程热物理论文范文1
摘要:通过对环保工质三氟碘甲烷(CF3I)的饱和蒸汽压曲线、冰箱名义工况和变工况下循环性能等三方面的理论分析,发现CF3I和CF3I的摩尔组成在50%-65%范围的CF3I/HC290混合工质,理论循环性能与CFC12接近,具有作为冰箱中CFC12灌注式替代物的潜力。
关键词:工程热物理 冰箱制冷剂 理论循环分析 CF3I CF3I/HC290
1 引言
冰箱制冷剂CFC12的现有替代物主要有HFC134a、HC600a和HFC152a/HCFC22,它们分别在加工工艺、可燃性、环保和热工性能方面存在缺陷[1,2],寻求新型环保节能的冰箱工质仍是人们研究的方向。
三氟碘甲烷(CF3I)是作为哈龙替代物而开发的新型灭火剂,其臭氧层破坏势(ODP)为0,20年的全球变暖势(GWP)低于5,不燃,油溶性和材料相容性很好[3],饱和蒸汽压曲线与CFC12相近,具备了作为冰箱制冷剂的前提条件(至于毒性目前还没有定论[3,4])。关于CF3I的热物性,只有文献[3]进行了较为系统的研究,目前还缺乏适用于汽液两相区的状态方程;CF3I在冰箱工况下的循环性能,还没有被系统地分析。根据文献[3]的PVT实验数据,确定同时适用于CF3I汽液两相的PT方程;并在此基础上,对CF3I在冰箱工况下的循环性能进行系统地理论分析,旨在考察其作为冰箱制冷剂的可能性。
2 理论循环分析的工具
2.1 PT状态方程两参数F、ζc的求解
PT状态方程[5]的具体形式为:
而是方程(8) 的最小正根。
式中,R为工质的通用气体常数,Tr=T/Tc。确定PT状态方程需要具体物质的四个参数:临界压力Pc、临界温度Tc、虚拟压缩因子ζc、斜率F。对于CF3I,文献[3]给出其Pc=3.953MPa,Tc=396.44K[3]。ζc、F的求解方法如下:(1)选取n个饱和液相数据点(T、P、ρL)i (i=1,…,n);(2)假设一个ζc初值;(3)由式(6)、(7)、(8)求出Ωa、Ωb、Ωc,代入式(4)、(5)求得b、c;
式中,X-所要比较的物理量,cal-PT方程的计算值,exp-实验值,n-数据点的个数。
冰箱的名义工况为蒸发温度tevap=-23.3℃,冷凝温度tcon=54.4℃,吸气温度、过冷温度32.2℃[6],处于上述温度区间。可见,确定的适用于CF3I的PT方程,能够用于对CF3I的冰箱循环性能分析计算,而且精度良好。
3 CF3I蒸汽压曲线的分析
从热力学角度看,替代制冷剂最好具有与原制冷剂相似的蒸汽压曲线[7]。图1为几种工质的蒸汽压对比,其中CF3I的蒸汽压方程为[3]
式中,
A1=-7.204825,A2=1.393833,A3=-1.568372,A4=-5.776895,适用范围243K~Tc;其它制冷剂的蒸汽压数据来自ASHARE[8]。
由图1可见,在冰箱名义工况的温度区间内,HFC152a/HCFC22、HFC134a的蒸汽压曲线与CFC12吻合得很好;HC290的蒸汽压高于CFC12,HC600a的蒸汽压则比CFC12低许多。CF3I的蒸汽压介于HC600a与CFC12之间,在冰箱名义工况下与CFC12的最大差距为20%左右。由蒸汽压看,CF3I比HC600a更适合作为CFC12的灌注式替代物;按照优势互补原则选择HC290与CF3I组成混合物,灌注式替代CFC12的效果可能会更好。
4 CF3I作为冰箱制冷剂的循环性能分析
4.1 冰箱名义工况
采用带回热的冰箱制冷循环模型,即用回热器来实现工质的过冷和过热,并设工质经过回热器换热后节流前的温度与压缩机的吸气温度相等,这一温度称为回热温度。
计算CF3I的循环性能所需的理想气体比热式[3]为:
式中T的单位为K,R为CF3I的气体常数,单位为J/(K·kg)。计算焓、熵的参考态为ASHRAE规定的-40℃的饱和液态,参考态上h=0kJ/kg,s=0kJ/(kg·K)。
在冰箱名义工况下,设压缩机的总效率为0. 70,计算了几种工质的循环性能。混合工质的蒸发温度取为蒸发器进口和露点温度的平均值,冷凝温度取其冷凝压力下的泡露点平均值。计算结果见表1。表中MIX1、MIX2分别表示质量百分比85/15、75/25的HFC152a/HCFC22。
观察表1中各种工质的性能参数,在压力水平方面,除了HC600a、HC290外,现有的几种冰箱制冷剂的蒸发压力Pevap、冷凝压力Pcond与CFC12都很接近。CF3I的压力水平与CFC12有一定偏差,其Pevap略低于大气压,蒸发器为微负压,不利于系统运行。CF3I的压比与CFC12的最接近。压缩机排气温度方面,HC600a和HC290的tdisch较低。CF3I的tdisch较高,不利于压缩机的运行;但与MIX1、MIX2十分接近,表明目前的冰箱压缩机能够承受这样的温度。CF3I的单位容积制冷量qv比CFC12小20%左右,也比HFC134a、MIX1和MIX2小,HC290比CFC12高40%左右。CF3I的COP是最高的,比CFC12高3.4%,这是CF3I的优势,而HC290是最低的。通过以上的比较可以看出:(1)CF3I的循环性能指标与CFC12相近,可以在对原有制冷系统稍作改动的基础上,作为CFC12的灌注式替代物;(2)HC290与CF3I在循环性能指标上具有互补性,若将两者组成混合物,在性能上可能更接近CFC12。转贴于
