光纤技术论文范例6篇

前言:中文期刊网精心挑选了光纤技术论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

光纤技术论文

光纤技术论文范文1

摘要:当前信息容量日益剧增,为提高信息的传输速度和容量,光纤通信被广泛的应用于信息化的发展。城域传送网传作为承载城域范围内的固定、移动和数据等多种业务的基础传送网络,在整个光网络中占有不可替代的地位。本文介绍了城域传送网的特点,对主要技术进行了分析,最后探讨了其发展趋势。

一、引言

城域传送网是覆盖城区、郊区或者部分规模较小的市县,为城域多业务提供综合传送平台的网络,是承载城域范围内的固定、移动和数据等多种业务的基础传送网络,它一般以多业务光传送网络为基础、以多种接入技术为辅,为多种业务和通信协议提供综合传送承载平台。城域传送网向上与省际和省内干线相连,向下负责综合业务引入,完成集团用户、商用大楼、智能小区的业务接入和电路出租的任务。

二、城域传送网的特点

城域传送网是非常复杂的网络,每个城市和每个城市都因现状不同而有所不同,从网络分层结构来说,城域传送网一般分为核心传送层、汇聚层和接入层。对于网络规模较小的城市,可根据实际情况简化网络层次。下面从通用角度分析城域传送网的特点。

多业务。城域传送网需要同时支持多种业务,单一平台支持多种协议和处理混合业务的特征是城域光传送网络获得足够竞争优势的关键因素,也是最重要的特点。多业务支持是城域光传送网络的基石,可为运营商带来许多竞争优势,如后向兼容性(如SDHoverWDM)、成本显著降低(减少了网络分层和设备)、网络管理简化和配置工作量减少等。

安全可命性和可增位性。城域传送网涉及到大量的客户和服务,网络的安全可靠性直接影响到客户,传送网应支持网络节点的备份和线路保护,提供网络安全措施,同时多种生存性有利于运营商向用户提供更好的业务定义。同时城域传送网应当要充分考虑业务扩展能力,能针对不同的用户需求提供丰富的宽带增值业务,使网络可持续赢利。

动态性。与骨干传送网相比,城域传送网的动态性较强,多种数据业务的动态性和不可预见性使得城域传送网的相关需求加强,目前的发展趋势是越来越多的客户需要带宽更灵活的业务。他们需要快速的业务配置、更短期的、可灵活增加的服务合同和基于QoS的价格,将来还可能出现对带宽按需分配等新业务的需求。

网络扩展性。由于受用户需求和地理分布动态变化的影响,城域的数据业务具有多变性,城域传送网要建设成完整统一、组网灵活、易扩充的弹性网络平台,留有充分的扩充余地,能够随着需求变化,可允许运营商不断地按照业务需求增加带宽,而不需要进行网络整体升级。

三、城域网中的相关技术分析

SDH多业务传送平台。SDH多业务传送平台(MSTP)是目前广泛应用的产品。为了适应城域网多业务的需求,SDH从单纯支持2Mb/s,155Mb/s等话音业务接口向支持以太网和ATM等多业务接口演进,将多种不同业务通过YC或VC级联方式映射入SDH时隙进行处理。SDH多业务平台将传送节点与各种业务节点融合在一起,各厂商只是融合程度不同。

MSTP的出发点是将2层或3层的功能作为SDH附加功能来完成的,其对2层或ATM层的处理都是与SDH处理相分离的,但都可以映射到SDH的VC时隙进行重组。从功能上看,MSTP除了具有SDH功能外,还具有2层、MAC层和ATM功能。

MSTP比较适合于已经敷设大量SDH网的运营公司,它可以方便有效地支持分组数据业务,实现从电路交换网到分组网的过渡,适合支持混合型业务特别是以TDM业务为主的混合型业务,同时可以保证网络管理的统一性。

弹性分组环技术。正在由IEEE802。17工作组制定的弹性分组环(RPR)技术,吸收了吉比特以太网的经济性、SDH系统50ms环保护特性。RPR采用类似以太网的帧格式,结合丝丝标记,基于MAC高速交换,简化IP前传。RPR技术可以支持更细的带宽粒度,网络成本较低,可以承载具有突发性的IP业务,同时支持传统语音传送,有比较好的带宽公平机制和拥塞控制机制。RPR环是在整个环上实现公平机制而不是在单独链路上,容易实行全局的公平机制。服务供应商可以利用源节点发送数据包的速率来控制上游节点和下游节点的速率。带宽策略允许在无拥塞的情况下,把环上任意两个节点之间所有的带宽分配给这两个节点,没有SDH那种固定电路系统的不灵活性,同时又比点到点的以太网更加有效。

目前RPR标准尚未完成,其中的一个重要问题是对时钟的透明传输,RPR同步机制与SDH不同,必须确保TDM时钟可以透明传输到对端。第二个挑战来自RPR定义的是一个环网结构下的技术,无法工作在复杂的网络环境下(甚至是环间互联),而实际的城域网络环境则是十分复杂的。

RPR技术适合于以数据业务为主、TDM业务为辅的网络,其应用范围将逐渐扩大,适合于新建网络。

城域WDM光网络。WDM技术不仅提高了光纤利用率,而且在业务信号复杂多变的城域网中对信号具有透明性,它可以对从不同设备出来的信号不进行速率和帧结构调整,直接进行透明传输。这可给用户、特别是租用波长的用户以最大的灵活性。同时,不同波长间的信号互不干涉,每个波长都可以自己灵活上下。WDM技术主要应用于城域骨干网。

城域OADM环网可以承载大量客户的多种协议和多种速率的业务,每个波长承载一种业务的方式将很快耗尽波长,为提高每个波长的带宽利用率,应尽量避免低速率业务单独占用一个光波长通道。一种新兴的经济有效的方法是将多个低速率客户信号复用到一个波长信道中,该技术被称为子波长复用,从而实现了每个波长携带多种业务。这种子波长复用器降低了城域网WDM系统的应用门槛,可以直接容纳低速率信号,给组网带来了灵活性。WDM环网解决了两个重要问题:光纤短缺和多业务的透明传输。成本是限制其应用的重要因素,目前它主要用来保护那些SDH还无法保护的业务,如ESCON,FiberChannel等。

在目前的光网络中,数据业务的提供需要经过4层处理:首先将业务映射进IP包,并以ATM信元封装,然后将ATM信元映射进SDH帧,最后转换为光信号在光网络上传送(采用WDM/DWDM方式)。随着IP业务的飞速发展,这种结构的缺点日益暴露。人们开始研究将ATM层和SDH层从4层结构中剥离出去,将其功能融合到IP/MPLS层和WDM/OTN(光传送网)层中,将IP业务直接在WDM光路上传送(即IPoverOptical,目前主要为IPoverWDM/DWDM)。在传统的光网络中引入信令控制和动态交换功能,将IP层和光网络层置于同一控制平面下,对光网络实施配置连接管理,在此思想下,一种能够自动完成网络连接的新型网络ASON(自动交换光网络)应运而生。

