前言:中文期刊网精心挑选了汽车安全性论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
汽车安全性论文范文1
论文关键词:CNG长管拖车安全使用技术
长管拖车是指在拖车上或集装框架内装有几只到十几只大型无缝钢瓶的高压气体运输设备,通常用配管和阀门将气瓶连接在一起,并配有安全装置、压力表和温度计。由于这种设备具有高效灵活、安全可靠、使用维护方便等特点,因此,随着气体工业的发展被迅速推广使用。1987年初,随着国内第一家合资气体公司落户深圳,长管拖车被引进中国,近年来国内的气体工业发展迅速,国外的气体公司纷纷在国内投资建厂;另一方面,国内天然气汽车及压缩天然气(简称CNG)母子站的发展需要将大量的天然气运输到没有天然气管网的地区或很难修建管网的市区。这都促进了CNG长管拖车在国内的广泛应用。但是,CNG长管拖车装载的压缩天然气,工作压力高,使用时需经常来往于城市道路及建筑密集地带,安全问题十分重要,而制造及装置设置方面的安全问题,又是CNG长管拖车操作安全的首要保障。
一、CNG长管拖车的主要安全技术措施
1、控制气瓶质量:气瓶作为长管拖车的主要承压部件, 其质量与长管拖车的安全性能密切相关。因此气瓶内外表面均经过喷丸处理, 并用内窥摄像系统逐只进行内部全面检查, 确保内部质量。气瓶成形及水压试验后逐只进行磁粉检测, 确保不得有任何裂纹状缺陷存在。气瓶的两端螺纹均经磁粉检测, 确保连接螺纹质量可靠。
2、设置爆破片装置:气瓶的两端均设置爆破片装置。爆破片装置较安全阀体积小、重量轻, 但密封可靠, 其泄放面积较同体积的安全阀泄放面积要大得多。
3、设置压力表:气瓶充卸气管路上设置压力表一块, 量程取1.5~3倍的工作压力, 精度1.5级。压力表采用防震型, 其前端设置压力表阀, 便于更换拆卸。
4、设置温度计:考虑到工作环境温度及充气时气体温度升高、卸气时气体温度降低等因素影响,温度计测量范围应覆盖最低和最高工作温度,测量范围应取-40~60 ℃。温度计可采用双金属型,读数方便,坚固耐用机械论文,且采用防护套管与介质隔开,易于更换拆卸论文范文。
5、设置安全联锁装置:装卸气过程中,即操作仓门打开状态,严禁汽车启动运行,否则会造成装卸软管等连接部位拉断、气体泄漏等严重事故。故在操作仓内设置气动安全联锁装置, 靠汽车行走部分自带气包提供气源, 操作状态时使汽车处于制动状态,无法启动,装卸气完毕,操作仓门关闭后,制动状态才予以解除,汽车可正常行驶。
6、设置导静电装置:长管拖车尾部设置导静电接地带,操作仓管路上设置导静电片,可随时导出运行时及充卸气时积聚的静电荷。导静电拖地带采用柔软耐磨的导静电橡胶拖带,即能充分泄放静电荷,又不至于放电太快而产生火花放电。
7、设置灭火装置:长管拖车两侧各配一只5kg干粉灭火器,以备发生火灾险情时急用。
8、控制管路泄漏点:操作仓内装卸气汇总管及各分支管之间采取焊接结构,且经表面渗透检测,尽量减少泄漏点。高压阀门均经复验合格,验证高、低压状态下的密封性。装卸气管及气体排空管均用管夹或支撑予以固定以减轻车辆运行时对管路振动的影响。
二、CNG长管拖车安全使用
1. 长管拖车进入充装区,应将其接地带(静电带)提起,并带上防火帽。
2. 充(卸)作业步骤:
2.1将长管拖车停放在装(卸)站制定的安全作业地点,熄灭牵引车发动机,打开后操作仓门,挂好风钩,对挂车实施驻车制动。
2.2将充装(卸气)站的静电接地线与长管拖车操作仓的导静电片连接。
2.3检查各连接部位是否连接紧固,检查各管件连接处是否泄漏。
2.4充气
2.4.1首次充装
a. 首次充装包括新车的第一次充装和检修后的第一次充装,因为这时钢瓶内充有一定压力的氮气,充装前应将其放空。
b. 充装前应检查阀门是否处于关闭状态,检查是否含有氮气余压并用仪器检测确然含氧量不大于3%。
c. 保持气体管路主控球阀处于关闭状态,依次开启各瓶口球阀,然后缓慢开启主控球阀,将钢瓶内封装的氮气放空,待压力卸尽后立即关闭主控球阀。将站上充装软管与快速接头进行连接,确保连接到位。
d. 置换软管空气,开启充装站的充气阀,使天然气进入软管,压力平衡后关闭,然后开启放空阀将软管内天然气放空,关闭放空阀。
e. 开启主控球阀,然后缓慢开启充装站的充气阀进行充气作业。