4.2 变工况
变工况循环性能分析,一般包括COP、qv、tdisch、随冷凝温度、蒸发温度、回热温度的变化规律。相比之下,各性能指标随回热温度的变化规律比随蒸发温度、冷凝温度的变化规律更重要一些,这是因为冰箱的回热器一般裸露在环境中[1],回热温度的变化幅度、频率要比蒸发温度、冷凝温度要大、要快。分析几种制冷剂循环性能指标随回热温度的变化规律,分析方法是固定蒸发温度、冷凝温度,变化回热温度,看性能指标的变化趋势。
结果如图2-图5所示。回热温度由0℃变化到50℃,几种工质的COP都降低,其中CF3I降低得最慢。在qv方面,HC290随回热温度的变化显著,其他工质的变化规律相似。随着回热温度的升高,CF3I的tdisch增加速度比其它工质快,这是不利于冰箱运行的。由于在计算中固定了蒸发温度、冷凝温度,所以对于纯质来说保持不变,而对于混合工质来说,有轻微地上升。由图还可以发现,CF3I与HC290的循环性能指标分布在CFC12的两侧。
CF3I各项性能指标随回热温度的变化所表现的规律与CFC12基本类似,数值幅度上的偏差也不太大。COP优于CFC12,tdisch较CFC12为高。总起来说,CF3I存在作为CFC12灌注式替代物的潜力。
5 CF3I/HC290混合物作为冰箱制冷剂的循环性能分析
5.1 冰箱名义工况
由以上分析可知,CF3I与HC290的循环性能具有互补性,下面具体分析不同配比下HC290/CF3I混合物的循环性能。
计算工况、压缩机总效率的选取同上。表2列出了循环性能计算结果。
由表1已经知道CF3I的Pevap、Pcond、q0、qv都比HC290的小,所以随着HC290在混合物中所占比例的增加,HC290/CF3I混合物的Pevap、Pcond、q0、qv都应该呈现增大的趋势,而∑、tdisch、COP应该减小,这种规律在表2中得到了很好的体现。
对比表2和表1,可以看到CF3I/HC290混合物在65/35、60/40、55/45、50/50四种摩尔百分配比下各个性能指标与CFC12吻合得很好。
5.2变工况
对上面所给4种配比下的CF3I/HC290混合物进行了循环性能参数随回热温度变化规律的计算。结果表明,混合物的循环性能与CFC12十分接近,从理论循环分析的角度看,是CFC12理想的灌注式替代物。
图2-图5中列出了摩尔百分比为65/35(质量百分比为89.2/10.8)的CF3I/HC290的计算结果,其它3种配比下CF3I/HC290混合物的性能也与之相近。
5.3 可燃性分析
以上4种配比的CF3I/HC290混合物中,HC290的摩尔比例最大为50%,其相应的质量比例最大为18.4%。一般家用冰箱的制冷剂的充灌量为0.1kg左右[6,9],以本文提出的4种CF3I/HC290混合物作为冰箱制冷剂,HC290的最大充灌量仅为0.0184kg。文献[10]指出,在密封性好的制冷系统中,只要碳氢化合物的充灌量小于0.15kg,那么系统就是安全的。因此,CF3I的摩尔组成在50%~65%范围的CF3I/HC290混合工质在应用中的安全性是可以得到保证的。
6 结论
(1)求得了适用于CF3I的PT方程,此状态方程对于CF3I的热力学性质和循环性能计算具有较高的精度。
(2)通过对CF3I的蒸汽压曲线、冰箱名义工况、变工况的计算分析,发现CF3I的循环性能与CFC12相近。
(3)按照优势互补的原则,筛选提出了CF3I的摩尔组成在50%~65%范围的CF3I/HC290混合工质,其循环性能与CFC12十分接近,可作为CFC12的灌注式替代物。
参考文献
1 何茂刚.三氟甲醚作为冰箱制冷剂的理论分析.李惠珍,李铁辰等.西安交通大学学报,2003,37(1):10~14
2 梁荣光.环保制冷剂CN-01的应用.曾恺,简弃非.制冷学报,2003,24(1):57~60
3 段远源.三氟碘甲烷和二氟甲烷的热物理性质研究:[博士学位论文].北京:清华大学,1998
4 DoddD.E.etc.FundamentalandAppliedToxicology,1997,35:64
5 NavinC.PatelandAmynS.Teja.Anewcubicequationofstateforfluidsandfluidmixtures.ChemicalEngineeringSci ence,1982,37(3):463~473
6 王建栓.碳氢化合物在家用小型制冷装置中的替代研究:[硕士学位论文].天津:天津大学,2000
7 刘志刚.CFCS替代工质筛选的热力学原则.傅秦生,焦平坤等.全国高等学校工程热物理第四届学术会议论文集,杭州:浙江大学出版社,1992,73~76.