自动交换光网络。ASON是在IPoverDWDM基础上发展起来的,底层仍为OTN,主要的不同就是在OTN上引入了控制平面。控制平面通过信令交换完成对传送平面的动态控制。控制平面的引入带来了以下好处:迅速实现业务提供,允许网络资源动态分配路由和带宽;容易管理,业务提供者无需为新的传输技术系统的配置管理而开发维护操作支持系统软件;具有扩展的信令能力,增加了补充业务;在出现故障时可实现快速的保护与恢复,比通常的传送网节省了冗余容量和资源;控制平面的协议比管理平面的协议有更丰富的原语组,可用于各种传输技术。

四、通用标签交换(GMPLS)技术

为了使MPLS适应时分复用、波分复用等不同的应用环境,以支持在电路交换网中建立连接,IETF对MPLS中标签的概念和形式进行了相应的扩展,将时分系统和空间交换系统涵盖了进来,推出了通用标签交换--GMPLS。其具有许多新功能:

时隙、虚通道和波长等均可作为标签。GMPLS所管理的对象不仅是分组,还可以是FR。ATM,SDH和WDM等,且这些设备上的接口还可以细分为PSC(分组交换功能)、TSC(TDM交换功能)、LSC(波长交换功能)和FSC(光纤交换功能)等多种类型。

可以为离散单位分配带宽,因为时隙、波长和光纤等都是离散单位。

具有下行按需标签分配和使用上行标签的双向LSP建立能力,并且可以通过从上游节点向下游节点传送建议标签来简化倒换过程、减少双向LSP的建立时延。

可以设置标签组,以缩小下游标签的选择范围。当然,在引入GMPLS控制平面后,对传统数据通信网络(DCN)也提出了新的要求,特别是电路交换网络。首先,DCN必须保证能为控制器之间提供控制信息的传送,能够直接或间接地为两个LSR提供交换控制信息的信道:其次,所提供的信道必须是可靠的、安全的:最后,DCN必须支持IP,且必须具有较高的可靠性和QoS,以避免用户数据业务出错而影响控制数据,确保控制信息的顺利发送。

参考文献:

光纤技术论文范文2

1.1网络的发展对光纤提出新的要求

下一代网络(NGN)引发了许多的观点和争论。有的专家预言,不管下一代网络如何发展,一定将要达到三个世界,即服务层面上的IP世界、传送层面上的光的世界和接入层面上的无线世界。下一代传送网要求更高的速率、更大的容量,这非光纤网莫属,但高速骨干传输的发展也对光纤提出了新的要求。

(1)扩大单一波长的传输容量

目前,单一波长的传输容量已达到40Gbit/s,并已开始进行160Gbit/s的研究。40Gbit/s以上传输对光纤的PMD将提出一定的要求,2002年的ITU-TSG15会议上,美国已提出对40Gbit/s系统引入一个新的光纤类别(G.655.C)的提议,并建议对其PMD传输中的一些问题进行深入探讨,也许不久的将来就会出现一种专门的40Gbit/s光纤类型。

(2)实现超长距离传输

无中继传输是骨干传输网的理想,目前有的公司已能够采用色散齐理技术,实现2000~5000km的无电中继传输。有的公司正进一步改善光纤指标,采用拉曼光放大技术,可以更大地延长光传输的距离。

(3)适应DWDM技术的运用

目前32×2.5Gbit/sDWDM系统已经运用,64×2.5Gbit/s及32×10Gbit/s系统已在开发并取得很好的进展。DWDM系统的大量使用,对光纤的非线性指标提出了更高的要求。ITU-T对光纤的非线性属性及测试方法的标准(G.650.2)最近也已完成,当光纤的非线性测试指标明确之后,对光纤的有效面积将会提出相应指标,特别是对G.655光纤的非线性特性会有进一步改善的要求。

1.2光纤标准的细分促进了光纤的准确应用

2000年世界电信标准大会批准将原G.652光纤重新分为G.652.A、G.652.8和G.652.C3类光纤;将G.655光纤重新分为G.655.A和G.655.B两类光纤。这种光纤标准的细分促进了光纤的准确使用,细化标准的同时也提高了一些光纤的指标要求(如有些光纤几何参数的容差变小),明确了对不同的网络层次和不同的传输系统中使用的光纤的不同指标要求(如PMD值的规定),并提出了一些新的指标概念(如“色散纵向均匀性”等),对合理使用光纤取得了很好的作用。所有这些建议的修改、子建议的出现及新子建议的起草,都意味着光纤分类及指标、测试方法有某些改进,或有重要的提升;都标志着要求光纤质量的提高或运用方向上的调整,是值得注意的光纤技术新动向。

1.3新型光纤在不断出现

为了适应市场的需要,光纤的技术指标在不断改进,各种新型光纤在不断涌现,同时各大公司正加紧开发新品种。

(1)用于长途通信的新型大容量长距离光纤

主要是一些大有效面积、低色散维护的新型G.655光纤,其PMD值极低,可以使现有传输系统的容量方便地升级至10~40Gbit/s,并便于在光纤上采用分布式拉曼效应放大,使光信号的传输距离大大延长。如康宁公司推出的PureModePM系列新型光纤利用了偏振传输和复合包层,用于10Gbit/s以上的DWDM系统中,据称很适合于拉曼放大器的开发与应用。Alcatelcable推出的TeralightUltra光纤,据介绍已有传输100km长度以上单信道40Gbit/s、总容量10.2Tbit/s的记录。还有一些公司开发负色散大有效面积的光纤,提高了非线性指标的要求,并简化了色散补偿的方案,在长距离无再生的传输中表现出很好的性能,在海底光缆的长距离通信中效果也很好。

(2)用于城域网通信的新型低水峰光纤

城域网设计中需要考虑简化设备和降低成本,还需要考虑非波分复用技术(CWDM)应用的可能性。低水峰光纤在1360~1460nm的延伸波段使带宽被大大扩展,使CWDM系统被极大地优化,增大了传输信道、增长了传输距离。一些城域网的设计可能不仅要求光纤的水峰低,还要求光纤具有负色散值,一方面可以抵消光源光器件的正色散,另一方面可以组合运用这种负色散光纤与G.652光纤或G.655标准光纤,利用它来做色散补偿,从而避免复杂的色散补偿设计,节约成本。如果将来在城域网光纤中采用拉曼放大技术,这种网络也将具有明显的优势。但是毕竟城域网的规范还不是很成熟,所以城域网光纤的规格将会随着城域网模式的变化而不断变化。