f. 当达到充装温度对应的充装压力时(表1),关闭充装站的充气阀,关闭各瓶口球阀及主控球阀机械论文,开启放空阀,将软管内的气体排出,确认软管内无压力后断开快装接头的连接。
表1充装温度与充装压力对照表
公称压力MPa
充装温度℃
-10
10
20
30
40
50
60
20
充装压力MPa
15.2
16.8
18.4
20
21.5
23.1
汽车安全性论文范文2
这是一个小型印刷厂车间,面积只有70平方米左右,不到两节地铁车厢那么大。车间有七名女性和一名男性工人,每天的工作是将一种白色涂料喷到有机玻璃板上。
不幸很快就降临在这些工人的身上:七名女工相继发病,其中两名女工去世。
在2009年9月号的《欧洲呼吸杂志》(European Respiratory Journal)上,首都医科大学附属朝阳医院(下称朝阳医院)医生宋玉果及其同事发表研究论文称,上述女工“所患的可能是‘一种与纳米材料有关的疾病’”。
这大概是全球首宗关于纳米颗粒可能致命的临床毒理病例报告。论文的发表,在国际学术界引发了一场小型“地震”。无论那些与纳米技术有关的学术会议,还是科学新闻网站和科学家博客,中国女工之死和纳米安全都是激烈争论的话题。
喷涂车间悲剧
从研究论文披露的情况看,七位女工的年龄在18岁至47岁之间,平均不到30岁,在车间工作的时间从5个月至13个月不等。患病之前,她们的身体健康状况良好。
2007年1月至2008年4月期间,这几位女工被送到朝阳医院职业病与中毒科救治。这个科室专业水准较高,其医生经常被派往中国各个地方,协助处理血铅超标、重金属污染等职业安全事件。
女工们的症状比较类似。所有病人的肺部都受到严重损害,并且有胸腔积液,脸上、手上和胳膊也都出现了严重的瘙痒皮疹。其中,有四位女工体内的器官组织还面临缺血缺氧的危险。
无论对于患者,还是对于医生,治疗过程都令人煎熬。胸腔积液反复出现,常用的治疗方法均告失效。
最终,一名19岁的病人在接受外科手术16天之后去世;另外一名29岁的病人在症状出现后的第21个月,死于呼吸衰竭。
负责诊断和治疗这些女工的,是朝阳医院职业病与中毒科副主任医师宋玉果。根据医院网站的介绍,他多年来从事尘肺、有毒化学物中毒的诊治和临床研究。
宋玉果及其同事开始追究女工们患病的原因,并将嫌疑对象锁定为那个印刷厂车间的工作环境。
该车间所使用的原料是一种象牙白色的聚合物材料――聚丙烯酸酯混合物。聚丙烯酸酯作为一种黏合剂,广泛运用于建筑、印刷和装修材料中,被认为毒性很低。不过,为了让材料更加结实和耐磨,制造商有时会加入硅、锌氧化物、二氧化钛等金属纳米颗粒。
1纳米等于1米的十亿分之一,大致相当于人头发丝直径的数万分之一。通常,粒径在100纳米以下的材料,均被称为纳米材料。
七名女工和一名男工被分为两组,每天工作8个至12个小时。工人们每天要将大约6000克聚丙烯酸酯混合物,用勺子涂到机器的底盘上;这些混合物随即被高压喷射装置喷涂在聚苯乙烯材质的有机玻璃板上;然后,有机玻璃板在75摄氏度至100摄氏度的温度下被加热烘干。
车间只有一扇门,没有窗户。喷射装置附带有一个燃气排气口,对喷涂过程中产生的烟雾起到一定的排除作用。
女工们发病以后,来自中国疾病预防控制中心、北京疾病预防控制中心、当地疾病预防控制中心的流行病学专家,以及朝阳医院的医生,对这家印刷厂的工作环境进行了调查。
在喷射装置燃气排气口的吸气口中,专家们找到了累积的尘埃粒子。女工们发病前五个月,燃气排气口发生了故障。由于室外温度很低,车间的门也经常被关闭。专家们推断,在这期间,车间内的空气流动非常缓慢甚至处于静止。
这些工人都是工厂附近的农民,没有任何职业安全卫生知识。她们所得到的惟一用来保护自己的工具,就是棉纱口罩。而且,她们工作时只是偶尔戴戴。
据工人们反映,在喷涂过程中,经常会有一些原料喷溅到他们的脸上和胳膊上。惟一的一名男性工人在工作三个多月后离开,并没有显示出任何症状。在其他车间工作的工人,其中包括女工们的亲属,也没有出现类似症状。
研究论文没有透露这家印刷厂的名称及其所在地区。在朝阳医院的办公室,宋玉果也谢绝了《财经》记者的采访。
女工之死谜团
在女工们的肺部和胸液中,均发现了直径约30纳米的颗粒。而这般尺寸和形态的颗粒,同样存在于她们接触的喷涂材料之中。
此外,女工们出现了罕见的非特异性间质性肺炎,以及奇特的肺部增生组织――异物肉芽肿等症状。这些症状与纳米材料毒理的动物实验结果相似。