8 1993ASHRAEHANDBOOKFUNDAMENTALS,SIEdition,1993
工程热物理论文范文2
执著创新
现任天津大学教授、博士生导师及内燃机燃烧学国家重点实验室副主任的姚春德有着丰富的研究经历和实践经验。他于1993—1994年赴德国亚琛工业大学师拜国际著名的内燃机专家皮辛格教授进修学习柴油机高效、低污染燃烧技术,并于1995年赴美国威斯康星州先进发动机技术发展公司工作一年。
多年来,姚春德一直从事内燃机燃烧基础理论和内燃机新燃料方面的研究,研究领域覆盖发动机设计、排放控制、节油添加剂、燃烧化学反应动力学、多元燃料燃烧理论和技术等诸多内容。
近年,姚春德针对柴油紧缺而开展的柴油机应用替代燃料的研究,已取得突破性进展。众所周知,我国的石油需求量大,但资源却不丰富,每年内燃机需要消耗大量石油燃料,为此我国的进口石油量逐年递增,这给经济发展带来了极大压力。为了能缓解石油紧张的局面,寻找合适的内燃机替代燃料,已成为业界一个急需解决的难题。经过反复比较分析,姚春德选择了甲醇作为重要突破口。之所以选择甲醇,按姚春德自己的解释是:一方面甲醇的生产技术成熟,产能高,此外,甲醇的生产资源广泛,煤炭、天然气、生物质、焦炉气都可以用于生产,而我国也是煤炭资源丰富的国家。可以说,选择甲醇就为内燃机燃料,将为我国经济的可持续发展打下良好的基础。
然而,甲醇的特性决定了其一般不能用于柴油机,如何用到柴油机上目前尚是一个科学难题。为此,姚春德经过十余年的艰苦努力,终于在柴油机应用甲醇燃料的技术方面取得了突破。他提出了柴油/甲醇二元燃烧理论,发明了柴油/甲醇组合燃烧的方法,实现了在柴油车中可用甲醇替代30%的柴油,燃料效率提高10%以上的目标,最终使甲醇成功应用于柴油机上。目前,该方法已通过在发动机台架和整车道路方面的试验,并被工信部指定为柴油机应用甲醇燃料的唯一方式。
硕果累累
现今,在低碳、节能的大背景下,我们完全有理由相信,甲醇/柴油组合燃烧方法的推广应用,不仅可以大幅度提高燃料的经济性,提升发动机的排放品质,同时对增加国家石油能源安全,改变依赖石油大量进口的被动局面和减少二氧化碳排放都将起到重要的作用。
正是在这种社会价值的追求中,姚春德实现了自己的人生价值。除了本职工作外,他还兼任中国工程热物理学会常务理事,中国汽车工程学会理事和特聘专家,中国内燃机学会中小功率柴油机分会副主任,《工程热物理学报》编委,《燃烧科学与技术》、《汽车安全与节能学报》、《小型内燃机与摩托车》等刊物编委,《Applied Thermo Energy》、《Energy and Fuel》等国际刊物的论文评审专家。
工程热物理论文范文3
关键词:传热学 导热 fluent
中图分类号:G642 文献标识码:A 文章编号:1672-3791(2015)09(a)-0144-02
Abstract:Fluent software was introduced in heat transfer teaching for numerical solution method of heat conduction problem. Numerical solution method was explained combination with Fourier law and heat conduction problem of multi wall.Wall temperature distribution was show by picture,the abstract concept and the theory change into the image picture,to raise students’interest in learning the course.And to make students deeper understanding of what is learned,to achieve the purposes of improving the teaching effect and quality.
Key Words:Heat transfer;Heat conduction;Fluent
传热学就是研究由温差引起的热能传递规律的科学[1],要求学生掌握强化传热、削弱传热以及能计算简单情况下的温度分布。热传导问题数值解法的是学生比较难以掌握的难点,同时也是重点,要求学生能对简单的热传导问题进行数值求解。通过将Fluent软件引入教学过程,是学生讲学习的重点放在热传导问题数值计算的基本原理上,而求解过程由Fluent软件实现,进一步掌握该软件的用法,为做毕业论文打下一定的基础。
1 Fluent软件的特点
对导热问题数值求解的基本思想是:把原来在时间、空间坐标中连续的物理量的场,如导热物体的温度场,用一系列有限个离散点上的值的集合来代替,通过一定的原则建立起这些离散点上变量值之间关系的代数方程,求解所建立起来的代数方程以获得所求物理量的近似值[2]。Fluent软件是一个模拟和分析在复杂集合区域内的流体流动与传热问题的专用CFD软件,同时也能模拟固体的导热问题[3]。Fluent软件由前处理器、求解器和后处理器组成。其中前处理器Gambit用于网格的生成,网格的生成过程即为计算区域离散化的过程。求解器用于求解所建立起来的代数方程。而后处理器用于处理计算的结果,可以把计算得到的数据可视化[4]。
2 教学案例
分析带有保温层的墙壁的传热过程,在教学中以长3m(x方向),高3.2m(y方向),厚0.3m(z方向)的墙作为研究对象,其中保温层厚度为0.05m,如图1所示。在教学过程中分析以下两种情况下炉墙的传热过程:(1)分析有保温层和无保温层时墙壁的温度分布;(2)保温层厚度不变,分析保温层导热系数对炉墙温度分布以及散热量的影响。水泥墙和保温层的物性参数表1所示。