(3)用于局域网的新型多模光纤

由于局域网和用户驻地网的高速发展,大量的综合布线系统也采用了多模光纤来代替数字电缆,因此多模光纤的市场份额会逐渐加大。之所以选用多模光纤,是因为局域网传输距离较短,虽然多模光纤比单模光纤价格贵50%~100%,但是它所配套的光器件可选用发光二极管,价格则比激光管便宜很多,而且多模光纤有较大的芯径与数值孔径,容易连接与耦合,相应的连接器、耦合器等元器件价格也低得多。ITU-T至今未接受62.5/125μm型多模光纤标准,但由于局域网发展的需要,它仍然得到了广泛使用。而ITU-T推荐的G.651光纤,即50/125μm的标准型多模光纤,其芯径较小、耦合与连接相应困难一些,虽然在部分欧洲国家和日本有一些应用,但在北美及欧洲大多数国家很少采用。针对这些问题,目前有的公司已进行了改进,研制出新型的5O/125μm光纤渐变型(G1)光纤,区别于传统的50/125μm光纤纤芯的梯度折射率分布,它将带宽的正态分布进行了调整,以配合850nm和1300nm两个窗口的运用,这种改进可能会为50/125pm光纤在局域网运用找到新的市场。

(4)前途未卜的空芯光纤

据报道,美国一些公司及大学研究所正在开发一种新的空芯光纤,即光是在光纤的空气够传输。从理论上讲,这种光纤没有纤芯,减小了衰耗,增长了通信距离,防止了色散导致的干扰现象,可以支持更多的波段,并且它允许较强的光功率注入,预计其通信能力可达到目前光纤的100倍。欧洲和日本的一些业界人士也十分关注这一技术的发展,越来越多的研究证明空芯光纤似有可能。如果真能实用,就能解决现有光纤系统长距离传输的问题,并大大降低光通信的成本。但是,这种光纤使用起来还会遇到许多棘手的问题,比如光纤的稳定性、侧压性能及弯曲损耗的增大等。因此,对于这种光纤的现场使用还需做进一步的探讨。

2光缆技术的发展特点

2.1光网络的发展使得光缆的新结构不断涌现

光缆的结构总是随着光网络的发展、使用环境的要求而发展的。新一代的全光网络要求光缆提供更宽的带宽、容纳更多的波长、传送更高的速率、便于安装维护、使用寿命更长等。近年来,光缆结构的发展可归纳为以下一些特点。

1)光缆结构根据使用的网络环境有了明确的光纤类型的选择,如干线网光纤、城域网光纤、接入网光纤、局域网光纤等,这决定了大范围内光缆光纤传输特性的要求,具体运用的条件还有可依据的细分的标准及指标;

2)光缆结构除考虑光缆使用环境条件以外,越来越多的与其施工方法、维护方法有关,必须统一考虑,配套设计;

3)光缆新材料的出现,促进了光缆结构的改进,如干式阻水料、纳米材料、阻燃材料等的采用,使光缆性能有明显改进。

不同的场合和不同的要求造成了光缆的多结构的发展趋势,新的光缆结构以及在现有结构上不断改进的各种结构也在不断涌现,出现了如下一些类型。

·“干缆芯”式光缆:所谓“干缆芯”即区别于常用的填充管型的光缆缆芯。这种缆的阻水功能主要靠阻水带、阻水纱和涂层组合来完成,其防水性能、渗水性能都与传统的光缆相同,但它具有生产、运输、施工和维护上的一些优点。首先是方便,因为阻水材料不含粘性脂类,操作使用比较方便安全;其次,干式光缆重量轻、易接续、易搬运,设备投资小、成本低,生产使用中也显得干净卫生,在长期使用中还可减少缆芯中各种元件之间的相对移动。特别是在接入网室内缆和用户缆中,好处更加明显。

·生态光缆:一些公司从环境保护及阻燃性能的要求出发,开发了生态光缆,应用于室内、楼房及家庭。现有光缆中使用的一些材料已不符合环保的要求,如PVC燃烧时会放出有毒性气体,光缆稳定剂中有时含铅,都是对人体及环境有害的。2001年ITU-T已通过了一项L45建议——“使电信网外部设备对环境的影响最小化”建议,通过对光缆、电缆光器件及电杆等基于寿命周期怦估(LifeCycleAnalysis,LCA)的方法来确定产品对环境的影响。由于环境因素正日益受到重视,对通信外部设备,特别是光缆产品规定这样的指标已提到日程上来,如果不在材料和工艺上下功夫就难以达到环保的要求。因此已有不少公司针对此类问题开发了一些新材料,如对室内用缆,开发了含有阻燃添加剂的聚酞胺化合物,以及无卤性阻燃塑料等。·海底光缆:海底光缆近年来有根快的发展,它要求长距离、低衰减的传输,而且要适应海底的环境,对抗水压、抗气损、抗拉伸、抗冲击的要求都特别严格。

·浅水光缆(MarinizedTerrestrailCable,MTC):浅水光缆是区别于海底光缆而提出来的另一类结构的水下光缆,适合于在海岸边上、浅水中安装,无需中继、通信距离比较短的水下(如岛屿间、沿海岸边上的城市)敷设使用。这种光缆区别于海底光缆的环境,需要的光纤数不多(中等),但要求结构简单、成本较低,易于安装和运输,便于修复和维护。ITU-T在2001年提出了ITU-TG.972定义下的浅水光缆建议,为建设类似的水下光缆提供了一组规范,随后也有可能形成相应的国际标准。

·微型光缆:为了配合气压安装(或水压安装)施工系统的运用,各种微型的光缆结构已在设计和使用中。对于气压安装的微型光缆,要求光缆与管道之间有一定的系数,光缆重量要准确,具有一定的硬度等。这种微型光缆和自动安装的方式是未来接入网,特别是用户驻地网络中综合布线系统很有潜力的一种方式,如在智能建筑中运用的智能管道中就非常适合这种安装。

·采用了纳米材料的光缆:近来,一些厂商已开发出纳米光纤涂料、纳米光纤油膏、纳米护套用聚乙烯(PE)及光纤护套管用纳米PBT等材料。采用纳米材料的光缆,利用了纳米材料所具有的许多优异性能,对光缆的抗机械冲击性能、阻水、阻气性都有一定的改善,并可延长光缆的使用寿命。目前此类材料尚处于试用阶段。

·全介质自承式光缆(ADSS):全介质光缆对防止电磁影响及防雷电都有优良的特性,而且重量轻、外径小,架空使用非常方便,在电力通信网中已得到大量的应用。预计2000~2005年,每年电力部门对ADSS光缆需求约15000km。ADSS同时也是电信部门在对抗电磁干扰及雷暴日高的敷设环境中一种很好的光缆类型的选择。在今后一段时间内,如何在满足要求的前提下,尽量减小ADSS光缆的外径,减轻光缆的重量,提高其耐电压性能是ADSS光缆研究改进的课题。