宋玉果及其同事因此认为,很可能是纳米颗粒导致这些女工发病甚至死亡。
但不少专家对这一结论持有保留态度。
9月1日至3日,在北京举行的中国国际纳米科技会议上,多位专家提及宋玉果及其同事的论文。
美国纳米健康联盟(Alliance for NanoHealth)主席、得克萨斯大学医学中心教授毛罗法・拉利(Mauro Ferrari)告诉《财经》记者,这篇论文非常重要,但他不认同作者关于纳米颗粒导致工人患病和死亡的分析。
法拉利说,要确定纳米颗粒与疾病之间的关系,首先应该分析纳米颗粒的组分,确认这些颗粒来自工作环境;即便病人肺部的纳米颗粒来自工作环境,在没有对照试验的情况下,也很难证明这些纳米颗粒一定是女工患病的罪魁祸首。
他还强调,这家印刷厂的工作环境恶劣而封闭,有毒化学品和气体充斥其中,工人们又没有好的保护措施。这些因素对于工人患病和死亡究竟有怎样的作用,都值得推敲。
对于论文中的一个推论――纳米颗粒进入工人身体的途径是吸入和皮肤接触,中国科学院纳米生物效应与安全性重点实验室主任赵宇亮表示,这并不总是正确的。他强调,通过吸入方式进人体内是可能的,但是纳米颗粒穿过皮肤直接进入生物体内的证据还很少。
美国麻省大学洛厄尔分校健康与环境学院助理教授迪米特尔・贝罗(Dhimiter Bello)因故取消了行程,未能到北京参加此次学术会议。但他通过电邮对《财经》记者说,在工人肺部和工作环境中都发现纳米颗粒,只能说明纳米颗粒有可能是一个致病因素。实际上,从论文提供的信息来看,并不能排除其他的可能致病因素。例如,喷涂过程中用到的聚合物材料在高温下的降解产物,也可能是主要或者惟一造成女工患病的原因。
在贝罗看来,这场悲剧或许不应归咎于纳米颗粒,而应怪罪车间内原始的、不人道的工作条件,“这是一次警醒,无论(悲剧)是否与纳米颗粒相关,工作场所的暴露条件都应当被控制在安全范围内。在这方面,中国还有很长的路要走。”
美国加州大学洛杉矶分校纳米毒理研究中心主任安德烈・内奥教授(Andre Nel)也说,在这起事件中,工人们没有得到应有的生产安全保障,政府部门应该负起监督的责任,以保证生产过程中不会产生对人体和环境有害的物质。
实际上,论文本身也承认了研究存在局限:由于缺乏环境监测数据,无法弄清印刷厂车间纳米颗粒的浓度;纳米颗粒的组成也不清楚。
此外,令宋玉果及其同事疑惑的是,究竟是特定的纳米颗粒,还是所有纳米颗粒都有可能致病?如果的确是纳米颗粒导致那些女工患病,对其他在工作中也会接触纳米颗粒的工人来说,又意味着什么?
如今,关于女工之死的研究论文已经成为了纳米技术研究者们的一个热点话题。据《财经》记者了解,欧洲和美国还有科学家打算组成一个专家小组,到中国开展调研,并希望取到样品回去研究。
诱人前景与安全隐患
不管纳米颗粒是否被确认为几位女工悲惨命运的元凶,纳米技术的安全性问题都因此再度引发各界关注。
纳米技术正在走进人们的生活。从一桶涂料、一瓶防晒霜到一件衣服,都有可能用到纳米技术。
纳米材料颗粒小、表面积巨大,会显示出很多独特的物理化学性质,从而在电子、光学、磁学、能源化工、生物医学、环境保护等领域有巨大的应用前景。例如,很多纳米材料都可用作涂料,替代那些强毒性的化学物质;用碳纳米管等纳米材料改良电池,可以推动电动汽车的发展,使电力更持久等。
纽约一家名为“卢克斯研究”的市场分析公司称,2007年销售的纳米技术相关产品,价值约1470亿美元。到2015年,这一数字可能突破3万亿美元。
纳米技术在展现出诱人前景的同时,其安全性问题也进入了人们的视野。
随着纳米材料的大规模应用,研究人员和工人容易暴露在纳米颗粒浓度较大的实验室或生产车间之中。此外,普通公众也可能暴露在纳米颗粒之下:涂料、化妆品等产品中用到的纳米材料,可能在产品损坏或分解时释放。
这些纳米颗粒物可能经过呼吸道吸入、胃肠道摄入、药物注射等方式进入人体,并经过淋巴和血液循环,转运到全身各个器官。
根据多项流行病学研究,空气中的细颗粒物,尤其是纳米级别的颗粒物,浓度的大量增加会导致死亡率的增加。伦敦大雾曾经导致居民大量死亡,就是一个被经常引用的案例。
那么,人造的纳米材料进入人体后,是否会导致特殊的生物效应,并对人体健康构成危害呢?从理论上说,纳米物质由于尺寸小,与常规物质相比更容易透过人体的各道屏障;由于表面积大,也可能有更多毒害人体的方式。