(1)数学模型。
(2)边界条件。
(3)墙壁中的温度分布。
计算得到不同厚度方向(z方向) xy截面的温度分布,从图中可以看出不同截面上的温度相等,根据傅里叶定律可知热量沿着厚度方向传递。从而验证了传热学中大平板模型中(长度、宽度远远大于厚度的平板)热量沿着厚度方向传递。
计算保温层存在时以及没有保温层时墙壁的温度分布,计算结果如图3所示。图3(a)为炉墙厚度方向yz截面的温度分布,从图中可以看出温度在z方向及墙壁厚度方向发生变化,而在y方向炉墙的温度保持不变。对比有保温层和无保温层两种情况的温度分布,在有保温层时,墙壁中的温度发生剧烈的变化,而无保温层时,墙壁中的温度变化比较平缓。可见保温层对墙壁的温度分布影响比较大。
根据墙壁厚度方向的温度变化,得到墙壁温度在厚度方向的变化曲线,如图3(b)所示。由于墙壁内外的边界条件相同,有保温层时和无保温层时内墙壁的温度为296K、外墙壁温度为260K。无保温层时墙壁内的温度几乎成线性变化,而有保温层时,墙壁的温度变化比较平缓,在墙壁和保温层的交界面处z=0.3m,温度发生剧烈变化,在保温层中温度急剧下降,这是由于保温层的热阻非常小而导致的。在厚度0m
(4)保温层导热系数对热流量的影响规律。
在保温层厚度保持不变的情况下,保温层导热系数的大小,直接影响墙壁的散热,因此分析保温层导热系数对墙壁热流量的影响,如图4所示。随着保温层导热系数从0.06 W/(m・K)减小到0.01 W/(m・K),墙壁散热的热流量从180W减少到40W。导热系数越小,保温层的热阻越大,根据传热过程热流量与热阻的关系可知墙壁的热流量越小,从而减少墙壁的散热。
3 结语
在传热学导热问题数值解法的教学过程中,引入Fluent软件,同时结合傅里叶定律、多层平壁导热问题进行讲解。以墙壁的温度分布为例,分析了有保温层时和无保温层时墙壁的温度分布,比较这两种情况下墙壁的热流量大小,有保温层时能显著的减小墙壁的散热。同时分析了保温层导热系数对墙壁热流量的影响规律。将较强理论的教学内容形象化,激发学生的学习兴趣,加深对传热学基础理论的理解。
参考文献
[1] 杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006:1-2.
[2] 陶文铨.数值传热学[M].西安:西安交通大学出版社,2001:28-29.
工程热物理论文范文4
关键词:专业综合改革;实践教学;热能与动力工程;理论研究
中图分类号:G642 文献标识码:A 文章编号:1007-0079(2014)33-0042-02
近些年来,教育部针对教学质量工程建设,开展了系列的质量工程项目,如精品课程、教学团队、国家精品资源共享课程、特色专业以及“卓越工程师”计划等等。教育部在2012年1月批准了53个高校180个专业实施新的“高等学校本科教学质量与教学改革工程”建设项目――高校实施专业综合改革试点项目。主要目的是推进高校教育教学改革,提高教育教学质量,结合学校办学定位及学科特色,明确专业培养目标和建设重点,优化人才培养方案,通过自主设计建设方案,推进培养模式、教学团队、课程教材、教学方式、教学管理等专业发展重要环节的综合改革,促进人才培养水平的整体提升,形成一批特色更加鲜明的专业点。
专业综合改革是为了适应社会经济的发展和区域经济发展以及行业需求为导向,建立一个适应自身办学特色的专业培养模式,该培养模式要求实际操作性强,而且能达到与企业对接,培养合适的专业人才。近年来,一些不同的高等学校或专业从自身建设出发分析专业综合改革的特点。[1-4]郭晓丽[5]以教学管理角度,从打造优良师资、强化制度建设、深化教学改革、加强档案建设四方面进行了论述对专业综合改革的思考。邵霞等[6]以江苏大学工程热物理专业为例介绍了该专业的专业综合改革做法。下面以郑州轻工业学院(以下简称“我校”)能源与动力工程专业(制冷与低温工程方向)在实施省级专业综合改革项目中具体操作方法为对象,从人才培养模式、师资队伍建设、实践和创新教学和毕业设计等方面进行阐述专业综合改革的必要性与可行性,以期对类似的专业综合改革提供一些建设思路。
一、人才培养模式改革与实践
人才培养模式作为教育教学改革的核心问题,是人才培养的顶层设计,是办学指导思想和教育目标的具体体现,也是专业综合改革所提出来建立面向地区发展的人才培养模式,突出区域发展特点,建立特色鲜明的人才培养模式。河南省是制冷产业的大省,有较多的中小型企业,目前有开封空分集团、格力电器(河南)有限公司、郑州科林车用空调有限公司、三力制冷设备实业有限公司、河南冬宫制冷工程有限公司、郑州中南科莱空调设备有限公司以及在商丘市民权制冷产业聚集区等一批制冷相关企业,同时河南也是冷冻食品的大省,有三全、双汇、思念等知名企业。我校能源与动力工程专业是河南省较早的本科专业,是国家级特色专业和国家级“卓越工程师计划”试点专业,有几十年的发展过程,坚持办学特色,服务地方经济。通过长期的建设,我校与省内相关企业、产业建立了良好的产学研合作关系,并在相关企业建立了产学研合作基地和本科生教学实习、实践基地等,每年我校能源与动力工程专业的本科生在这些企业进行生产见习、实习、毕业设计等培养。根据这些特点,我校能源与动力工程专业建立了如图1所示的培养模式。
针对刚入校的学生,在低年级主要学习基本的理论知识和专业技能,培养专业兴趣,夯实专业基础。这一培养环节基本以理论课程讲授为主,专业技能的培养也基本由教师承担。针对中高年级学生,专业课将由教师和工程师共同指导和讲授,工程师从学院签约的共建单位引进,毕业设计的题目主要从企业实际需求出发,按照教学过程安排设计时间和设计环节,达到学习和锻炼的目的。这样一方面能够按照教学要求完成相应的课程内容和理论讲授,另一方面又可以让学生在课堂教学的同时感受到实际项目的特点和适应的过程。