·架空地线光缆(OPGW):OPGW已出现了很长一段时间,近年来一直在改进和提高之中。OPGW的光纤单元中采用PBT,于套管外面再加上一层不锈钢管,有的还在塑料套管与不锈钢管之间加上一层热塑胶,不锈钢管用激光焊接长度可达数十公里,光纤在这样的多层保护管中得到了充分的机械保护。预计从现在到2005年,OPGW光缆的需求将会逐年上升,每年增加约2500km,到2005年预计可达到20000km。当然对OPGW光纤的防雷问题一直是业界十分关注的问题,也应配合具体环境和使用条件加以考虑,使之得到充分保护。

2.2光缆的自动维护、适时监测系统已逐渐完善,可保证大容量高速率的光缆不中断传输

光缆的维护对于保证网络的可靠性是十分重要。在已开通的光网络中,光缆的维护和监测应该是在不中断通信的前提下进行的,一般通过监测空闲光纤(暗光纤)的方式来检测在用光纤的状态,更有效的方式是直接监测正在通信的光纤。虽然ITU-T长时间收集和讨论了国际上的最新资料,于1996年了L.25光缆网络维护的建议书,对光缆的预防性维护和故障后维护规定了详细的维护范围和功能,但已经不能满足当前的需要,目前最新的建议是2001年12月IUT-TSG16会议通过的“光缆网络的维护监测系统”(L.40建议)。为了进一步缩短检测及修复时间,美国朗讯公司曾提出了新一代光纤测试及监控系统,能在1s内发出故障告警,3min内找到故障点,且工作人员可以遥控操作,据称该系统还将开发有故障预测及对断纤(缆)的快速反应能力。日本、意大利等国电信企业也提出了一些系统方案。

·日本NTT方案:在局内运用光纤选择器与系统的测试设备和传输设备相连形成了一种可对光纤状况进行实时监测的系统,保证有用信号在通过光纤选择器测试证明良好的光纤上传输,对有故障的光纤可以预选监测出来及时传送到维护中心进行适当处理,避免不良状况进入有用的光传输信道,从而起到在运行中对整个光通信系统的支撑作用;在局外通过水敏传感器装置可监测外部设备光缆线路接头盒浸水的位置,水敏传感器安装在空闲的光纤上,水敏传感器中装有吸水性膨胀物,当水渗人接头盒时,吸水性物质会膨胀使得接头盒中的光纤受力,也就是使得这一空闲光纤弯曲,从而使光纤的损耗增加,在监测中心的OTDR上就会反映出来·意大利的方案:此方案是一种综合处理的新型连续光缆监测系统。主要特点是将光缆网络、光纤及光缆护套的监测综合在一起,既利用了OTDR系统周期性地对光纤的衰减进行监测,发现有衰减变化即发出警报,并进行故障定位,同时也能连续监测光缆护套的完整性,包括护套对地绝缘电阻的监测,发现问题(如护套进水等)即马上告警,达到更全面地预告故障发生的目的。

比较日本和意大利电信部门提出的光缆维护支撑系统的方案可见:日本方案在OTDR自动适时测试光纤的基础上,加入了光纤选择器,在外线上装设水敏传感器并进行护套监测,形成了一套较完整的自动维护、支撑系统,真正做到不中断光通信的维护。意大利的方案中除监测光纤性能以外,还考虑了护套绝缘电阻的自动监测。由此两例可以看出全自动的光缆维护应是一种发展方向。

3通信电缆的发展特点

3.1宽带的HYA通信电缆需要更好地为数字通信新业务服务

原有的电缆网络虽然可以支持一些数字新业务,但是在实际使用中并不是特别理想,在通信距离、速率及质量上仍有一定的限制。对于新的网络当然是以光纤为主,对于光纤所不能达到的地方或因各种原因仍然要新建电缆网络的地区,应该考虑新型宽带结构的HYA电缆(铜芯聚乙烯绝缘综合护套市内通信电缆),以便更能符合新业务发展的需要。一些公司对现有的电缆高频特性作了测试,他们得到的结论是所研究的电缆(即现有的HYA市话电缆)不能达到5类电缆的技术要求,户外电缆要实现j类电缆的特性,必须通过特殊的设计和制造来达到。但在20MHz以下,所有电缆都显示出充分适宜的传输性能。

美国已在1997年制定了用于宽带的对绞通信电缆标准(ANSI/ICEAS-98-688-1997及S-99-689-1997),包括非填充和填充两种型式。传输频宽已扩展到100MHz,可供数字网络使用。IEC对此问题也进行过较长时间的讨论,2001年,IEC62255-1文件“用于高比特频率数字接入电信网络的多对数电缆”提出了0.4~个0.8mm线径、1~150对、最高频率30MHz等指标的建议,此建议的提出也许会为这种电缆开辟一个新的空间,我国也开始了这方面的探讨和研制,并正在建立相应的标准。

3.2超5类及6类电缆将替代5类电缆成为布线系统发展的超蛰

随着智能化大楼、智能化建筑小区对宽带布线的要求愈来愈高,超5类和6类电缆己逐渐成为布线系统中的主流。超5类电缆与5类电缆的频带都是100MHz,但其具有双向通信的能力,用户可以同时收发宽带信息。因此超5类电缆比5类电缆在电阻不平衡性、绝缘电阻、对地电容不平衡性、传输速度等指标上都有提高,并且增加了近端串音衰减功率和等电平远端串音功率等一些指标,因此在工艺和结构上要做一定的改进才能达到。6类电缆在超5类的基础上,又提高了传输频带,达到250MHz,其相应的指标也有较大的提高。同时,6类电缆要求不但有严格的工艺,而且不少厂商在结构上也有一定的改进和创新,如采用泡沫皮绝缘芯线或皮泡皮绝缘芯线、骨架式结构隔离线对等都改善了电缆的高频特性。

3.3物理发泡射频同轴电缆及漏泄同轴电缆将具有较好的发展前景

由于移动通信的高速发展,无线电基路用物理发泡射频同轴电缆,特别是超柔形结构的室内电缆、路由连结电缆都有了较大的市场需求。同时,随着移动通信信号覆盖面的不断扩大,基站站数的增多,以及边缘地区(电梯、地铁、地下建筑、高层建筑室内等用户)对移动信号的要求不断提高,预计这类电缆将会有较好的发展前景。但对电缆指标的要求(如驻波比、屏蔽衰耗等要求)已明显提高,要求电缆的工艺及结构应不断改进,以与之适应。

4光纤光缆及通信电缆技术与产业发展中几个值得思考的问题

4.1积极创新开发具有自主知识产权的新技术

虽然这几年来,我国光缆电缆技术有很大发展,有一些具有自主知识产权的技术已在发挥作用,但是应该看到这种比例仍是很小的,国内有近200家光纤光缆厂,但大多产品单一,没有自主的知识产权,技术含量较低,竞争力不强。有资料统计,1997~1999年国内企业申请光通信专利的有132件,其中光纤38件,光缆只有19件,而同期外国公司在中国申请光通信专利达550件,其中光纤光缆37件。还有资料报道:从1997年以来,国内光通信核心技术专利是90件,我国自主申请的只有9件,仅占10%。实际上我国的光纤光缆技术应该说与国际水平己差距下大,因此我们作为世界第二的光缆大国,应该把开发具有自主知识产权的技术作为我们工作的重中之重,争取创造更多的光纤光缆专利。4.2开发具有先进技术水平、与使用环境、施工技术相配套的新产品