朝阳医院的宋玉果在8月31日《健康报》发表文章说,相关的动物实验研究发现,许多纳米物质具有明显的毒性,其中研究较多的为碳纳米管、纳米二氧化钛等。一些纳米物质还被认为可致动物肺脏、肝脏、肾脏和血液系统等损伤。
对于与纳米物质相关的疾病,宋玉果称之为“纳米相关物质疾病”。当然,他也表示,公众不必为纳米物质相关疾病感到恐慌,不是所有纳米颗粒物都有毒性。
动物毒理性实验的结果,也不能简单地推到人的身上。但由于科学界对纳米安全性的研究刚刚开始,几乎没有任何相关人体毒理性资料――这也是宋玉果及其同事的论文引起国际科学界高度关注的一个原因。
中国科学院纳米生物效应与安全性重点实验室主任赵宇亮告诉《财经》记者,目前开展过安全性研究的纳米材料只有十几种,还非常有限。但他相信,随着研究队伍的壮大和研究投入的加大,将来必定可以从大量的数据积累中寻找到一些规律。
在国际上,纳米安全性研究的热潮大约始于2003年。《科学》和《自然》等著名学术杂志纷纷发表文章,探讨纳米材料与纳米技术的安全问题:纳米颗粒对人体健康、自然环境和社会安全等是否有潜在的负面影响。
这之后,各国明显增加了纳米安全性方面的研究。美国的国家纳米技术计划(NNI)将总预算的11%投入纳米健康与环境研究。欧盟每年支持三个左右与此相关的项目,每个项目的经费规模在300万至500万欧元之间,而欧盟各个国家还有自己国内支持的纳米安全性项目。
中国在极力推进纳米技术研究和产业化的同时,也开展了纳米安全性的研究。其中,中国科学院在2001年就开始筹建纳米生物效应与安全性实验室。科技部在2006年启动了为期五年的国家重点基础研究发展计划(即“973”计划)项目“人造纳米材料的生物安全性研究及解决方案探索”,经费2500万元,首席科学家由赵宇亮担任。
不过,赵宇亮告诉《财经》记者,与美国和欧盟相比,中国在纳米安全性研究上的投入只是“一个零头”。
政治决策与公共参与
中国科学家在纳米安全性方面的研究工作,得到了国际同行的认可。其中,在每年召开的与纳米毒理学相关的国际会议上,几乎都会邀请中国科学家作大会报告。赵宇亮还与其他科学家共同主编了第一本纳米毒理学英文专著。美国纳米健康联盟主席法拉利称,中国科学家是纳米毒理学研究领域的领导者之一。
不过,令赵宇亮感到尴尬的是,美国国家纳米技术协调办公室的官员曾经问他,包括美国、欧盟、英国、日本等很多国家的相关管理部门,都发表了对于纳米技术安全性的调研报告、方针和策略,为什么中国没有?对此,赵宇亮不知如何回答是好。
在美国和欧盟,纳米技术及其安全性已经成为政治家们关心的话题之一。它们的环保部门、国家科学与技术委员会,以及其他政府研究机构,会通过白皮书等文件形式,发表政府层面对于纳米安全性问题的见解。
其中,2001年,美国在国家科学技术委员会之下建立了国家纳米技术协调办公室,负责协调政府层面之间的纳米研究计划。而纳米研究项目的成果,会通过这个办公室反馈给其他政府机构,帮助科学研究去影响政府决策。
2009年3月,美国食品药品监督管理局(FDA)还了一份有关纳米技术的合作倡议。该局将与纳米健康联盟旗下的八个研究机构合作,以加快建立保障纳米医疗产品安全可靠的有效体系。法拉利告诉《财经》记者,在实验室研究结果与安全性评估的关联,以及纳米技术相关药物的审批等方面,美国食品药品监督管理局都做了很多工作。
相比之下,纳米安全性在中国似乎局限于科学研究的阶段,政府部门仍然保持沉默。
对于纳米技术的研究和产业化,各国都在积极支持。其原因正如美国《环境健康展望》杂志所称,科学界普遍认为,纳米材料和纳米技术对于社会是十分有益的,能够提供更好的药物、更强更轻的产品、对环境更友好的能源和环境技术。
与此同时,为了获得公众对于纳米技术发展的支持,各国也需要在纳米安全性方面进行更多的研究,同时鼓励公众参与。在中国纳米国际科技会议的闭幕式上,法拉利也特地呼吁加大公众在纳米安全性研究上的参与程度。
实际上,关于纳米技术发展的“风险预防”原则,在欧洲和美国等地正深入人心――人们希望在纳米技术等新技术的风险出现之前,尽可能地提前进行防范和干预。而公众及早参与到纳米技术研究和政策的讨论,是“风险预防”实践的关键环节之一。
英国杜伦大学风险研究所负责人菲尔・麦克纳顿(Phil Macnaghten)教授告诉《财经》记者,要想避免纳米技术重蹈转基因技术的覆辙,让公众从“上游”参与讨论影响纳米技术的研究和政策,或许是一个有效的办法。如果等到技术发展之后再让公众在“下游”参与,可能为时已晚,“很难改变公众业已形成的印象和认识”。