二、师资队伍建设
郑州轻工业学院作为教学型院校,主要是培养本科层次应用型人才。应用型人才的培养需要一批即懂专业又要懂企业产品生产、制造、设计及研发的师资队伍,因此我校于2012年出台了《郑州轻工业学院关于加强高水平工程教育师资队伍建设的若干意见》,建设目标是建设一支工程实践能力强,教学经验丰富,集教学、科研和工程开发应用为一体的专业师资队伍。各工科专业教师应具备一定年限的工程实践经历,其中部分教师应具备一定年限的企业工作经历,到2015年,各工科专业教师到企业工程岗位工作一年以上的比例达到50%以上。根据学校的总体安排,结合专业实际情况,我校能源与动力工程专业是国家级特色专业和国家级“卓越工程师计划”试点专业,学校在人才引进方面给预予了很多政策,因此要求具有博士学历的教师要去企业从事半年以上的研究开发工作或与企业合作进行产学研开发,有条件的也可以去企业进行博士后研究;同时引进在企业工作过的具有高学历人才充实专业教师队伍。近两年分别从开封空分集团和新飞电器引进高层人才2名,1名博士去广东志高空调有限公司从事博士后研究并已出站。另外有5名教师分别与郑州科林车用空调有限公司、广东中宇集团、郑州长城科工贸有限公司等企业从事产学研合作项目的研究与开发工作。通过近五年的建设,该专业的教师大部分具有从事企业产品研究开发能力,提升了专业教师的工程素养。
教师的主要职责是教书育人,近些年引进的人才都具有博士学位,知识面及水平都很高,但是如何上好一门课,做一个合格的教师,需要进一步的培养。能源与动力工程专业作为国家级特色专业,充分发挥具有丰富教学经验的老师的带头作用,对青年教师做好教学环节的培训工作。我校青年教师的培养分为4个阶段:一是入职培训。主要是由人事处组织一批学校教学名师对每年入职的青年教师进行教学集中培训。二是助课。第一学年青年教师必需助课1~2门次。三是教研室试讲。由教研室主任组织教学经验丰富的教师组成评委对其教学进行试讲,并进行点评,检查教案。四是二级学院试讲。由二级学院组织对学院的青年教师的讲课进行试讲。通过考核才能独立进行教学。在教学过程中,二级学院近五年入职的青年教师参加由二级学院组织的青年教师教学技能竞赛,并推优参加学校的教学技能竞赛。同时学校每年至少组织近五年入职的教师参加由学校定期组织的教育教学方法的培训、精品课程的师资培训等一些培训会,提升老师的教育教学水平。通过近些年来的学校、学院以及教学团队负责人的精心培养与组织,能源与动力工程教学团队2013年获得河南省优秀教学团队。
三、实践和创新教学环节
实践教学是地方工科院校人才培养中至关重要的环节,也是地方工科院校教育教学改革的着力点和重点,更要突出实践教学体系在人才培养过程中的重要性。能源与动力工程专业分别与格力电器(河南)有限公司、郑州科林车用空调有限公司、三力制冷设备实业有限公司、河南冬宫制冷工程有限公司、郑州中南科莱空调设备有限公司、郑州长城科工贸有限公司、山东小鸭零售设备有限公司、郑州凯雪冷气设备有限公司等省内外企业建立了学生实习基地,承担本科生的认知实习、生产实习和暑假实习等。安排高年级学生到生产单位进行实践,在生产第一线亲身体会工程师的工作。在这一环节,学生的学习以企业单位为主体,学校则作为配角协助企业完成对学生工程实践能力的培养。同时近几年投入近500万元,按国家标准建成了焓差实验室、压缩机综合测试实验室、换热器综合测试实验室、冷冻冷藏设备等实验室,作为本科生的实验、实训实验室。
同时在广泛建立本科生实践基地的同时,以大学生创新性实验和学科竞赛为载体,完善实践教学体系,从而确保人才培养质量的提高。近些年积级地组织学生参加各类创新大奖赛,每年学生承担的国家级、省级和校级创新实践、实训和创业类项目10余项。组织本科生参加全国节能减排大赛、机械创新大赛、河南省国家大家科技园怀科技创新大赛等,获得奖励多项。通过大赛锻炼学生的动力能力、创新能力和运用所学知识解决问题的能力。
四、毕业设计(论文)环节
毕业设计是教学过程的最后阶段采用的一种总结性的实践教学环节。通过毕业设计,能使学生综合应用所学的专业基础理论知识和专业知识,从事该专业的相关产品的设计与开发或利用所学知识从事专业相关的研究。我校能源与动力工程类本科生主要是企业相关产品的设计与开发,部分考入研究生的同学可选做毕业论文。[7,8]毕业设计的指导老师为:学校的教师或企业的高级工程师。毕业设计的题目主要是制冷设备的设计,如:制冷机组的设计、小型制冷产品的设计等。在企业从事毕业设计的同学,由企业导师与学校导师共同指导,以企业导师为主。实践表明,校企结合的毕业设计模式,充分利用企业资源,这种方式尤其适合于工科专业的学生,因此很受学生欢迎,激发了学生的学习兴趣,培养了学生解决实际问题的能力。
五、结论
专业综合改革试点是教育部正积极推进的一项教育改革工程。我校结合中原经济区建设的实际需求为出发点,以我校的实际情况,突出办学特色,结合我校能源与动力工程专业人才培养模式、师资队伍建设、实践和创新教学和毕业设计具体做法,强化专业特色,增加实践教学环节的内容和方式,以培养高素质工程技术人才为目标,开展了专业综合改革的探索和实践,提升专业教师的工程背景和增强校企结合的人才培养模式,提升学生的动手能力和解决实际问题的能力,从而培养出真正的“厚基础、宽口径、强能力、高素质的创新性人才”。
参考文献:
[1]韦钢,应敏华,赵玲,等.电力系统及其自动化专业综合改革探索[J].高等工程教育研究,2001,(1):15-17.
[2]朱长江,何穗,徐章韬.数学与应用数学专业综合改革目标、方案与实施[J].中国大学教学,2013,(2):30-33.
[3]方波,白政民,张元敏.应用型本科电气工程及其自动化专业综合改革探索――以许昌学院为例[J].中国成人教育,2013,(14):150-152.
[4]刘全忠,王洪杰.能源与动力工程专业卓越工程师培养模式研究与实践[J].黑龙江教育学院学报,2013,32(12):40-42.
[5]郭晓丽.高等学校“专业综合改革试点”教学管理问题研究[J].中国电力教育,2012,(32):38-39.
[6]邵霞,潘剑锋,唐爱坤,等.突出能力培养的工程热物理专业综合改革[J].中国电力教育,2012,(23):38,51.
工程热物理论文范文5
关键词:物料循环量 燃料特性 循环倍率
中图分类号:TK229文献标识码: A
引言
物料循环量是循环流化床锅炉设计、运行中的一个非常重要的参数,该参数对锅炉的流体动力特性、燃烧特性、传热特性以及变工况特性影响很大。
物料循环量的定量表述一般采用三种方法。第一种方法采用循环倍率的概念,其定义如下:
R=FS/FC
R:循环倍率;
FS:循环物料量,kg/h;
FC:投煤量,kg/h;
采用循环倍率最大的优点是直观,计算比较方便,并可对循环流化床锅炉进行大致的分类,目前它被广泛地应用在循环物料量的定量描述中。但采用循环倍率的概念也有其不足之处,首先同一容量的锅炉由于燃煤品质不同,投煤量也不相同,这样在同样的固体颗粒循环量下循环倍率也不相同。其次,在采用脱硫剂时其物料循环量也与投煤量相比,则从概念上不尽合理。第三,由于许多燃用优质煤的循环流化床锅炉,需添加惰性物料,作为循环物料,而这一部分也与投煤量相关联,因此也不尽合理。所以近年来许多人采用第二种方法,即用单位床层面积上的物料循环量来直接描述,即GS。第三种方法是,确定的循环倍率为床内上升段中采用循环技术与不采用循环技术时的灰量之比。目前一般采用第一种和第二种方法。
上面所说的物料循环量主要是指外部物料循环量,即通过返料机构送回床层的物料量,实际上在循环流化床锅炉中,有很大的内循环量。内循环量主要取决于床内构件及流体动力特性。
下面讨论的物料循环量一般是指外部物料循环量。内循环物料量考虑起来比较困难,但内循环在提高脱硫、燃烧的效率方面,其影响与外循环基本上是相同的,对平衡床内温度的影响与外循环不尽相同,但有一点是非常明显的,即内循环增大后,外循环可以适当的降低一些。
在不考虑炉内燃烧脱硫时,循环倍率在实际锅炉中可根据各段的灰平衡以及分离器的效率来确定。
二、运行参数对确定物料循环量的影响
(一)燃料特性对确定物料循环量的影响
燃料特性对确定物料循环量有很大的影响。一般认为,对燃料热值高的煤循环倍率也高,但对挥发分高的煤,则可取较小的循环倍率。但这只是一个总的原则,由于各制造厂本身选取的循环倍率值相差甚大,目前很难给出一个适合各种类型锅炉的循环倍率值。但对于Circofluid型循环流化床锅炉,Bob等提出燃料发热量越高,灰分越低,水份越高,选取的循环倍率也越高。
(二)热风温度及回送物料温度对循环倍率的影响
热风温度变化时,如果循环物料的回送温度及循环倍率均不变,则床层温度会提高。如果考虑床层温度固定在脱硫最佳温度或某一定值时,此时应增加循环倍率,从而保持床温一定。
提高循环物料回送温度时,如果其他参数不变,则根据床内热量平衡,床层温度会提高,此时若要保证床层温度维持在一定值,则应提高循环倍率。
三、物料循环量的变化对运行的影响
(一)物料循环量对燃烧的影响
物料循环量增大时对床内燃烧的影响,主要体现在一下几个方面。首先是物料循环量增加,使理论燃烧温度下降,特别是当循环物料温度较低时尤为如此。其次,由于固体物料的再循环而使燃料在炉内的停留时间增加,从而使燃烧效率提高。当然如果燃烧效率已经很高,再增加循环物料量对燃烧效率的影响就会很小。第三,物料循环使整个燃烧温度趋于均匀,相应的也降低了燃烧室内的温度,这样使脱硫和脱硝可以控制最佳反应温度,但对于冉阿少则降低了反应速度,燃烧处于动力燃烧工况。
(二)物料循环量对热量分配的影响
当循环物料回送温度低于550℃时,省煤器应布置在分离器的前后,当回送温度大于550℃时,省煤器可单级布置于分离器之后,回送温度低于730℃以前,对过热器的影响不很明显,过热器仅需双级布置;但当回送温度大于730℃以后,过热器经常布置成三级,其中一级布置在分离器后的对流竖井中;当回送温度上升时,炉膛部分的吸热增加;当回送温度高于850℃时,对流区段也就不复存在。
(三)物料循环量与变负荷的关系
对于循环流化床锅炉,改变循环倍率即可满足负荷变化的要求。降低循环倍率可使理论燃烧温度上升,从而可以弥补由于在低负荷时相当于正常负荷时过大的水冷壁受热面而造成的烟气过度冷却。同时,也可以降低水冷壁的传热系数,从而使炉膛出口温度不变。在正常负荷下,保持循环倍率设计值运行,随着负荷的下降,循环倍率也随着下降,到达到1/3~1/4负荷时,循环流化床锅炉按鼓泡流化床方式运行,物料循环量为零。此时可以保证汽温、汽压在允许的范围内。只要适当调节物料循环量,循环流化床锅炉就有很好的负荷适应能力和良好的汽温调节性能。
(四)物料循环量对脱硫、脱硝的影响
在循环流化床锅炉中,Ga/S摩尔比一般为1.5~2.0。在循环物料中部分是未与SOX反应的CaO颗粒,因此物料循环量增加,则送入床内的CaO量也随之增加,这样就会使脱硫率增大。如果脱硫率一定,则Ga/S摩尔比明显的降低。
固体物料在炉内循环,使炉内的碳浓度增加,从而加强了NO与焦炭的反应,并使NO排放量下降。固体颗粒物料循环量的变化还会对循环流化床的流体动力特性,如固体颗粒浓度分布、压力分布,固体颗粒在炉内的停留时间以及壁面热流浓度,传热传质特性等影响。
四、有利循环倍率的确定方法
在循环流化床锅炉中,固体颗粒物料循环量增加,会使锅炉的燃烧效率、脱硫效率提高。由于床内固体颗粒浓度增加也会使传热系数增加,同时物料循环量的变化会影响床内的稀、浓相的热量平衡及热量分配,但同时物料循环量的增加又会增加床层总阻力,增加风机电耗。如果在固体颗粒循环回路中还布置有直接冲刷的管束,则物料循环量增加还会使磨损的可能性增大。所以说,有利的循环倍率应该是考虑了燃烧、脱硫、脱硝、传热、热平衡、风机能耗、磨损等因素的一个综合参数。
参考文献:
1、罗传奎,骆中泱、李绚天等。循环流化床最优循环倍率的确定。中国工程热物理年会。94年燃烧学术会议论文集。
2、温龙,李军。大容量循环床锅炉设计初探。动力工程。1991.Vol.11.No2:1
工程热物理论文范文6
论文关键词:特色专业;热能与动力工程;能源动力;质量工程
为适应国家经济、科技、社会发展对高素质人才的需求,引导不同类型高校根据自己办学定位和发展目标,发挥自身优势,办出专业特色,“十一五”期间教育部、财政部将择优重点建设一批高等学校特色专业,通过优化专业结构,提高人才培养质量,办出专业水平和特色,为同类型高校相关专业建设和改革起到示范和带动作用。
华北电力大学热能与动力工程专业创办于1958年,原名为电厂热能专业,历经五十多年的建设和发展,现已成为本校师资力量最强、就业形势较好、招生人数较多和学生成才率较高的专业之一,本专业累计毕业生人数已达10616人,在校生人数2647人。尤其最近几年,在两大电网公司和五大发电集团共同组成的校理事会的支持和帮助下,学科实力得到了质的飞跃,毕业生就业形势一直保持在全国各专业的前列。华北电力大学能源与动力工程学院已经成为我国发电领域最重要的人才培养基地,得到了发电行业的充分肯定,在我国发电领域具有重要的影响。
华北电力大学热能与动力工程专业紧密结合国家经济和社会发展需求,以培养“厚基础、重实践、强能力”的热动专业技术人才和管理人才为目标,改革人才培养方案,加强课程体系和教材建设,优化师资队伍,强化实践教学,具有鲜明的“热能与动力工程”专业特色和“电力行业”特色,取得了一系列显著效果。
一、建设思路与改革措施
1.建立并形成热动专业人才培养调研机制
通过校理事会定期开展能源动力、发电(火电、气电、风电和核电等)、环保等相关行业的人才需求形势调研和毕业生就业状况研讨与分析,根据国家的人才需求,制定适应不同专业方向的模块化、层次化人才培养方案。
2.以本科教学水平评估所形成的规范性课堂教学、实践教学和教学管理模式为建设起点,加强精品教材的培育和建设
课程教学体现相关领域的最新发展,普遍采用国内外高水平的新版教材,继续组织编写高质量的适用教材,形成深入开展教学研究的有效机制。
3.加强师资队伍建设,改革教师培养和使用机制
有计划地选派青年教师到企业进行锻炼,到国内外高水平大学或研究机构做访问学者或短期合作研究;鼓励和支持教师参加企业的短期高级技术培训、生产一线观摩、调研和相关会议;聘请一定数量的具有企业生产和管理经验的人员兼职授课,形成学校和企业、学校和国内外大学及研究机构的定期人员交流机制。
4.改革实践教学,推进人才培养与生产实践相结合
为了适应我国能源与电力发展对全新实践型、创新型人才的需求,热能与动力工程实验教学中心整合相关实验室资源,依托电站设备状态监测与控制教育部重点实验室为本科生设立的“能动之光”科技创新项目,建成了包含电厂实践教学模块、动力工程基础实验模块、热能动力工程实验模块、创新实验模块的集知识学习、技能拓展、工程训练、创新能力培养为一体的实验教学示范中心。涵盖专业基础实验、专业实验、综合实验、创新实验,能够满足不同专业、不同层次学生的需要,实现理论与实践、校内与校外的无缝链接,体现“厚基础、重实践、强能力”的人才培养特色。
二、建设成果
热能与动力工程专业是一门跨学科、综合性强、重实践的学科,着重培养基础扎实、知识面宽、能力强、素质高,德、智、体全面发展的,集现代信息技术与热能动力工程知识为一体的高级专门技术人才和管理人才,要求学生通过四年的学习不仅要掌握全面的理论知识,而且必须具备较强的实际操作能力,以适应现代能源、电力行业相关领域对高级人才的需求。华北电力大学热能与动力工程专业以国家能源电力需求为建设导向,从方向凝练、人才培养、教学体系构建、师资建设、教材建设、实验室建设等方面进行全方位探索和实践,取得了丰硕的成果。
1.专业建设别具特色,人才培养模式灵活多样
为适应国家能源电力行业发展的需要,热能与动力工程专业依托一级学科“动力工程及工程热物理”博士点,在热能与动力工程和电厂集控运行方向的基础上,拓展专业方向,开设燃气轮机联合循环、核工程与核技术、制冷与空调工程、新能源等专业方向,覆盖主要发电形式,具有鲜明的电力特色。通过与国家大型企业合作,采用“订单+联合”的培养模式,使专业教育符合社会的发展需求,满足了国家对社会紧缺的复合型拔尖创新人才和应用人才的需要,进一步提高高等教育教学质量,推进人才培养模式改革。
2.加强基础、突出能力、注重创新,构建高质量人才培养体系
按照“夯实基础、突出能力、注重创新、全面发展”的指导思想制定热能与动力工程专业人才培养方案,既加强培养学生厚重的基础,又注重培养学生的创新精神和实践能力。近年来热能与动力工程及相关专业方向毕业生的一次签约率超过98%,毕业生因“作风扎实、动手能力强、有较强的创新精神”深得能源电力行业及其他用人单位的广泛赞誉。
3.优化师资队伍结构、积极打造优秀教学团队
高水平教师队伍是专业建设的有力保障。近年来,热能与动力工程专业按“博士化、工程化、国际化”要求进行师资队伍建设,引进急需人才、培养未来人才、用好现有人才,新引进的教师均为名牌高校的博士或博士后,有数名教师在华北电力科学研究院进行为期半年的工程化训练,有计划、分年度派教师赴美国、法国、英国、丹麦、日本等能源和电力较发达国家的高校或研究机构做访问学者。目前热能与动力工程专业教学团队教师队伍职称结构、年龄结构、学位结构合理,2007年被评为北京市优秀教学团队。
4.以精品课程建设为核心打造课程体系,带动教材建设
根据热能与动力工程专业课程建设计划,以创建精品课程为课程体系建设重点,核心课程全部建成精品课程,同时带动热能与动力工程专业的教材建设,有力推动了热能与动力工程专业的建设水平。到目前为止,已建成1门国家级精品课程、7门省市级精品课程、3门学校精品课程;国家“十一五”规划教材3门及其他教材12门。
5.建设特色实验中心,构建分层次、模块化的实验教学体系
热能与动力工程实验教学中心构建了“专业基础-专业-综合-创新”分层次、模块化的实验教学体系,进一步丰富了华北电力大学“四模块”(基础实验模块、校内实践模块、仿真实验模块、校外实践模块)实践教学体系的内涵。2007年8月热能与动力实验教学中心顺利通过北京市教委组织的专家组评审,荣获北京市高等学校实验教学示范中心称号。
三、鲜明特色
华北电力大学热能与动力工程特色专业时刻以国家能源电力需求为建设导向,以其包容并蓄、均衡有道的精神,不断派生出一批新专业和学科方向,并将继续不断强化内涵、扩展外延,满足国家对能源电力不断发展的新需求,具有鲜明的专业特色。
1.突出专业特色和行业特色
华北电力大学热能与动力工程专业以为国家能源与电力工业培养热动专业技术人才和管理人才为主要目标,专业建设紧密结合国家经济和社会发展需求,具有鲜明的“热能与动力工程”专业特色和“电力行业”特色。
2.支撑学校的大电力学科体系
近年来,热能与动力工程专业针对国家能源结构调整和节能减排工作所形成的新的人才需求,调整和优化了专业方向的设置,从热能与动力工程专业孵化出来的风能与动力工程、核科学与核技术等专业成为华北电力大学大电力学科体系的重要组成部分,进一步提升学校服务于我国能源电力发展的能力和水平。
3.理论与实践教学体系完备,特色鲜明
从复合型人才培养角度出发,建立了以能力培养为主线,分层次、多模块相互衔接的理论与实验教学体系,课程设置实现了系列化、层次化、模块化、厚基础、宽口径,增加学生学习的选择性、自主性,体现“重实践、强能力”的人才培养特色。
4.探索创新人才培养的新模式
积极进行人才培养模式、课程体系、教学内容和教学方法的改革,通过设立“创新人才培养实验班”,采用校企联合“订单式”人才培养模式,为全校本科创新人才培养起到推动和示范作用。
热能与动力工程专业创新人才培养实验班从2007年开始试办,选派优秀博士生导师做班主任,因材施教,2007级实验班学生在大一第二学期末一次性全部顺利通过国家四级英语考试。实践证明创新人才培养实验班是成功的。