电信网络在不断发展的同时也对光缆电缆产品不断提出新的要求。不难发现,光缆的结构越来越依赖于使用的环境条件及施工的具体要求,在海底光缆、浅水光缆、ADSS及OPGW光缆的开发中,会对这一点有深刻的体会。而今后光缆建设的重点将会随着接入网、用户驻地网的建设不断展开,新一代的光缆结构和施工技术也会基于如微型光缆、吹入或漂浮安装及迷你型微管或小管系统的全套技术而有一系列新的变化,以便有限的敷设空间得到充分、灵活的利用。这当中也包含了若干光缆设计、制造工艺、光纤光缆材料、施工安装方面的新的技术课题。一些国家或公司已取得了一些经验,正逐渐形成新的系统技术专利。我国的用户众多,接入网和用户驻地网具有很多的特色,对接入光缆也会有更多的要求,为我们研究和创新接入网和用户驻地网光缆结构提供了很好的机会。应该说,多数光缆技术我们是跟在国外最新技术的后面,虽然紧跟了先进技术,但自我创新的成份太少。今后应当在这方面下些功夫,走自己的创新之路。在有中国特色的接入网及用户驻地网中多采用一些有中国特色的光电缆产品。

4.3利用已有设备与技术,改善HYA市话电缆的相应特性,为数字业务提供更好的服务

对于已经敷设的铜电缆,我们只能在现有条件下尽量利用其特性开通数字新业务。而现有的HYA电缆,虽然亦可开通ADSL等一些新业务,但是容量有限,当ADSL数量增大到一定限度后还是会出现干扰问题,而且还会影响以前开通的业务。因此,对新敷设的铜电缆,希望能提出一些新的宽带指标要求,为将来开通更多更好的新业务作好准备。现有的市话电缆生产厂商应深入研究自身的生产工艺,在不改变(或不大改变)生产设备的情况下,认真设计和精心制造,把现有电缆的技术水平提高一个档次,以提供更宽频带的电缆,为更多更好地开拓数字新业务提供高质量的通道。

4.4改进光缆电缆的施工和维护方法

目前,为了适应城市施工的特点,国际上较重视不挖沟的方式施工光、电缆,采用小地沟或微地沟技术安装光缆,同时对光缆网进行自动监测,保证光缆网络不中断通信维护。与此相适应的是需要开发相应的元器件、工具和设备,并且要在体制上作一些改进与之相适应。ITU对NH开发光缆用浸水传感器、光纤自动测试时的光纤选择器以及美国提出的1s告警、3min内定位的指标及意大利提出的光纤纤芯与光缆护套指标综合监测等方案都十分重视。在现代化的光网络中,这些方式已经起到明显的作用。由此可见,为了保证光缆网络工作的可靠性,在施工和维护中降低成本、节省劳力、节省时间,逐步推广新的施工方法,逐步完善光缆网络的自动监测维护系统和提高光缆网络的不中断维护水平已势在必行。

4.5冷静地审视当前电信市场的发展,促进光纤光缆和通信电缆产业的发展

2001年下半年以来,光纤光缆需求下降,这当然与世界电信行业的整体下滑以及宽带网络泡沫的破灭有很大关系,但更多的则是受到从1999年下半年起由于光纤紧缺而各大公司扩产过多的影响。据资料介绍,在2000年,全球光纤厂商的投资额达到26亿美元,为1999年的6倍,按推算到2002年全球光纤的产能将达到1.65~1.75亿光纤公里,远远超过了实际需求。加上当前电信基础建设的不景气,光纤过剩的现象不可避免。

光纤光缆及通信电缆的市场走势虽然受到国际经济大形势发展的影响,特别是与整个电信行业的发展有密切的关系,但应看到,在挤出了网络泡沫的水份之后,随着光纤网络从骨干网的扩建到接入网、城域网的扩散以及向用户驻地网的不断延伸,光纤光缆及宽带数字电缆的市场必将增长。据KMI预计,2003年世界光纤市场将开始有较大的增长,而到2004年的市场规模将超过敷设量最高的2000年。应该看到,信息通信业是一个充满生机与活力的朝阳产业,网络经济有着强大的生命力,信息技术、网络技术的发展,仍然是推动社会进步的重要动力,信息网络化仍然是当今世界经济、社会发展的强大趋势。因此我们应树立信心,在全球经济好转、通信市场复苏及我国西部开发等有利条件下抓住机遇,促进光纤光缆和通信电缆技术与产业取得更大的进展。

光纤技术论文范文3

随着科学技术的日新月异,互联网的大数据、云计算、平台、移动互联网将人类带入了高速的信息时代,互联网和通信方式改变着人们的生活、工作方式,通信方式发生了质的飞跃。同时,人们对通信系统的传输性能,也提出了更高的要求。通信方式从电缆通信、微波通信、光纤通信,再到目前的研究热点高速光纤通信。光纤通信是三大支柱通信方式的主体。光纤通信系统,顾名思义,是利用光作为载波、以光纤作为传输媒介进行传输信息的通信系统,光纤实际上是一种极细的光导纤维,由纯度很高的玻璃拉制而成。普通光纤通信的传输速率一般是10Gb/s,高速光纤通信的传输速率可达到40Gb/s、160Gb/s甚至更高。事实上,在光纤通信的不同发展阶段,高速的含义是不同的。目前通常把STM-16等级以上的系统称为高速光纤通信系统,也有人称之为超高速光纤通信系统。光纤通信作为当前三大通信方式的主体,有着较为明显的优势:光纤通信的频带较宽,可用带宽约50000GHz,容量大可同时传输更多的路数;光纤通信比任何的传输都具有更小的损耗,损耗小带来的直接好处就是中继距离长,传输稳定可靠;另外抗电磁干扰性强、保密性好。

2高速光纤通信系统面临的挑战

高速光纤通信系统快速发展,并得到广泛应用的同时,也存在着一些问题。比如光信噪比(OSNR),OSNR是光纤信号与噪声的比值,OSNR的大小直接影响传输信号质量的优劣,OSNR过大,传输距离会相应减小。另外,色散、非线性效应等问题也是影响高速光纤通信传输的主要因素。色散会使脉冲展宽、强度降低,增大误码率,信号畸变失真,直接降低通信质量。色散一般分为两类:群速度色散和偏振模色散(PMD)。群速度色散和偏振模色散效应对系统的传输性能、传输速率和传输距离都会有明显的损害。PMD的问题在以往的光纤传输中就存在,传输速率越高,PMD的影响也越加明显。光纤传输的衰减、消耗和色散与光纤长度为线性关系,光纤的带宽与光纤长度为非线性关系,这一非线性关系即为非线性效应。非线性效应分为散射效应、与折射密切相关的自相位调制SPM、交叉相位调制XPM和四波混频效应FWM,其中XPM和FWM对系统影响较为严重。因此,研究OSNR、色散和非线性效应问题是解决高速光纤通信系统高质量传输的关键技术。