汽车安全性论文范文3
关键词:汽车制动钳 密封性能 检测
中图分类号:TH134 文献标识码:A 文章编号:1672-3791(2016)03(a)-0050-02
汽车制动性能直接影响着汽车的行车安全。随着公路业的迅速发展和车流密度的日益增大,人们对安全、可靠性要求越来越高。为保证人身和车辆的安全,必须为汽车配备十分可靠的制动系统。近几年,欧洲和国内汽车的使用表明,盘式制动器较鼓式制动器更能确保制动安全性、稳定性及耐久性。制动钳是盘式制动器的重要组成部分,制动钳密封性不良,就会使汽车盘式制动器总成出现渗漏现象,从而降低制动力,使制动效果降低。严重的可能会造成交通事故。
1 盘式制动器工作原理
当前在汽车生产制造领域,其最为常用的制动器是盘式制动器,依照其摩擦副中固定元件,其结构的差异,其又可进一步细分为全盘式制动器,以及钳盘式制动器两种类型,而后者当前主要在轻型货车,以及各类轿车中得到了广泛的使用。对于钳盘式制动器,依照其制动钳固定形式的不同,其又可以划分为浮钳盘式及定钳盘式。定钳盘式制动器,其主要工作原理如下:其制动钳是安设在车桥上的,因而其不仅不能沿着轴向转动,也不能发生旋转,在制动盘的两边,则分别有安设有制动钳的两个活塞。在制动钳开始制动时,其制动液,会从制动主缸中,经过进油口等部位,最后进入到液压腔里面,从而将其两侧的制动块,推向制动盘,进而实现汽车制动,其结构如图1所示;对于浮钳盘式制动器,其制动钳也是和车桥相连接的,其与定钳盘式制动器差异是,其是可以沿着制动盘发生轴向运动的,同时在制动盘的内侧,其还安设了相应的液压缸。浮钳盘式制动器其主要工作原理如下:在制动时,存在与主缸中的液压油,其会经由进油口,最终进入到制动缸中,然后将活塞推向右边,并使其对制动盘产生压迫,如此一来,制动盘反而会给其向左边的力,从而使得活塞及其制动钳等,呈现向左运动的趋势,直至制动盘与制动块相连接。而这个时候,在制动盘的两侧,都有制动块,从而实现其制动功效。其结构示意图如图1所示。
2 汽车制动钳密封性能检测系统原理分析
该汽车制动钳密封性能检测系统,其结构主要是由控制系统,测试系统及工作台等部件组成,该系统检测原理是,工作人员输入检测信号后,该检测系统会事先依据已经设置好的程序及时序,进行排气、检测,及平衡和充气的等检测流程,并最后由系统给出密封性能合格与否的检测结果。
具体来说该检测系统其主要工作原理包括如下几个方面:一是充气环节。借助几个相应的电磁阀SV,可以将压缩空气充入到被测物,及基准物里面,也即制动钳里面;二是平衡环节。将电磁阀SV2和3依次闭合,同时将其电源予以切断处理,至被测物及基准物中,其压力处于稳定状态后,判断制动钳是否存在大泄露情况。若没出现大泄漏情况,则继续下个检测流程,若出现大泄漏情况,其指示灯会闪亮,并自动发出声光报警,同时自动跳往排气流程;三是检测环节。此环节是制动钳性能检测的关键环节,在排除比较大的泄漏后,该环节主要对制动钳的小泄漏进行检测,通常其是借助其泄漏差压来反映的。若其实际差压,超过设定值上限,则该制动钳密封性能不合格,同时系统会予以红灯显示,反之为合格,同时以绿灯显示。此外,对于不合格的制动钳产品,系统会予以自动记录,工作人员可以通过打印输出结果;四是排气环节。该环节是该系统检测的最后环节,在完成检测工作后,将基准物及被测物中的空气,排放出去,然后才能实施下一轮检测工作。
3 结语
随着社会经济的快速发展,近年来我国汽车工业领域也获得了蓬勃的发展,不仅在汽车生产数量的规模方面得到了极大提升,在汽车生产技术及质量方面,也获得了质的飞跃。然而随着汽车工业领域的迅猛发展,其存在的问题也不断暴露出来,其中尤以其制动器的密封性能最为严峻,其极大地威胁着汽车用户的行车安全,阻碍汽车领域的健康可持续发展,因此加大对汽车制动钳密封性能检测的相关研究,有着重要意义。
参考文献
[1] 戴雄杰,周箭明,王纪霞.汽车盘式制动器的缩比模拟试验研究[C]//第五届全国摩擦学学术会议论文集(上册).2014.
[2] 王涛,朱文坚,李羡真.高速重载盘式制动器的计算机辅助设计[C]//第五届全国摩擦学学术会议论文集(上册).2014.
[3] 王涛,陈东.制动摩擦的基础研究与相应产品的开发――对发展我国汽车制动器新产品的探讨[C]//第六届全国摩擦学学术会议论文集(下册).2015.