3高速光纤通信系统的关键技术

光纤技术论文范文4

关键词:光纤通信技术优势接入技术

引言

近年来随着传输技术和交换技术的不断进步,核心网已经基本实现了光纤化、数字化和宽带化。同时,随着业务的迅速增长和多媒体业务的日益丰富,使得用户住宅网的业务需求也不只局限于原来的语音业务,数据和多媒体业务的需求已经成为不可阻挡的趋势,现有的语音业务接入网越来越成为制约信息高速公路建设的瓶颈,成为发展宽带综合业务数字网的障碍。

一、光纤通信技术定义

光纤通信是利用光作为信息载体、以光纤作为传输的通信力式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的中绕非常小,光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听,光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。

二、光纤通信技术优势

2.1频带极宽,通信容量大

光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。散波长窗口,单模光纤具有几十GHz·km的宽带。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。采用密集波分复术可以扩大光纤的传输容量至几倍到几十倍。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps,采用密集波分复术实现的多波长传输系统的传输速率已经达到单波长传输系统的数百倍。巨大的带宽潜力使单模光纤成为宽带综合业务网的首选介质。

2.2损耗低,中继距离长目前,实用的光纤通信系统使用的光纤多为石英光纤,此类光纤损耗可低于0.20dB/km,这样的传输损耗比其它任何传输介质的损耗都低,因此,由其组成的光纤通信系统的中继距离也较其他介质构成的系统长得多。

如果将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。目前,由石英光纤组成的光纤通信系统最大中继距离可达200多km,由非石英系极低损耗光纤组成的通信系至数公里,这对于降低通信系统的成本、提高可靠性和稳定性具有特别重要的意义。

2.3抗电磁干扰能力强我们知道光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。它是一种非导电的介质,交变电磁波在其中不会产生感生电动势,即不会产生与信号无关的噪声。这样,就是把它平行铺设到高压电线和电气铁路附近,也不会受到电磁干扰。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。

2.4光纤径细、重量轻、柔软、易于铺设光纤的芯径很细,约为0.1mm,由多芯光纤组成光缆的直径也很小,8芯光缆的横截面直径约为10mm,而标准同轴电缆为47mm。这样采用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题,节约了地下管道建设投资。此外,光纤的重量轻,柔韧性好,光缆的重量要比电缆轻得多,在飞机、宇宙飞船和人造卫星上使用光纤通信可以减轻飞机、轮船、飞船的重量,显得更有意义。还有,光纤柔软可绕,容易成束,能得到直径小的高密度光缆。

2.5保密性能好对通信系统的重要要求之一是保密性好。然而,随着科学技术的发展,电通信方式很容易被人窃听,只要在明线或电缆附近设置一个特别的接收装置,就可以获取明线或电缆中传送的信息,更不用去说无线通信方式。光纤通信与电通信不同,由于光纤的特殊设计,光纤中传送的光波被限制在光纤的纤芯和包层附近传送,很少会跑到光纤之外。即使在弯曲半径很小的位置,泄漏功率也是十分微弱的。并且成缆以后光纤在外面包有金属做的防潮层和橡胶材料的护套,这些均是不透光的,因此,泄漏到光缆外的光几乎没有。更何况长途光缆和中继光缆一般均埋于地下。所以光纤的保密性能好。此外,由于光纤中的光信号一般不会泄漏,因此电通信中常见的线路之间的串话现象也可忽略。

三、光纤接入技术

随着通信业务量的不断增加,业务种类也更加丰富,人们不仅需要语音业务,高速数据、高保真音乐、互动视频等多媒体业务也已经得到了更多用户的青睐。光纤接入网可分为有源光网络A(ON)和无源光网络((PON。)采用SDH技术、ATM技术、以太网技术在光接入网系统中称为有源光网络。若光配线网(ODN全)部由无源器件组成,不包括任何有源节点,则这种光接入网就是无源光网络。

现阶段,无源光网络P(ON)技术是实现FT-Tx的主流技术。典型的PON系统由局侧OLT光(线路终端)、用户侧ONUO/NT(光网络单元)以及ODN-OrgnizationDevelopmentNetwork(光分配网络)组成。PON技术可节省主干光纤资源和网络层次,在长距离传输条件夏可提供双向高带宽能力,接入业务种类丰富,运维成本大幅降低,适合于用户区域较分散而每一区域内用户又相对集中的小面积密集用户地区。

为实现信息传输的高速化,满足大众的需求,不仅要有宽带的主干传输网络,用户接入部分更是关键,光纤接入网是高速信息流进千家万户的关键技术。在光纤宽带接入中,由于光纤到达置的不同,有FTB、FTTC,FTTCab和FTTH等不同的应用,统称FTTx。

FTTH(光纤到户)是光纤宽带接入的最终方式,它提供全光的接入,因此,可以充分利用光纤的宽带特性,为用户提供所需要的不受限制的带宽,充分满足宽带接入的需求。我国从2003年起,在“863”项目的推动下,开始了FTTH的应用和推广工作。迄今已经在30多个城市建立了试验网和试商用网,包括居民用户、企业用户、网吧等多种应用类型,也包括运营商主导、驻地网运营商主导、企业主导、房地产开发商主导和政府主导等多种模式,发展势头良好。不少城市制定了FTTH的技术标准和建设标准,有的城市还制门了相应的优惠政策,这此都为FTTH在我国的发展创造了良好的条件。

在FTTH应用中,主要采用两种技术,即点到点的P2P技术和点到多点的xPON技术,亦可称为光纤有源接入技术和光纤无源接入技术。P2P技术主要采用通常所说的MC(媒介转换器)实现用户和局端的自接连接,它可以为用户提供高带宽的接入。目前,国内的技术可以为用户提供FE或GE的带宽,对大中型企业用户来说,是比较理想的接入方式。

光纤技术论文范文5

在应用过程中,按照用途将光纤进行分类,可分为传感光纤和通信用光纤;按照制作工艺分类,可分为材料组成类、制造工艺类和光学特性类;按照传输介质分类,可分为专用和通用两种,并且,功能器件光纤可以应用于放大光波、分频、整形和光振荡等方面,从而以不同形态呈现在人们眼前。根据光纤通信的应用情况可知,光纤通信的基本构成结构包括光源、光纤和光检测器三部分,具有如下几个特点:

(1)信号干扰小、保密性强。

(2)通信容量超大,可完成远距离传输。一般一根光纤的带宽在20THz以上,在没有中继传输的情况下,可传输到几十公里以上。

(3)重量较轻、细径较细,一般制作材料是石英,大大降低了有色金属的耗损,使资源得到合理利用。

(4)不受外界因素影响,在任何情况下可使用,具有较长使用寿命。

(5)较强抗电磁干扰能力和绝缘性能,因此,信息传输质量非常好。

(6)没有辐射,不容易被窃听,提高信息传输的安全性。

(7)环绕性好、抗腐蚀能力强,在使用过程中,不会出现火花,减少安全事故。

2光纤通信技术在电力通信中的应用

在电力通信中,电力特种光纤包括OPGW(光纤复合地线)、MASS(金属自承光缆)、OPPC(光纤复合相线)、ADL(相/地捆绑光缆)、ADSS(全介质自承光缆)和GWWOP(相/地线缠绕光缆)等六种,而我国应用较多的电力特种光缆是ADSS和OPGW两种,大大提高了电力通信的工作效率,使电能损耗得到大量减少。

2.1ADSS(全介质自承光缆)

根据我国电力通信的发展来看,ADSS(全介质自承光缆)在35KV、110KV、220KV的电压等级输电线路上得到了广泛应用,尤其是目前已建成的线路上使用范围非常广,使电力部门利用高压输电线杆塔建设通信网络变得更加方便和快捷,大大减低工作人员的工作量和建设成本。在进行光缆设计时,对温差、风速和气候等外界因素进行了充分考虑,因此,ADSS(全介质自承光缆)具有很强的抗震动性、抗冲击性,可以随意弯折和抗老化性,并且,成本较低、安装非常方便、易携带,给杆塔带来的负载非常小。由于ADSS(全介质自承光缆)具有光纤传输性能强、环境性能好和光缆机械性能卓越等特点,在实际应用过程中,可以与高雅电力传输线架设在同一根电杆上,因此,成为了电力系统中最完美的电网通信传输介质,确保了电网通信的信号质量,使光缆传输效果得到大大提高。我国现代化建设中,ADSS(全介质自承光缆)在山区、跨度较大区域和雷电集中区等地方的线缆架空敷设中非常适用,在满足了电力部门自身的通信要求的同时,为通信业务不断发展和开展新业务提供新的途径。

2.2OPGW(光纤复合地线)

在电力通信中,OPGW(光纤复合地线)是电路传输线路的地形中含有供通信用的光纤单元,由此可见,架空地线中含有光纤,OPGW(光纤复合地线)是架空地线和光缆的复合体。由于OPGW(光纤复合地线)的一次性投入较大,在新建线路或旧线路更换时会选择使用,具有可靠性高和不需要维护的特点。在实际应用过程中,OPGW(光纤复合地线)拥有两种功能:一是,与复合在地线中的光纤一起完成信息传输,二是作为输电线路的防雷线,可以对输电导线起到屏蔽保护的作用。一般情况下,OPGW(光纤复合地线)有铝管型、钢管型和铝骨架型三种,具有光学性能、电气性能和机械性能,可以应用于具有架空接地线的输配电线路中,从而使光纤的可靠性和安全性得到大大提高,使我国输电容量得到机一部提高。在新建线路的应用中,OPGW(光纤复合地线)不需要增加建设成本,在旧线路更换中,只需要将原来的地线更换掉就可以了,并且不需要对杆塔进行加固或重新设计等,从而大大减少工作人员的工作量。另外,OPGW(光纤复合地线)的安装非常方便,不需要特殊的工具,成为我国电力事业未来发展的重要研究方向。

3结束语

光纤技术论文范文6

【关键词】nRF9E5;射频;无线通信;光机鼠标;鼠标

1.引言

nRF9E5是NordicVLSI公司于2004年2月5日推出的系统级RF芯片,其内置nRF905433/868/915MHz收发器、8051兼容微控制器和4输入10位80kspsAD转换器,是真正的系统级芯片。内置nRF905收发器与nRF905芯片的收发器一样,可以工作在ShockBurstTM(自动处理前缀、地址和CRC)方式。内置电压调整模块,最大限度地抑制噪音,为系统提供1.9V到3.6V的工作电压。nRF9E5符合美国通信委员会和欧洲电信标准学会的相关标准。由于nRF905功耗低,工作可靠,因此很适用于无线光机鼠标设计。

2.nRF9E5功能介绍

2.1微控制器

nRF9E5的片内微控制器与标准51兼容。指令时序与标准51稍有区别,典型的区别是nRF9E5的片内微控制器的指令周期为4到20个指令周期。中断控制器支持5个扩展的中断源:ADC中断、SPI中断、RADIO1中断、RADIO2中断和唤醒定时器中断。片内控制器还有3个与8052相同的定时器。一个和8051相同的串口,可以用定时器1和定时器2来作为异步通信的波特率产生器。此外,还扩展了两个数据指针,以方便于从XRAM区读取数据。

微处理器中有256字节的数据RAM和512字节的ROM。上电复位或软件复位后,处理器自动执行ROM中的引导区中的代码。用户程序通常是在引导区的引导下,从EEPROM加载到1个4K的RAM中,这个4K的RAM也可作存储数据用。如果应用当中不用掩膜ROM(也即内含的ROM),程序代码必须从外部非易失性存储器中加载,比较常见的是通过SPI接口扩展型号为25320的EEPROM。

nRF9E5的大部分寄存器和标准8051相同,只是为了控制一些8051没有的功能,增加了一些特殊功能寄存器,如RADIO(P2)、ADCCON、ADCDATAH、ADCDATAL、ADCSTATIC、PWMCON、PWMDUTY等。nRF9E5中的P0、P1和P2口寄存器地址和标准8051中的相同,都是0x80,0x90,0xA0,但功能和标准8051中的有所不同。

图1nRF9E5功能图[1]

2.2PWM

nRF9E5内有一个可编程控制的PWM(脉宽调制)输出,使用时,通过程序改变P0.7的功能来实现,并可编程决定PWM工作于6位、7位或8位。PWM的频率与晶振有关,可编程控制。

2.3SPI接口

SPI(串行外设接口)的接口引脚有MISO(接收EEPROM的SDO送来的数据)、SCK(给EEPROM的SCK提供时钟信号)、MOSI(送数据到EEPROM的SDI)、EECSN(给EEPROM的CSN送使能信号)。SPI口的MISO、SCK和MOSI与P1口的低3位重用,通过寄存器SPI_CTRL控制来控制功能间的撤换。SPI硬件不产生任何片选信号,可以用GPIO口来进行片选。通常,系统上电时,SPI自动和片外的25320相连,当程序加载完成后,MISO(P1.2)、MOSI(P1.0)和SCK(P1.0)可能会用作其它用途,比如其它的SPI器件或GPIO。

2.4LF时钟,RTC唤醒定时器,GPIO唤醒和WTD

nRF9E5内有一个低频的时钟CKLF,该时钟常开。当晶振开始工作后,CKLF频率为4kHz;晶振不工作时,CKLF是一个低功耗RC晶振并且不能禁能,只要VDD1.8V,其连续工作。RTC唤醒定时器、WTD(看门狗)和GPIO唤醒全都工作在CKLF频率,以保证芯片低功耗工作时能够完成这三个功能。

RTC唤醒定时器是个24位可编程控制的递减计数器,WTD则是个16位可编程控制的递减计数器。RTC唤醒定时器和WTD的循环周期一般在300us和80ms之间,默认为1ms。

2.5AD转换器

nRF9E5片内有10位ADC,AD转换参考电压可以通过软件设置在AREF和1.22V之间(内部参考电压)。AD转换器的4个输入可通过软件进行选择,通道0到3可以把对应引脚AIN0到AIN3上的电压值分别转换为数字值,通道4用于对nRF9E5工作电压的监控。AD转换器默认工作于10位方式,可通过软件使其工作于6位、8位或12位方式。

2.6射频收发器

nRF9E5收发器通过内部并行口或内部SPI口与其它模块进行通信,具有同单片射频收发器nRF905相同的功能。DuoCeiver接收器输出的数据准备信号,可通过程序使其为微处理器的中断或通过GPIO口的传给CPU。

nRF9E5工作于433/868/915ISM频段。收发器由一个完整的频率合成器、一个功率放大器、一个调节器和两个接收器组成。输出功率、频道和其它射频参数可通过对特殊功能寄存器RADIO(0xA0)编程进行控制。发射模式下,射频电流消耗仅为11mA,接收模式下为12.5mA。为了节能,可通过程序控制收发器的开/关。

3.无线鼠标的基本知识[2]

无线鼠标的基本功能和普通鼠标相同,唯一的区别是无线鼠标通过无线方式传送鼠标信息给PC机,而普通鼠标是通过电线。这意味着无线鼠标检测鼠标移动和按键信息的方法和普通有线鼠标一样,也是用开关来检测按键,用球和滚轴来检测鼠标的移动。无线鼠标使用电池供电,所以应该尽量考虑节能问题,尽量用最少的次数就能把检测到的鼠标信息发送到PC机。无线鼠标在PC机处还应有一个接收器,一般该接收器是通过USB接口或串口与PC机相连,目前发展的趋势是采用USB接口。

4.无线光机鼠标方案

无线光机鼠标器,即将滚轮的机械转动转换成光信号,然后变为数字电信号再通过无线的方式发送给和PC机相连的接收器。无线光机鼠标器底部有一个露出一部分的塑胶小球,当鼠标器在操作桌面上移动时,小球随之转动,在鼠标器内部装有三个滚轴与小球接触,其中有两个分别是X轴方向和Y轴方向滚轴,用来分别测量X轴方向和Y轴方向的移动量,另一个是空轴,仅起支撑作用。拖动鼠标器时,由于小球带动三个滚轴转动,X轴方向和Y轴方向滚轴又各带动一个转轴(称为译码轮)转动。译码轮(见图2)[3]的两侧分别装有红外

图2译码轮和光敏传感器工作原理

发光二极管和光敏传感器,组成光电耦合器。光敏传感器内部沿垂直方向排列有两个光敏晶体管A和B。由于译码轮有间隙,故当译码轮转动时,红外发光二极管发出的红外线时而照在光敏传感器上,时而被阻断,从而使光敏传感器输出脉冲信号。光敏晶体管A和B被安放的位置使得其光照和阻断的时间有差异,从而产生的脉冲A和脉冲B有一定的相位差,利用这种方法,就能测出鼠标器的拖动方向。塑胶小球的移动带动滚轴转动,滚轴每转动一个小角度,鼠标位置计数器加1,每隔一定时间,nRF9E5就把鼠标位置计数器的值读出,通过计算得出鼠标移动的位移,再把位移信息发送给PC机。

鼠标的按键是典型的开关,每个开关和nRF9E5的一个GPIO口相连。与开关相连的GPIO口配置为输入状态,并通过外部上拉电阻把其置高。按键在被按下的时候可能会出现抖动,所以在软件设计的时候一般要考虑到去抖动,一般的方法是延时15-25ms再去检测按键。一般的鼠标按键有:左键、中键和右键。系统原理图如图3所示。

射频部分基于nRF9E5设计,系统晶振为16MHz,EEPROM存储程序,使用nRF9E5的ShockBurstTM工作方式发送鼠标信息包。ShockBurstTM工作方式在芯片硬件设计时就已经考虑到节能,因此使用该工作方式可以延长电池寿命。

5.无线光机鼠标电池寿命算法[2]

5.1工作状态分析

无线光机鼠标中,最耗电是红外发光二极管,而不是射频收发部分,因此,要使发光二极管尽量少耗电并且鼠标又能正常工作。下文给出一个节电的方法,首先把发光二极管的工作状态分为以下三种:

状态1:鼠标在移动并且要求以最大的精确度测出移动信息。此状态下,tledon=10us,tkedoff=200us,每隔10ms,鼠标信息被精确算出并发送给PC机。

状态2:鼠标刚刚被用过但现在不用。此状态下tledon=10us,tledoff=25000us。当用户再次拖动鼠标时,也不会感觉得出25000us的短延时。鼠标从状态1进入状态2一般应在5ms左右,当鼠标检测到移动时,应立刻从状态2进入状态1。

状态3:当鼠标很长时间没用时,进入状态3。此状态下tledon=10us,tledoff=100000us。同样,很久没有使用之后再次拖动鼠标时,用户感觉不出来100000us的延时。一旦检测出鼠标被移动时,鼠标应该马上进入状态1,从状态2进入状态3一般要1到2分钟。

5.2工作电流的计算

发光二极管的工作电流是10mA。nRF9E5在工作状态时工作电流为3mA,空闲状态时工作电流是25uA,传送ShockBurstTM数据包时工作电流为11mA。各个状态时的平均电流可根据公式(1)来计算:

至于状态1,要考虑到ShockBurstTM发射所消耗的电流。假设数据包共为124位,发射速度为1Mbit/s,则nRF9E5所用时间为124us,此外,起动时间为202us,ShockBurstTM的工作时间加起来应该是326us。因此,可得到状态1的平均电流算式,如式(4)

nRF9E5推荐外接晶振频率为16MHz,当外接晶振工作频率降低时,无线光机鼠标的平均工作电流也会明显降低。经过计算,nRF9E5外接晶振是4MHz的无线光机鼠标的电池寿命约为外接晶振是16MHz时的1.33倍。同样,降低nRF9E5的射频发射速度,无线光机鼠标的电池寿命也会增大。

5.结论

nRF9E5尺寸小,使用中元件少,433/868/915MHz三个工作频率,非常适合用来做无线光机鼠标与PC机进行通信。nRF9E5的ShockBurstTM技术,使得无线光机鼠标的功耗更低,设计中为节约用电而编写的程序更少,并且电池监管更方便。此外,nRF9E5更易于实现安全的无线光机鼠标信息的发送,如果设计需要,还可以扩展更多的鼠标按键。

参考文献