汽车安全性论文范文4
近年来,河北省公路建设一直保持较高的投资力度,每年大批公路涌现,极大地方便了交通运输,推动了经济的发展。河北省交通运输事业蓬勃发展的同时,许多公路上出现大量的交通事故,导致人民财产损失严重。虽然造成公路交通事故的原因很多,但从根本上看道路结构设计与驾驶员的需求的脱节是主要原因。本论文旨在通过从驾驶员的需求出发,检查道路的安全性,并对不同危险路段进行改造。降低交通事故的发生,达到提高道路安全性的目的。研究成果不仅可完善我国道路设计新理论,而且能从根本上改善道路交通状况,因此具有重要的理论意义和应用价值。
2.研究分析指标
2.1山区双车道公路安全性调查与交通荷载分析。
(1)河北省及国内类似地区双车道公路安全性状况调查分析;(2)交通状况调查分析。
2.2双车道公路实地检测及人性化分析。
(1)双车道公路视距的检测;(2)双车道公路车速的检测;(3)双车道公路驾驶员心电波的检测;(4)双车道公路驾驶员肌电的检测;(5)双车道公路道路线形参数人性化的分析。
2.3双车道公路驾驶行为特征数据库的构建
(1)分析双车道公路驾驶员的因素;(2)分析双车道公路环境影响因素;(3)分析双车道公路的线形特点;(4)分析双车道公路上不同车辆的状态。
2.4双车道公路驾驶行为特征室内检测及验证
(1)分析双车道公路驾驶员的因素;(2)分析双车道公路环境影响因素;(3)分析双车道公路的线形特点;(4)分析双车道公路上不同车辆的状态;(5)提出实测与实验的相互关系。
2.5基于驾驶行为特征的道路线形安全审核指标研究。
拟采用实验分析、理论推导和数理统计相结合的方法,以驾驶员作为研究对象,采用实地检测研究的方法,分析驾驶员的生理、心理变化规律;采用数理统计分析方法建立交通事故及其影响因素之间的相关关系,结合实验结果和实际数据,建立双车道公路道路线形安全审核指标,以理论推导为主,完善道路线形设计新理论;并通过样板路段的设计改造检验其指标的合理性。
2.6山区双车道公路人性化设计方法研究
(1)双车道公路一般路段;(2)双车道公路长下坡路段;(3)双车道公路急弯路段;(4)双车道公路弯坡路段。
2.7山区双车道公路人性化设计方法的应用
3.技术关键性指标
3.1本研究将广泛对我省山区双车道公路事故路段进行调查,分析其典型性,设计出合理的实验方案,提出人性化数据采集新的方法。
3.2对实地采集数据的仪器、道路环境、驾驶员样本进行系统分析,分析其适用性,为大规模推广奠定基础。
3.3考虑到影响交通安全的因素较多,在数据库的建立过程比较复杂、难度较大,所以因采取优化设计的方法,选取主要的影响因素,同时考虑科技的发展要预留一些接口便于补充。
3.4考虑到道路线形安全评价的规范化、标准化,在建立评价指标是要便于程序化、软件化、便利性,以降低操作人员的劳动强度。
3.5在完善设计方法时,要考虑国外的一些新的理念和方法,既要符合本地国情,又要体现“以人为本”的思想。
汽车安全性论文范文5
【关键词】汽车车身;结构性;破坏;测量;修复
1.引言
汽车在碰撞过程中,由于强大的撞击力会导致汽车的巨大损伤,直接作用于乘车人员,由于其碰撞的复杂性,诸如正面碰撞、翻滚碰撞、后面碰撞等,作用的撞击力的方向和大小也非常复杂,导致的车身结构的破坏形式难以界定,其导致的破坏形式主要有外观轻度破坏、关键部件损坏和结构损伤三类,因而根据不同的损坏形式对车声结构进行测量和修复,将损失降低到最少。并且车身结构的测量和修复工作关乎到以后的使用情况,可以说是汽车后续质量安全的重要影响因素,避免再次出现同类险情。论文将从汽车车身的撞击特征和安全结构等方面着手分析,提出测量和修复方法,为改善相关研究贡献一份力量。
2.汽车车身结构与撞击分析
在日常使用的汽车当中,主要的节后采用薄壁梁形和接头组成框架,形成承载式的结构模式,整个车体的强度根据其特点有所不同,主要有三类强度区域:其一,车身前部结构区域,为缓冲吸能区域,当遭到正面撞击时允许较大的变形,缓解乘车人员承受的冲击力;其二,乘车安全区,此区域是保证乘车人员安全的最为重要的区域,不允许部件有大的变形,以免伤害到人员,提供足够的生存空间;其三,后部结构区域,为缓冲吸能区域,当汽车后面遭受撞击时允许较大的变形,缓解乘车人员承受的冲击力。车身碰撞时大致可以分为两大类:纵向碰撞和侧向碰撞,以下将分别论述:
(1)纵向碰撞:纵向碰撞分为低速区、中速区和高速区,低速区碰撞时由于车体的整体刚性可以承受此类力的撞击,变形较小;中速碰撞区的受力比较均匀,能量能够被均匀的吸收,以前梁的“预变形技术”来吸能,可以弱化某些部位的变形程度,当撞击力达到屈服值时,前梁断面会缩小,绕梁弯曲以承载冲击力,其表现的形式如图1所示;高速碰撞区,也称为自身保护区,由于车身前围板与悬架之间的应力集中,变形急剧上升,而为了阻止大变形传递到乘车安全区,要求该段有很大的刚性和强度。
(2)侧向碰撞:一般车身遭受侧向的碰撞时,其部位为立柱或车门,侧向碰撞导致的事故比较严重,由于乘车人员的空间受到较大的挤压,一般乘员的跨点水平面上的内板凹陷不能超过0.3m,因而确保立柱和车门的变形要很小,侧面的构建刚度必须足够大,一般有两个方面的关注因素:其一,车门底板下的横梁和车门抗撞梁的设置,其刚度和吸能能力都对侧向力的作用有很大的影响;其二,门槛接头与车身立柱的刚度,这是抗侧向挤压的最重要指标,其刚度大小直接决定了侧向撞击的作用损害程度。侧向碰撞中变形顺序分别为弯曲、压缩、增宽和扭转,而其结构的修复必须逆序进行,才能保证结构性的修复效果较好。
3.汽车车身结构破坏性的测量与修复方法
3.1 车身结构破坏性的测量
车身结构破坏性的测量一般分为以下两个步骤:
(1)车身的固定:由于车身受到撞击,变形较大,其结构具有一定的复杂性,而为了准确测量车身结构破坏的程度,首先要取得精确性的数据,因而车身的固定必不可少,也是对车身结构破坏检测人员的安全保障,以免出现不必要的安全事故。一般要确定3个固定点,通过主夹具将车辆固定在校正台上,使之成为一个刚性整体,减少测量的波动性。但在固定中,还要适当的引入辅助固定点,对车身的对个方位进行适当的固定,减少应力集中对车身结构的破坏,便于测量方向的控制,而且这也是为车身结构的修复打下良好的基础。
(2)车身结构破坏性的测量:车身结构破坏性的测量主要集中在车身构件变形的测量,测量中一般要用到多个测量基准:其一,高度尺寸测量基准,利用车身后横梁、车门横梁、围板横梁等作为控制点,以车身底板为基准水平面,作为高度测量的对照;其二,长度尺寸的测量基准,将汽车分为左右对称的两部分,两个平面以后车横梁和前围板处,其中心面是长度测量的基准;其三,长、宽、高三维数据测量的基准,利用机械臂、电子测量、万能测量和声呐测量等手段,实现空间三维坐标点的测量,此时就要规定三维坐标的原点和坐标轴,此外,此类测量还能实现直线夹角、平面夹角的测量,可以得到任意的三维数据,三维测量可以有效的减少测量的误差,提高车声修理的精度,尤其是校正仪配合拉伸修复的同步进行,可以掌握实时化的动态数据,降低返修率。
3.2 车身结构破坏性的修复
车身结构破坏性的修复首先要对车身进行校正,通过车身测量,取得横、纵、垂直的三维数据之后,利用碰撞变形逆序修复法和牵引校正法来进行修复,首先要确定拉伸力,既包括方向,也要掌握其力值的大小,拉伸方向与变形的方向相反,由于变形的部位和大小比较复杂,因而要分步骤的修复,如图2所示。
对于损坏比较复杂、严重的车身,必须采用复合牵引方法,提高每个点位的牵引精度,以免造成损伤。当车身固定好之后,拉伸装置和夹具分步操作,进行牵引校正,一般误差要控制在3mm以内,修复中要注意几个方面的工作:其一,先固定未变形部位,再校正变形部位;其二,一般修复的顺序为变形逆向修复,即变形中出现弯曲、压缩、增宽和扭转时,相反的步骤进行修复;其三,先纵向后横向的原则,最后修复高度方向的变形;其四,先底部后顶部的原则;其四,先损伤大的区域,依此递减;其五,损伤严重的不见要及时更换,然后校正;其六,由于牵引有局部撕裂的危险,因而进行预加热处理,但温度不能超过金属的临界温度,时间在3分钟左右。
4.结论
汽车车身结构破坏性的测量与修复工作可以有效改善汽车性能,是后续使用质量与安全的保障,因而相关研究具有积极的意义。
参考文献
[1]刘元鹏,许书权.事故汽车损伤等级评定与修复技术规范的研究[J].汽车维护与修理,2010,6:74-78.
[2]戴建国.有限元分析在事故车修复中的应用[J].拖拉机与农用运输车,2010,37(5):89-94.
汽车安全性论文范文6
关键词:智能车辆;环境感知;传感器;多传感器信息融合
中图分类号:E91 文献标识码:A 文章编号:1674-7712 (2012) 14-0026-01
一、前言
随着社会的进步,汽车成为人们出行必不可少的交通工具,车辆堵塞、交通事故等问题也日益显现。汽车数量的快速增长造成了公共交通效率低下、交通事故频发。建立起现代化的智能交通系统便被提到日程上来。智能车辆(Intelligent Vehicles, IV)作为智能交通系统(Intelligent Transportation Systems,ITS)的重要组成部分,也是系统的运行主体,能够提高驾驶安全性,大幅改善公路交通效率,降低能源消耗量,由于众多优点,该技术的研究日益受到国内外相关机构的关注。
智能交通系统能够有效缓解交通压力,合理调配公共交通资源和道路资源。基于机器传感技术和控制技术,驾驶系统采用信息传输技术和计算机视觉技术监测道路路面、交通标志、其他车辆、行人以及交通事故等道路环境状况,有效保证智能车辆在各种路况下的安全行驶,并能对一些异常状况进行及时处理。在过去的10多年里,相关技术取得了很大的进步,有些国家已经成功开发了一些基于视觉的道路识别和跟踪系统。其中,具有代表性的系统有:LOIS系统、GOLD系统、RALPH系统、SCARF 系统和ALVINN系统等。从这些先进技术的应用便可看出,感知外部环境模块是智能车辆的核心技术。
二、环境感知传感器在智能车辆上的应用现状
智能车辆在道路上畅行离不开相应的传感技术,其中最重要的是道路环境感知模块,该模块将先进的通讯技术、信息传感技术、计算机控制技术结合起来系统利用。智能车辆系统主要有环境感知模块、分析模块、控制模块等部分组成。环境感知传感系统主要由机器视觉识别系统、雷达系统、超声波传感器和红外线传感器组成。
(一)机器视觉识别系统
机器视觉识别系统是指智能车辆利用CCD等成像元件从不同角度全方位拍摄车外环境,根据搜集到的视觉信息,识别近距离内的车辆、行人、交通标志等。机器视觉也有其弱点,容易受到环境的影响,在能见度较低时效果不理想,因此,在传感器类别中属于被动型。与雷达系统相比较,视觉识别系统价格低廉,一辆车上可以安装多处,监测范围更大,搜集道路信息更为全面,通过对其所得的图像进行处理可以识别、检测周围路况,这些也是主动型传感器无法替代的。所以越来越多的人对利用机器视觉感知车辆行驶环境产生很大的兴趣,该系统在现实生活中随处可见,普及率最高,机器视觉在智能车辆研究领域得到广泛的应用, 成为最受欢迎的传感器之一。
(二)雷达系统
雷达系统是一种主动型传感器,利用微电磁波探测目标距离、速度、方位等。雷达不需要复杂的设计与繁复的计算。雷达系统的使用不受光线、天气等因素干扰,无论是白天还是黑夜,晴天或者下雨,雷达系统都能够正常运转。由于雷达是靠电磁波反射原理来工作的,这会导致相近的不同雷达间电磁波相互干扰而影响工作效能。但是,瑕不掩瑜,由于雷达在准确提供远距离的车辆和障碍物信息方面有着得天独厚的优势,因此在车辆的防碰撞系统中有着广阔的应用前景。
(三)超声波传感器
顾名思义,超声波传感器是指利用超声波为检测方法的传感器。使用超声波探测得来的的数据处理简单、快速,超声波传感器可以发射定向长生波,能够在较小范围内检测到物置。这种技术在医学应用上比较广泛和成熟。汽车工业上的利用首见于在欧洲销售的的BMW 车上的超声波停车装置。这种系统利用一片单片机进行控制,超声波遇到障碍反射回传后,根据传感器探测距离发出不同的提示音。
(四)红外线传感器
红外线传感器是利用红外线来进行测量工作的传感器,技术更加先进。红外线传感器不受黑暗、风、沙、雨、雪、雾的阻挡,环境适应性好,且功耗低。这些特点使它远超其他传感器。与超声波传感器相比,反应速度更快,探测范围更广,由于其探测视角小,方向性和测量精度有所提高。与机器视觉结合使用,红外线传感器可以增强机器视觉识别的可靠性,使黑夜如同白昼,因此常被用于智能汽车中的夜视系统中。
三、多传感器的综合利用
在复杂的路况环境下,单一传感器都有其局限性,仅仅安装单一传感器难以提供路况环境的全面描述,因此设计智能车辆必须配置多种传感器。例如夜间行驶时红外线传感器是必不可少的;而停车、倒车时主要使用超声波、雷达探测周边障碍物的远近;机器视觉除日常应用外与其他传感器结合起来可以使得智能车辆驾驶安全性更加可靠。
随着计算机信息技术、通信技术、控制技术和电子技术的进步,智能车辆技术研究中多传感器信息融合技术的应用取得了许多令人振奋的成果。如车载系统互联技术、欧洲的Peugeo系统、美国的IVHS系统等。Tsai-Hong Hong等利用激光传感器采集图像获得车辆前方的距离信息,在正常的路况环境下,采用彩色摄像机与激光传感器联合感知道路表面和定位道路边界。这些技术经过不断改进,相信在不久的将来引起汽车工业的革命。
四、结语
在智能车辆的环境感知模块技术研究中,传感器是智能车辆控制系统的关键。如何使传感器技术更好的应用到汽车行业上来,未来将成为传感器技术研究领域的一个发展方向。
整合各种类型的传感器技术,使其为智能车辆提供更加真实可靠的路况环境信息,对智能汽车技术的发展来说是至关重要的。由于实际的应用环境所得到信息大多数都是不确定信息,传感器回馈信息融合还原真实路况还有很大的困难。
纵观全球,我国的智能车辆研究工作还处于起步阶段,同欧美日等相比还很落后。但随着我国社会经济的发展,汽车保有量不断膨胀,严峻的交通现状迫使我们把发展智能交通尽早提到日程上来,只要我们勇于创新,结合我国具体国情,不断进行深入、细致的研究,我国智能化交通必能早日实现。
参考文献: