隧道论文范例6篇

前言:中文期刊网精心挑选了隧道论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

隧道论文

隧道论文范文1

(一)多单位共同管理的问题以后云台山隧道为例,该隧道管理采用分包方式进行。公管公司主要负责道路及设施设备的检测,编制年度维修计划,通过招标方式对外分包,开展监控和巡查工作,配合交警、路政的执法工作。试运行3年来,隧道内发生一起轿车失控碰撞电缆沟事故、一起重载运货车侧翻事故和一起集装箱车车头自燃事故。虽然没有较大事故的发生,但是由于隧道各管理单位只负责自己分管工作,力量分散,缺乏有效的联动机制。每年进行的联合演练,大都是公管公司制定相关预案,各单位只是参与行动,不能真正做到各单位的联动协同作战。所以,一旦发生较大的消防安全事故,不能将各单位资源进行合理有效的分配和整合,做不到对事故进行及时有效的救援。

(二)隧道硬件方面存在的问题消防器材、消防设备的合理配备和确保其完好有效性,是保障隧道消防安全的重要环节。但由于隧道主管部门公管公司人力、经费的不足,造成对隧道消防安全检查和巡查的交通工具、器材和人员的配备较为欠缺。隧道内也存在着消防器材缺乏维护保养、损坏器材没能及时补配、泡沫液未及时补充等现象。

(三)隧道制度监管方面存在的问题由于主管后云台山隧道的公管公司成立不久,包括消防安全管理等相关制度还有待完善。对隧道的消防安全监管方面缺少相应的监管制度和相关规定,从而导致在日常的消防安全检查和巡查时缺少相应的制度和规定约束,不能将消防安全监管工作制度化、规范化。

(四)隧道内危化品车辆管理方面的问题后云台隧道虽然为特长隧道,考虑到港口发展实际,装载危化品车辆在此隧道的通行不可避免。但是,针对装载危化品车辆在隧道内通行时的管理措施较为欠缺。一旦发现泄漏、燃烧等事故,不能第一时间知道车辆装载货物的具体情况,继而影响下一步的救援。

二、相关问题的解决对策

(一)建立共赢的多单位共同监管机制针对交警、路政、消防、清排障部门、危化物品处置部门、医疗、环保、保洁、检查站等隧道管理部门各自分散管理的现状,公管公司应根据隧道的实际情况,制定相应的联动机制。制定相关的制度,进行常态化的多部门的联合监管和日常检查,并定期进行有针对性的各部门参与的大型模拟实战演练,包括应急处置措施、组织疏散等,主要是为了防患于未然,一旦出现事故,可以及时处理,为后续救援工作赢得时间。更能促进各部门之间的相互协作,做到资源整合,将力量和人员统一部署,发生事故后能更科学、更有效、更迅速地对车辆人员进行施救,对事故进行处置。

(二)强化隧道硬件建设针对隧道内消防器材、消防设备存在的问题,以及日常检查和巡查所需设备器材的不足,应加大对隧道经费的投入和相关人员的配备。增购巡查车辆,增加人员配备,购置警戒带、路锥、手套、防毒面罩、安全帽、扩音器、应急照明灯、空气呼吸器、灭火器、应急指示牌等应急设备和物资。对隧道内消防器材要及时有效维护保养和及时配备。检查人员应定期对器材进行检查,查看灭火器气压情况是否正常,查看泡沫液液位等。对未达要求的器材和设备及时更换和维修。

(三)加强隧道制度建设针对隧道消防安全管理情况,管理部门应制定相应的制度和规定。比如:建立日常检查、定期巡查制度,建立检查记录表,做到出现问题时有据可查,对隧道内消防器材、应急设备使用现状也能宏观掌控。对隧道的消防安全管理真正做到规范化、制度化、科学化。此外,要强化隧道监控室的监控管理制度,对相关人员要做到定期培训,提升相关人员的工作水平和安全意识。特别对装载危险品车辆的监控要进行记录,做到谁监控谁记录、谁记录谁负责。真正做到对危险品车辆进行有效的监控,出现问题时能做到第一时间掌握最详细的情况,为后续处理提供可靠的科学依据。每月应将当月情况进行汇总、通报。

隧道论文范文2

论文摘要:隧道工程是铁路、公路和水利水电等大型项目中的重要工程,因地质条件不明造成隧道施工事故的危害是巨大的,加强隧道施工地质超前预报工作是非常必要的。国内外对隧道地震波超前预报技术已研究多年,笔者就这方面的现状及进行了讨论,指出了TSP仪器技术存在的不足,阐述了克服盲目性、提高科学预报的重要性,介绍了新开发的TGP隧道地震波预报系统与技术及应用效果。

随着我国基本建设规模的扩大,隧道工程已经成为铁路、公路和水利水电等大型项目中的重要工程。隧道工程的重要性越来越显著,隧道工程的数量和长度明显增加,规模不断扩大。因此隧道工程的安全施工和贯通,是不可回避重要任务和技术难题。危及隧道工程施工的地质病害大致分为三类:1不良工程地质条件,诸如岩体的裂隙发育密集带、构造破碎带、岩溶发育带、以及人工采矿造成的不良地质条件和高地应力造成的危害等;2不良水文地质条件,诸如岩溶水、构造和裂隙水等;3不良环境条件,诸如有毒有害气体和强放射性的环境。对于以上地质问题,在隧道工程的勘察设计阶段,已经投入大量的地质勘察工作,但是由于地质、地形条件的复杂性和相应勘察技术的现状水平,以及时间、经费等条件的限制,勘察阶段的地质资料一般难于达到施工阶段的精度要求。国内外因地质条件不明造成隧道施工事故的教训是不少的,例如:日本越新干线中山隧道涌水淹没事件;前苏联贝加尔—阿穆尔干线上某隧道的突水事件;我国成昆线、大秦线、衡广复线建设中,因地质问题的停工时间约占到1/3;以及不久前发生的四川某隧道瓦斯爆炸,造成重大事故和人员伤亡。以上隧道施工事故的危害是巨大的,因此强调加强隧道施工地质超前预报工作是非常必要的。

我国隧道地震波超前预报技术的研究起始于上个世纪的90年代,铁道部第一勘测设计院物探队提出“负视速度方法”。铁道部第一勘测设计院是较早研究隧道地震超前预报的单位。他们在1992年7月,利用地震反射波方法对云台山隧道进行隧道超前预报,预报成果与开挖后的隧道左壁“破碎带”和“断层”的位置基本一致。从上个世纪90年代初开始,我国物探技术人员一直没有停止对隧道地震超前预报技术的研究。曾昭璜(1994)研究利用多波进行反演的“负视速度法”,这种方法利用来自掌子面前方的纵波、横波、转换波的反射震相在隧道垂直地震剖面上所产生的负视速度同相轴来反演反射界面的空间位置与产状。北方交通大学的陈立成等人(1994)从全波震相分析理论和技术的角度研究隧道前方界面多波层析成像问题,进行隧道超前预报。他们的研究成果在颉河隧道、老爷岭隧道地质预报中应用,取得预期的效果。该方法的工作原理是以地震反射波方法为基础。工作中他们根据娴熟的地震反射波技术进行数据采集和数据解释,当时没有开发出针对隧道地震预报的处理系统,同时受当时条件所限制,该项技术未能得到进一步深入研究和发展。

1995年左右铁道部下属单位引进瑞士“TSP202”隧道地震波超前预报的仪器,当时曾组织系统内有关地质和物探专家在隧道工点进行了试验,未见明显的效果,认为其技术与“负视速度方法”基本一致,对其处理解释系统争议较大、认识褒贬不一,试验工作无果而终,该设备技术的消化工作也就搁置了。时隔7年后,隧道安全施工要求进行地质预报,该仪器设备由铁路系统的工程局又开始第二次引进,并直接用于隧道施工的预报工作。可以说由于第一次引进消化工作不深入,造成第二次引进后出现:应用工作中的盲目性和简单化,以及其他一些不正常现象。在宜万铁路隧道施工中不断出现的问题,使人们开始反思,不少论文也提出了存在的问题,铁道部也下发文件要求科学地进行超前预报。可以说短短几年的应用实践,人们仍然在探索着地质预报技术的进步。

隧道地震波超前预报属于物探技术,但比地面的地震波物探技术复杂,我国的地质物探工作者一直没有放松该技术的研究工作。北京市水电物探研究所研究地震波勘察检测技术已经有近20年的历史,并且是多道瞬态面波勘察技术的发明单位,生产的SWS型工程勘察与工程检测仪器系统,已经为400多家勘察设计、高等院所广泛应用,并且出口日本等国家。2003年该所投入人力物力研究隧道地震波预报技术,研究TGP12型隧道地质超前预报仪器,以及孔中高灵敏度三分量检波设备,方便的孔中耦合技术,和Windows编程的数据处理软件系统。在经过大量的预报实践验证后,于2005年通过了由国家隧道中心王梦恕院士组织的国内著名隧道专家的评审鉴定。该仪器系统推向市场不到2年的时间,已经有近20台套投入到隧道超前地质预报工作中应用,反馈信息普遍受到用户的好评。

铁道部工程设计鉴定中心赵勇主编的《高速铁路隧道》一书,提出隧道地质超前预报的方法有以下部分组成:①地质分析、②超前平行导坑预报法、③超前水平钻孔法、④物理探测法。并阐述物理探测法与地质分析法、超前平行导坑预报法、超前水平钻孔法相结合,解决不同地质灾害的应用原则。书中介绍了国产TGP隧道地震波预报系统,声波反射方法,地质雷达方法,红外探水方法等。

本文就隧道地震波预报技术中的若干关键问题,并结合应用中的实际问题阐述如下,目的在于引起同行们讨论,促进地震波预报技术理论水平的提高,促进采集数据质量的提高,促进资料的解释推断工作向合理化方向发展。

一、隧道地震波方法的预报原理

隧道地震预报工作利用地震反射波原理,在隧道内以排列方式激发的地震波,向三维空间传播的过程中,遇到声阻抗界面会产生反射波。声阻抗是介质传播弹性波的速度与介质密度的函数,介质的声阻抗数值为速度与密度的乘积。因此地层中的岩性变化界面、构造破碎带、岩溶和岩溶发育带等界面会产生地震反射波,这种反射波被布置在隧道内的检波器接收,输入到仪器中进行信号的放大、数字采集和处理,实现地质预报的目的。

由此可以看出,隧道地震波预报技术是通过直接探查声阻抗变化的界面,经过人工分析实现间接推断地质病害的方法。

图(2)不同夹角构造界面的地震波路径与反射波记录形态

图(1)示意与隧道斜交的构造面,其地震波传播的路径图,构造面上的地震波反射点在白色园内。图(2)示意不同夹角构造面的地震波路径与反射波记录形态,与隧道夹角不同的构造面其反射点位置不同,地震波传播路径偏离隧道轴线也不同。构造面与隧道正交时地震波传播路径与隧道轴线平行,右图为与隧道正交构造面产生的地震反射波记录,根据反射波同相轴计算得到界面与检波点之间岩体的地震波速度,该速度代表隧道围岩的性质。由非正交条件下地震反射波记录获得的速度为地震波传播路径岩体的“视速度”,“视速度”值的大小不仅与路径上岩体的性质有关,而且与界面和隧道的夹角有关。应用地震波预报构造面位置的计算是利用地震波在炮孔段的传播速度,各构造面之间岩体的速度是综合界面反射获得的“估算速度”,不是隧道围岩的真速度,应用中结合反射点偏离隧道轴线距离的远近和岩体的各项异性分布综合考虑使用。

图(2)是理想模式的三份量地震波时距曲线形态。实际工作中采集的地震波是错综复杂的,理想模式的地震波是不常存在的,记录上普遍存在有来自三维空间中多个方向的反射波,和各种形式的干扰波,这是应用技术中首先考虑的问题。

针对隧道地震波传播的复杂性,TGP地震预报系统不仅利用地震反射波走时关系,同时采集空间地震波三分量记录,进行地震波的极化分析与计算,该技术的突破有利于地质构造面产状、规模和地质体性质的预报。

二、TGP隧道地质超前预报系统

隧道地震波预报的早期研究,是由研究和利用地震波在时间空间域中的运动学特征开始的,工作中认识到仅仅利用地震波运动学和动力学特征是不够的。隧道工程的地震波在全三维环境条件下传播,这种条件比地面上的平面半无限空间条件复杂得多,而且隧道内地震波的接收与激发测线与探测目的是近于垂直或者大角度相交的条件,因此影响在地质构造面上获得大长度大面积的地震波信息量。针对这种状况,预报工作仅仅利用单一模态的地震波难以胜任。因此,TGP系统强化采集地震波的多波列信息,综合利用地震波的多波列震相信息,因此TGP系统的功能得到明显的增强。

TGP隧道地质超前预报系统包括仪器设备和处理软件两大部分。其中仪器设备有TGP型仪器主机、接收传感器、孔中定位安装工具和电缆等。图(3)是TGP隧道地质超前预报系统的主机。其处理软件由地震波数据输入与编排、空间坐标建立、能量均衡、干扰波分析与去除、触发时差校正、谱分析、纵横波分离、岩体速度参数计算、回波提取与偏移图、有效波分析与衰减参数计算、极化波处理与构造产状图、综合分析与绘制成果图等模块组成。

工程应用中,TGP型隧道地质预报系统对于500多米距离的构造面具有清楚的地震反射波信息,说明仪器系统具有足够的信噪比。实际工作中考虑预报距离和分辨精度两方面要求,预报距离一般采用150米至200米。TGP型隧道地质预报系统具有登记全部测长距离内地质构造信息的功能,利用逐次递进的位置相关分析,和源生成果对比等处理功能,有利于去伪存真和排除异常,提高预报成果的质量。该系统2005年8月通过由国内知名隧道、地质、物探专家组成的专家组评审鉴定。专家们一致认为“TGP12仪器与相关的处理系统,性能稳定可靠,采集的波形完整,信噪比高,与国外同类仪器对比整体上具有国际先进水平,可替代进口产品。”具体评审意见如下:

1、TGP12是集信号放大,模数转换,数据采集、存储和控制为一体的密封防水防震的物探设备;优于利用微机装配式结构的仪器,TGP12适合在恶劣的隧道环境中使用。

2、TGP12的三分量速度型检波器具有高灵敏度,指向性强和较宽的频带响应等特点,因而拾取的地震波信号具有高的质量品质。TGP12孔中接收检波器采用黄油耦合,方便、经济、快捷。优于在钻孔中需要锚固异型钢导管的方式。2米长的钢导管难于携带、运输,价格昂贵,一次性使用,费事费工费财。

3、TGP12的地震波采集触发是开路触发方式,即信号线在雷管引爆炸药的同时被炸断,信号线同时开路触发仪器采集,仪器采集无延时差,保证定位的准确性。超前预报仪器若采用起爆器电脉冲同时触发电雷管和触发主机采集的方案,由于电雷管起爆的延时时间难于做到一致,因此会造成仪器采集的走时误差,这种触发方式在我国的地震波勘探规程中明确规定不宜使用,更何况隧道岩体的速度比覆盖层介质的速度高出几倍以上,以岩体波速4500m/s~5500m/s为例计算,每一毫秒误差会造成2~3m的预报距离误差,一般瞬发电雷管的延时误差不止一毫秒,因此由20多次激发的平均线计算隧道岩体速度,和利用存在误差的时间计算距离,两次误差的乘积造成的误差不容忽视。

4、TGPWIN隧道地震波处理分析软件借鉴了已有相关软件的长处,并充分考虑弹性波在三维空间的传播特点,以及根据TGP仪器采集的数据格式编写。功能特点如下:

(1)全中文界面,通俗易懂,对地震波信号的处理过程,直观、方便,具有友好的人机操作界面。

(2)对P波、SH波、和SV波的分离完善合理,这是超前地质预报数据处理的关键工作之一。

(3)处理软件具有相关部分互相检查的功能,例如点击偏移归位成果图上的反射界面位置,程序会转到该位置界面的反射波组位置,通过分析反射波组的连续性、反射波的极性和能量,确定偏移成果的可靠性和性质。有助于去伪存真,由此及彼,由表及里,深化认识,使预报结论科学可靠。

(4)TGPWIN处理中有自动处理方式,也有手动处理方式,有深入分析异常可靠程度的追踪功能,这样设计既适应非物探专业的普通工程技术人员使用,又适应物探专业人员分析地震波传播特性,对复杂地质条件进行深入研究工作的需要。

5、TGP12系统只要增加不多的配套附件和软件模块,就可以增加仪器用于隧道检测的其它功能,例如:对已衬砌的隧道进行衬砌脱空检测,检查隧道围岩中隐蔽的病害(岩溶)。也可以在掌子面上用锤击的激发方式做到短距离更为精确的地质预报,因而它是一机多能的设备。

TGP12的性价比与国外同类仪器相比具有明显的优势。而且研发、生产在国内,用户可以获得及时周到的技术服务和技术支持,以及仪器维修等方面的方便性。

三、工程应用实例

宜万铁路凉风亚隧道的岩性为灰岩,TGP12型仪器与进口TSP203仪器进行了同点试验,预报成果如下,见图(4)、图(5)。

由以上成果图可以看出:在DK53+322—DK53+346;DK53+370—DK53+380;DK53+390—DK53+420三处存在构造异常,其中DK53+322—DK53+346、DK53+370—DK53+380两处的Vsh波比Vp波反射幅度大,推断以上两处构造带存在有充水或岩溶发育的可能性、。此结论经过日后的隧道开挖证明完全正确。在隧道施工的《变更设计建议书》中结论:“在隧道左壁的DK53+322段发现岩溶,溶蚀带宽度为2.5米,溶蚀带穿过隧道拱顶至右壁的DK53+340米段,并向边墙外延伸,雨后DK53+322处溶洞有较大水量流出,DK53+339处溶洞有少量渗水。该段围岩较破碎,节理发育,受溶洞影响,拱顶岩层出现楔体破坏、掉块”。

TGP12型隧道地质预报系统在云南水富高速公路冷水溪隧道,宜万铁路王家岭隧道、凉风垭隧道,青岛海滨高速仰口隧道,重庆地区数条公路隧道,以及武广客运专线大瑶山隧道等工程使用,获得满意的预报效果。

1、隧道地震波超前预报的概念解释

隧道地震波超前预报技术翻译成英语是“TunnelSeismicPrediction”,简称“TSP”。在我国《客运专线铁路隧道施工技术指南》的第5.0.8条使用了“TSP”缩写词。一般规程中使用缩写英语字母表示某种技术是正常的事情,但是在隧道地质超前预报工作中却出现被歪曲利用的现象,把“TSP技术”歪曲解释成“TSP***仪器”。这种现象对隧道超前预报技术的应用,造成了不良的影响。在有的地方和部门的隧道施工招标和设备招标工作文件中也存在把“TSP技术”歪曲解释成“TSP***仪器”的现象,这是对隧道地震波预报技术缺乏科学认识。

因此,正确认识:“TSP技术”即隧道地震波超前预报技术,有益于正确执行我国的现行隧道规程规范和法规,有益于隧道工程的招投标工作,有益于隧道地震波预报技术的进步,有益于诚实诚信的预报技术服务。

2、隧道地震波预报中的接收与激发问题

在隧道地震预报工作中,有的采用把接收与激置在隧道的洞壁上,这种做法不妥当。众所周知,洞壁的表面波传播较强,对地震反射波会形成不容忽视的干扰。同时钻爆施工影响洞壁岩体松动,局部超欠挖使得洞壁岩体不平整和完整性差,接收检波器和激发点受局部岩体影响大,地震波的传播和衰减比较复杂,严重影响地震波记录的一致性,大大降低有效波的信噪比。因此不宜采取在洞壁激发与接收的做法。

有关

在洞壁激发和接收中面波的干扰问题,原清华大学声学教研室的沈建国教授曾经作过物理模型试验,见图(6)。模型设计在隧道前方有一个溶洞,洞径与隧道断面相当,分别在洞壁的4个深度布置接收排列。

图(7)是洞壁采集的地震波记录,图(8)是在洞壁一定深度内采集的地震波记录。图中:蓝色直线Vp表示直达纵波;蓝色曲线Vp1表示溶洞的反射纵波;红色直线Vr的后面表示面波。由图(7)与图(8)对照可以看到:图(7)面波Vr幅度强,溶洞的反射波无法分辨;图(8)的面波Vr幅度大大减弱,溶洞的反射波较清晰的表现出来。这个模型试验的结果明确说明面波的干扰在钻孔一定深度呈现减弱的趋势。因此,在隧道地震波超前预报检测工作中,采取孔中激发和接收技术措施压制面波非常必要,是提高反射回波记录信噪比质量的重要环节。

TGP隧道地震波预报系统的接收和激发,结合现场施工的方便性,要求钻孔的深度为2.0米。钻孔中采用炸药爆炸产生震源,控制使用小药量炸药,在有条件的地方尽量使用高爆速炸药,同时在孔中充水的条件下爆炸。在充水的条件下爆炸有以下好处:易于产生高频地震波,提高分辨率;同时爆炸泄放到隧道内的爆炸声音小,减弱隧道管波的干扰能量;爆炸时水由孔中喷出的过程有益于产生水平偏振,加强横波的能量,有利于地震预报工作中实现采集高质量的多波信息,实现多波多参数的预报目的。钻孔中接收,采用具有高指向性和高灵敏度的三分量接收探头安置在钻孔的底部,通过耦合剂实现与钻孔壁的直接接触,检波器信号输出采用软电缆,和采用吸声软材料封堵钻孔口等措施,对于高保真地接收地震有效波信号,减少产生干扰波环节等方面很有益处。

3、隧道地震波预报中的干扰波

在隧道地震波采集过程中,存在着多种干扰波,对此必须有明确地认识。例如:对头隧道施工和邻洞施工的干扰波;地表地形和来自其他方向的反射波干扰;洞内电磁波干扰;以及接收装置设计不当产生的干扰波等等。正确认识干扰波和产生的原因,才会采取正确的措施获得高质量的现场地震波记录。下面重点讨论隧道管波的干扰问题。

隧道管波由激发孔爆炸时声波泄放到隧道中产生,被接收传感器接收造成对记录的干扰,见图9。

图中地震记录50毫秒以下出现的呈斜线“黑点”,在右图中斜线用“紫线”表示,由记录上的时距线计算“紫线”表示的速度为340m/s,该线以下的波(左半图中黑色部分)为空气中传播的声波,我定义这种波为“隧道管波”,“隧道管波”出现后覆盖其后出现的地震反射波。“隧道管波”幅度的大小与激发和接收条件有关,“隧道管波”在地震记录上出现的位置与采集偏移距离有关。该紫色线位置为偏移距离为20m的“隧道管波”出现位置。图中蓝色线表示速度为4500m/s的前行纵波和反射纵波,红色线表示速度为2500m/s的前行横波和反射横波。上部的蓝色线Vp和红色线Vs分别表示由震源向前传播的直达纵波与横波。下部的多条蓝色线Vp100、Vp150、Vp200分别表示掌子面前方100米、150米、200米距离处构造面的反射纵波,多条红色线Vs100、Vs150分别表示掌子面前方100米、150米距离处构造面的反射横波。由图看出有30%地震道的反射纵波和50%以上地震道的反射横波淹没在“隧道管波”的干扰中。如果隧道围岩的纵波速度低于4500米/秒、横波速度低于2500米/秒,将会有更多的地震道淹没在“隧道管波”的干扰中,其中影响横波的程度更为严重,这种现象严重影响纵、横波双参数预报。

我提出隧道管波的严重干扰问题,希望引起足够的重视,加强地震波检测理论的学习,克服对有效波和干扰波不加区分,盲目按照流程进行处理的做法,才可以纠正成果中以夹杂干扰波假象进行预报的局面。

在京西梨园岭隧道TGP206与TSP200在同一次预报中进行试验对比,发现TSP200仪器采集的记录中有严重的隧道管波,TGP206仪器采集的记录中无隧道管波。两台仪器工作中使用同一批24炮震源和在同一位置接收,采集的地震波记录出现如此之大的区别,关键在TSP200仪器的接收装置设计不合理。我分析过近百个TSP203与TSP200仪器采集的记录文件,记录上普遍存在着“隧道管波”,检查数据处理的过程中也未见对干扰波进行处理,而是作为地震反射波数据参与了处理,隧道管波干扰的假象混杂在预报成果图中。近几年,我看到的使用TSP203和TSP200资料发表的预报文章中,其现场采集的偏移距离(接收到最近激发炮之间的距离)普遍使用15米或者20米,炮孔之间的距离为1.5米至2米左右。在隧道管波干扰的情况下,这种布置采集的记录见图(9),记录上的隧道管波是构成对有效波预报的严重干扰。我们对以如上参数采集的记录作个初步的分析,假设岩体条件为完整的微风化硬岩,以岩体的纵波速度为4500米/秒,横波速度为2500米/秒计算,未受隧道管波干扰的距离:纵波成果为120米左右,横波成果为60米左右。以现行TSP200或者TSP203双参数预报的做法评论,其未受隧道管波干扰的预报距离为60米左右。如果岩体条件降低,双参数预报的距离还要大打折扣。如果按预报150米距离分析,其中有90米左右的距离中包含有隧道管波的假象资料。请有关使用者自己检查已经处理过的文件,分析我的结论是否有道理。也不妨召开一个有代表性,而且能够深度研究隧道地震波预报技术的会议,研讨是否存在隧道管波干扰的问题和改进措施。

我提出一个不得已而为之的方法,供大家思考。根据各种波传播路径和速度差异的原理,即隧道管波在隧道内的空气中传播,其速度低,地震波在岩体中传播其速度高,现场采用加大偏移距离进行预报数据的采集方法,利用岩体的地震波速度明显高于空气中声波速度的条件,使隧道管波下移,延迟隧道管波在地震波记录出现的时间,加大反射波接收的时间窗口,可以起到加大预报距离的目的。图(10)下部标注有20、30、40的三条紫色线分别表示:偏移距离为20米、30米、40米情况下的隧道管波的出现位置。由图可见,如果采用40米的偏移距离,隧道管波下移,反射波的时间窗口加大,在岩体为完整微风化硬岩的条件下,纵波反射基本上不受干预,横波反射受影响的地震道约为30%。这种方法的不利点是偏移距离加大会影响到地震波频率的降低和能量的衰减,但是权衡利弊,实现“隧道管波”下移的方法,避开隧道管波的干扰,无疑是一个不坏的办法。

隧道管波在记录上的幅度与激发泄放到隧道中的能量,以及接收装置系统对隧道管波的压制能力有关。“隧道管波”产生的源头在激发,在激发孔没有注满水、或激发孔太浅的条件下,激发能量会大量泄放到隧道内。因此,注意改善激发条件有利于减弱隧道管波的干扰。

有关是否可以采取滤波方式处理“隧道管波”的问题。“隧道管波”的频率与激发条件、接收装置条件、以及隧道围岩的性质等有关系,也存在接收装置系统在受震条件下产生次生震荡波,综合起来的干扰波比较复杂。通过滤波方式处理不宜实现滤除目的,如果采用的滤波参数不合理,还会产生改变地震波信息造成其它成果假象的可能性。

4、隧道埋深与预报距离

有一位从事海底隧道地震波超前预报的工程师向我询问有关预报距离的问题,海底隧道在基岩和海底的沉积地层中穿过,如果基岩面的起伏较大,这一类情况与地面上的浅埋隧道一样。在隧道地震超前预报中,海底地形界面和起伏的基岩面同样是地震波的反射面,因此,地形界面和土石界面产生的反射波,与地质构造面产生的反射波均会被仪器接收并叠加在一起,造成地震波记录复杂化。所以,在海底隧道或者浅埋隧道进行超前预报时,要综合考虑上述影响,合理确定预报的距离。一般在无法剔除地形等界面反射波影响的条件下,控制预报距离小于隧道埋藏深度为宜,对于大于埋深的距离预报要慎重。

5、关于围岩参数的预报问题

关于隧道围岩参数的预报问题,应该明确两个问题:一是地震波预报方法获得围岩参数的原理和作用;二是利用围岩参数变更隧道围岩级别的合理性。

地震波预报方法获得的基本参数是纵波速度和横波速度,其他参数均是由此计算得到的二级参数。利用地震波方法求取速度参数计算的过程中,速度数值与介质本身和反射界面的角度两个变量有关系。在地震波预报求取速度的过程中,以测量段(炮孔段)岩体速度为基本参考值,计算中同时考虑岩体反射界面的反射幅度强弱作为计算因素,带有相关比较的性质,因此得到的速度数值称为估算速度,利用估算速度曲线的分布作为分析相邻岩体的定性比较具有一定的合理性。但是,它既不是常规地震波勘探中的均方根速度,也不是岩体的真速度。

地质界面与隧道的关系,地质界面正交隧道轴线的情况应该说是个别的,普遍存在的应该是与隧道存在夹角的情况,因此普遍存在的是地震反射波路径与隧道轴线不重合,地质界面与隧道的夹角越小(以正交为90度),地震波路径与隧道轴线的夹角越大,即地震波路径偏离隧道越远。因此,利用地震反射波路径方向上的速度代表隧道围岩,存在不合理性,因为地质岩体具有的非均质、非连续和各向异性是不容忽视的。

在明确地震波预报获取的速度含义以后,我们来分析利用该速度进行“隧道围岩弹性波分级法”和变更隧道围岩级别的问题。“隧道围岩弹性波分级法”顾名思义,是隧道围岩弹性波的一个分级方法,而不是隧道围岩地质分级的全部。勘察设计报告中围岩级别的结论是综合考虑:隧道通过地带岩体的工程地质、水文地质、隧道埋深与地应力,以及隧道围岩弹性波参数等多方面的资料做出的,仅仅利用预报获得的岩体参数变更围岩的级别存在着片面性。

举例说明如下:图(11)是TSP203仪器预报成果图中的一部分,图中上半部分三项参数的直方图,由上而下为岩体分段的纵、横波速度参数值;岩体的密度值;和岩体的弹性模量值。图的下半部分为反射界面的分布图。以图中的反射界面线与隧道里程线的交点为序,统计反射界面与隧道轴线的夹角,汇总成表1。

序号

1

2

3

4

5

6

7

8

9

10

11

里程

2084

2092

2104

2108

2109

2116

2136

2152

2164

2184

2188

夹角

45°

75°

70°

65°

75°

80°

80°

70°

90°

70°

80°

以表1中最后两个界面的里程和夹角,根据隧道地震反射波传播理论,采用作图方法,绘制的地震反射波的射线路经,分别见图(12)。

上图的预报距离为100米:图中序号11的界面在2188里程,构造面与隧道夹角80°,其地震射线与隧道夹角10°~15°,反射段偏离隧道距离32~37米;图中序号10界面在2184里程,构造面与隧道夹角70°,其地震射线与隧道夹角20°~30°,反射段偏离隧道距离49~59米。如果以正常预报距离150米计算,反射段偏离隧道的距离达到70~80米。地震波射线与隧道轴线方向不同,射线路经与隧道轴线也不具备重合条件,而且偏离隧道50至80米多米以外,这样的速度资料作为隧道掌子面前方围岩的速度不具备代表性,以此变更隧道围岩的分级则更无道理。至于图中提供的其他岩体动参数,例如:动弹性模量、动剪切模量、动泊松比和岩体密度值等参数,皆由岩体纵波和横波速度计算而来,摆在报告中也就是一堆动参数。况且在没有具体岩体动静参数对比资料的基础上,如何使用也存在问题。

我认为隧道地震波超前预报,应该是以预报地质灾害和不良地质条件为主,以估算速度参数定性评价围岩地质条件为辅的方法。

隧道论文范文3

1)施工前的内外联关系。

在施工之前主要开展的工作为可行性研究和勘察设计,以及施工前开展的招投标工作。前者涉及的内外联关系主要是隧道方案与整个路线工程,以及与自然和社会的相互作用,主要体现为方案与具体设计的合理性和科学性。后者主要涉及建设方与施工方的相互关系,即建设方与施工方的合同关系建立过程,其中关键因素是中标价格。

2)施工中的内外联关系。

施工阶段的和谐性是评价城市隧道工程建设和谐度的最主要内容。这一阶段整个工程建设过程的内外联关系可以划分为实体工程、机构人员和资金流转三个方面。实体工程方面:工程建设活动需要开挖岩土体、扰动地下水环境,隧道结构与岩土体发生相互作用;施工过程各部分、各工序发生相互作用;工程建设从外部环境获取大量的各类材料,又向环境输出废弃材料、废气和污水。机构人员方面:参与工程建设的业主、施工、监理、设计和监测检测等单位及其员工需要开展大量的互动工作,这些工作有管理与被管理、监督与被监督,以及相互协作等不同的角色关系。参与工程建设的单位还与社会其他单位或个人因材料采购、废弃物处置、污染物排放、共用其他社会资源等原因发生互动关系。资金流转方面:主要表现为承包商向监理、业主单位的资金申报审批,以及业主向承包商、承包商向材料供应商、服务提供商和劳务人员提供的资金拨付。资金流转的正确性、合理性和及时性,对工程建设活动的顺利运转也十分重要。

3)施工后的内外联关系。

施工后的内外联关系主要体现为隧道工程为社会提供服务,以及运营者对隧道进行的管理维修。隧道工程为社会提供服务:隧道方案越合理、自身状况越好,可以为社会经济发展提供的服务就越好,经济社会效益越明显。隧道工程的管理维护:管理维护一方面有利于保持隧道的健康状态和服务水平;另一方面需要花费一定的成本、对隧道运营产生一定的影响。过多、过频繁的维护和病害治理,说明隧道工程本身的建设质量存在不足。

2城市隧道和谐性的表现形式及影响因素

城市隧道工程建设的和谐性可以从技术、经济、社会和环境等四个系统得以体现,不同系统中又可细分为若干个方面,每个方面和谐性的影响因素不尽相同,相互之间可能存在重叠。

2.1城市隧道和谐性的表现形式

1)技术系统的和谐主要表现为安全、质量和进度三方面有保障。

安全方面包括不发生各种形式的安全事故,不因安全事故造成财产损失和人员伤亡;质量方面包括不出现各种类型的质量问题,工程各部分功能正常、系统相互协调;进度方面包括工程总进度得以保障,各分项或分部工程得到协调一致的推进。

2)经济系统的和谐性主要体现为业主(代表政府或社会)、承包商(机构)和参与建设的员工在经济上取得好的效益。

业主方面主要为获得合理最大化的投资回报,按时据实向承包商支付各项费用,不因安全、质量或进度等问题产生额外费用;承包商方面主要体现为在保证安全、质量的前提下获得最大的经济效益,不因安全、质量和进度问题额外增加成本;员工方面主要体现为按时获得与付出劳动相对应、与区域或行业收入水平相协调的劳动报酬,不因窝工、违规作业、工伤事故等造成不必要的损失。

3)社会系统的和谐性主要体现为外联关系、机构关系协调和员工关系等三方面处于协调、顺畅状态。

外联关系方面体现为工程建设有效避免对外部单位与个人的干扰、破坏,能够获得外部单位与个人的支持。机构关系方面体现为所有参建单位恪守本职工作,相互合作与支持,不因相互协调不畅导致正常施工中断、延误问题的正常处理等。员工关系方面体现为所有参与建设的管理者、技术人员和工人互相尊重、理解和支持,相互交流沟通顺畅,能够和谐共处。

4)环境系统的和谐性主要体现为资源消耗水平低、污染物得到有效控制和处理、施工环境扰动得到控制。

在资源消耗水平方面主要体现为工程建设消耗的各类建筑材料较少、能耗和用水量较低;在污染控制水平方面主要体现为产生的污染较少,并得到及时有效的处置,由于工程建设参数的废弃物较少等。施工扰动控制水平和谐性在施工扰民控制方面主要体现为施工产生的振动、噪声等对周边居民及单位的影响得到有效控制,对周边景观的破坏得以控制并及时得到修复。

2.2城市隧道和谐性的影响因素

通过城市隧道工程建设内外联关系的分析,城市隧道和谐性的影响因素可以归纳为以下15个方面:方案社会评价水平(C1)、施工中标价格水平(C2)、参建机构资信水平(C3)、安全事故控制水平(C4)、质量缺陷控制水平(C5)、设计变更控制水平(C6)、施工工期控制水平(C7)、反馈决策顺畅水平(C8)、企业财务健康水平(C9)、员工薪酬发放水平(C10)、内联关系协调水平(C11)、外联关系协调水平(C12)、废弃物处置水平(C13)、污染物处置水平(C14)、景观修复营造水平(C15)。

3城市隧道和谐度的层次分析法评价

城市隧道工程建设和谐度的评价是一个多指标综合评价问题,可以采取层次分析法、模糊数学法等方法进行评价,本文采取层次分析法进行分析。层次分析法的基本思想是将复杂的问题分解为若干个层次,在比原来系统简单很多的层次上逐步分析。通过比较若干因素对同一目标的影响,把决策者的主观判断用数量的形式表达和处理,从而确定它在目标中的比重。层次分析法的主要流程为:明确问题建立层次结构模型利用成对比较法构造判断矩阵进行层次排序,获得权向量进行一致性检验完成层次总排序以及一致性检验获得最优系统方案。

3.1递阶层次模型的构建

根据层次分析法理论,构建四个层阶的递阶层次模型分析模型。城市隧道工程建设的综合和谐度为第一阶(最终目标层H),并将其分为技术(HT)、经济(HC)、社会(HS)和环境(HN)四个二阶目标层。第三层为指标层,共包括12个方面的准则(T1~C9),即安全管理指标、质量管理指标、进度管理指标、业主经济指标、施工经济指标、员工经济指标、外联关系指标、机构关系指标、员工关系指标、资源消耗指标、污染控制指标、扰民控制指标。指标层为影响城市隧道工程建设和谐度的15种影响因素(C1~C15)。

3.2指标层权重的确定

应用层次分析法确定指标权重的方法为:利用分级比较标度方法,列出上层指标与下层相关性,由被调查者采取两两比较的方法,给出判断矩阵。然后求出判断矩阵的特征向量和特征值,进行一致性检验。

3.3和谐度等级的确定

根据和谐度的评价值,按照表1确定其评价等级。具体实施时,可以由政府或其他主管单位研究提出对工程最后的和谐度指标和等级要求进行明确,确定经济和行政奖惩方案,形成有据可查的文件。或由建设单位在施工招标和合同谈判中对工程最后的和谐度指标和等级要求进行明确(此时需要修正一些与施工单位无关的指标),确定经济和行政奖惩方案,作为合同条款的一部分。

4某城市隧道和谐度评价实例

1)工程概况。

某城市隧道全长1823m(左线913m,右线910m),隧道进出口位于不设超高的大曲线半径上,左右设计线相距约30m~50m,属于间距较小的分离式隧道。隧道按城市Ⅱ级快速干道设计;双向四车道,单向行车,设非机动车道及人行道;设计时速40km/h,设计荷载:公路—Ⅰ级;隧道净宽14.50m,净高5.0m。

2)指标权重的调查分析。

为确定城市隧道工程建设和谐度的指标权重,邀请上级主管单位和全体参建单位对和谐城市隧道建设工作进行了分析。与会25位代表(上级主管单位6名,业主6名,施工单位6名,监理和设计单位各3名,监测检测单位1名)参加了各因素重要程度的调查。与会人员分别填写了各层指标重要性调查表,其中准则层与措施层的关系采取开放形式,即每一个准则元素与哪些措施元素相关,由被调查者自己确定,在数据分析时,最多计入6种排位靠前的因素。通过对上述调查进行分析,得到了各指标对总目标的权重。

3)和谐度评价。

该隧道建设完成之后,项目建设单位对各方面工作进行总结,召开和谐隧道建设总结评估会议。上级管理单位、参与建设单位、周边企业和市民代表等35人参与了总结评估。根据和谐度与和谐度等级的对应关系,该隧道工程建设评定为“和谐”。

5结语

隧道论文范文4

岩堆体的形成条件是多样的,形成途径主要有两个,一是由千枚岩、泥质页岩以及各种板岩、片岩等软弱且易风化的岩层所组成的大坡度山坡;二是在构造带的交接部位,经多次地壳运动,因岩层遭遇强烈破坏,岩石风化剥落在山脚而形成的岩堆。岩堆的形成发展过程可分为三大阶段:①母岩崩解;②风化产物的搬运;③风化物的堆积。与此相适应,岩堆的形成过程可划分为与上述三个阶段相对应的三个区域,分别是:A-供给区;B-搬运区;C-堆积区。通过查阅云南省昭通地区高速公路沿线岩堆的踏勘和地质资料,该地区岩堆形成过程如下:①在地壳板块运动过程中,地层受构造挤压作用而隆起抬升,形成陡峭山峰;②在逆层边坡侧,岩层断裂出露,形成软弱泥岩与坚硬岩层(砂岩或灰岩)的交替结构;③由于软弱泥岩易于风化,碎裂块体沿边坡滚落逐渐在坡脚或突出坡台堆积;④悬空硬岩在外力和风化作用下断裂,沿边坡滚落与软岩风化物混合形成堆积体;⑤随上部堆积体的增加,在降雨等因素作用下,岩堆体逐渐密实,并可能形成向下的滑动趋势;⑥岩堆体趋于稳定。

2岩堆体特征

2.1外部特征

岩堆体主要分布在山岭区的陡坡上或山麓下,岩堆体深度变化很大,上部较疏松,中下部较密实,深度一般在10~45m,甚至更深。其纵断面一般呈各种形状的三角形,主要由岩堆基底傍依区和岩堆坡面所围成的三角形区域组成。1~3分别表示为岩堆基准面(基底),支承(傍依)区和岩堆坡面。受地下水影响,岩堆体底部与基岩接触面处一般有可塑状低液限黏土夹碎石软层。一般而言,上下陡中间缓型岩堆的稳定性最好,其次是单面坡型,上陡下缓型岩堆稳定性最差。岩堆体坡面形状,即平面形态。岩堆体大小和范围极不一致,其面积少则几十平方米,大则几平方公里。其平面形态主要有楔形、三角形、舌形、半圆形、梨形、梯形等类型。圆形岩堆相对最稳定,而舌形岩堆和梨形岩堆稳定性最差。

2.2内部特征

岩堆体上部覆盖层为黏土夹碎石,下部为块石土夹黏土,岩堆主要由千枚岩、泥岩、页岩、板岩和片岩的风化产物与砂岩、石灰岩和花岗岩等的岩块堆积而成。碎屑岩类岩堆由砂岩质块(碎)石和玄武岩块(碎)石组成,块石含量70%~80%。碳酸盐岩类岩堆由灰岩质、白云岩岩质块(碎)石组成,块石含量80%~90%。

3岩堆体力学参数

尽管岩堆体的力学性质研究十分困难,但是研究者依然取得了一些有价值的成果,vallejo等对砂石~黏土混合材料的孔隙度与抗剪强度进行了研究,得出混合材料的抗剪强度与砂石、土的比例有关,当砂石的重量比小于40%时,材料抗剪强度主要由黏土的抗剪强度控制;当砂石的重量比介于40%~75%之间,材料抗剪强度由砂石的摩擦阻力和黏土的抗剪强度共同控制;当砂石的重量比超过75%时,材料抗剪强度主要由砂石的摩擦阻力控制;混合体抗剪强度随含石率增加而增加。可以根据现场岩堆体的坡度来初步判断岩堆体的摩擦角。岩堆的含石率较高,岩堆表面坡度一般也较大;相反,坡度相应变小;随着岩堆的增加以及雨水的作用,将逐渐密实,因此对早期的岩堆,其稳定性高。岩堆体整体松散,其粘聚力低,岩堆体的粘聚力为大约8~20kPa。

4岩堆体对隧道施工的影响

在穿越岩堆体隧道的施工中,导致进洞困难的根本原因有两个方面:一是水患,二是围岩松散软弱。施工中的困难具体表现为:卡钻与孔塌现象,严重影响喷锚支护的施工速度,增加施工成本;锚固力不足、坍塌现象、边坡失稳、涌水现象、流砂现象。

5岩堆体隧道施工控制措施

针对以上问题,在岩堆体隧道施工过程中,采取的防治措施主要有两大原则。一是,隧道防排水设计原则:“以排为主,堵、截、防、排相结合”;二是,隧道开挖原则:“减少对围岩的扰动、先护后挖、密闭支撑、边挖边封闭”。具体措施包括:

1)对于施工过程中的成孔困难。采用锚杆钻机跟管钻进的方法、套管跟进取代管棚,此外还可采用小导管径向注浆取代中空锚杆径向注浆的方法;

2)针对锚固力不足的问题。采用管锚与注浆联合支护技术,全面调动了围岩自身承载能力,是目前解决岩堆体支护问题的最有效手段;

3)对于边仰坡失稳及围岩软弱问题。主要是进行小导管注浆、网喷支护处理边坡;

4)对洞内流沙。开挖时应准备草束或麻袋,随时堵塞缝隙,以免漏砂引起坍塌;

5)针对失稳,偏压问题。在岩堆体中隧道施工,采取大管棚注浆超前支护,短进尺,弱爆破,及时施作加强型的初期支护,锁脚锚杆,尽早成环,形成封闭结构。

6结束语

1)现有的成果主要是针对具体实际岩堆边坡的综合治理进行研究,对于岩堆的形成条件、机理、几何特征及变形规律,以及岩堆的破坏模式和破坏机理方面的研究较少,在机理分析的基础上提出标准化施工方案及其基本施工措施的研究更少,有待深入研究;

2)岩堆体作为山区的一种不良地质,必须根据其特殊性查明其固有性质,同时还须查明周围环境条件对岩堆稳定性的影响;

隧道论文范文5

根据设计,SMART将按3种模式运营[2-3],如图3所示。1)模式1。无暴风雨或低降水量情况,没有洪水分流到该系统中,泄洪隧道处于无水状态,公路隧道正常对外开放,见图3(a);2)模式2。在中等洪水情况,即上游Klang/Ampang交汇处的L4雨洪流量站测得流量达到70~150m3/s,通过原有的泄洪设施排泄的流量控制在50m3/s以内,超出的部分则需通过SMART隧道泄洪,但公路隧道区段仅限于隧道的底部空间用于泄洪。公路隧道正常对外开放,见图3(b);3)模式3。大暴雨、特大暴雨情况下,即上游Klang/Ampang交汇处的L4流量站测得流量超过150m3/s,公路隧道关闭交通,隧道内的车辆和人员全部撤离,隧道全断面泄洪,见图3(c)。对模式3而言,在隧道接到泄洪通知后45min内,隧道内的所有车辆及相关人员必须完成撤离,每次过洪后重新恢复道路交通需要52h。对于3km的公路隧道区间,由于隧道需要在干湿2种环境中运营,因此隧道内的照明设备及CCTV系统均按IP68设计,即可以被水淹没。隧道的应急电话系统设计为可快速更换类型。设计最大洪峰泄洪时流速为4.7m/s,所有的机电设备及指示牌尽可能按流线型设计,且设备安装应有足够的刚度与强度。工程按百年一遇的暴雨标准设计。依此标准,一年内绝大部分时间SMART都将按模式1运行,可能会有7~10次按模式2运行,而按模式3运行的频率为每年1次甚至几年1次。

2隧道地质情况与施工方法比选

2.1隧道地质情况

地质调查结果表明,SMART隧道所经历的地层主要是KualaLumpur石灰岩(简称“KL石灰岩”),这种地层将是工程面临的巨大挑战,隧道纵断面见图4(a)。KL石灰岩90%以上的成分为方解石,具有典型的Karst地层特征:1)石灰岩地层出露地面形成陡峭绝壁或深切峡谷,见图4(b);2)长期的水溶作用形成溶洞,溶洞大小可以与隧道掘进机的尺寸相当;3)溶洞往往与地下水相联系,隧道施工过程中的降水活动可能给周边建(构)筑物带来风险;4)在历史上地层出现塌陷的地方往往被松软土层充填,这种松软而不密实的充填物对盾构的掘进施工将存在极大风险;5)施工降水可能引发新的地层塌陷。从施工的角度来看,最为关键的就是岩层的起伏变化以及遭遇大型溶洞。为了准确地确定岩层的起伏变化情况,在2001年利用Mackintosh探钻打了1072个地质探孔。另外,为了解溶洞及上卧层疏松土的松软程度及低密度情况,对2个分岔井间的隧道段,按平行于隧道轴线布置5条线路进行微重力试验。试验结果大致给出了岩石露头的最低点以及大溶洞存在的区域范围。然后又在这些区段进行地质钻孔补测,结果表明微重力试验的结果能大致给出岩层露头的定性而非定量结果。在施工初期又采用电阻物探法进行地层测探,以便获得更多的地层信息。

2.2施工方法比选

基于沿线的地质条件,对明挖法、新奥法以及盾构法等几种常用隧道施工方法进行综合比选,为了减少施工风险以及施工对周边环境的扰动,最终推荐采用盾构施工的方案。在盾构的类型(EPB或泥水平衡)比选方面,一方面泥水盾构较EPB能更好地适应复合地层,而且当时超大断面的泥水平衡盾构已有多个成功案例,而直径大于13m的土压盾构工程还没有先例,因此最终选定2台泥水平衡盾构进行施工。由于水力条件要求,隧道仰拱的标高不能变动,因此隧道掘进施工将不可避免地遭遇软硬并存的复合地层。

3SMART隧道设计

3.1结构设计

根据隧道排洪与公路交通多功能的需要,与常规的交通隧道或泄洪隧道相比,沿线的结构布置、隧道的断面形式以及整条隧道的防灾减灾系统均需要有特殊的考虑和安排。在3km公路隧道的南、北两端各设1座分岔井,作为车辆出入口与洪水入口的分叉点。公路隧道的出入口分别设在KampongPandan环形岔路口和KL/Seremban高速公路的立交处与既有线路衔接。2个分岔井还兼作公路隧道的通风井与隧道泄洪的调压井。另外,3km段交通隧道每隔1km布设1座中间风井。作为防灾措施之一,每250m左右设1座联络通道连接上下层隧道。SMART主体隧道采用盾构法掘进施工,隧道结构采用管片衬砌。综合考虑隧道的泄洪能力以及公路隧道的布置需要,隧道内径设为11.83m。管片设计除了要平衡衬砌厚度与含钢量间的关系外,还考虑管片的正常处置状态(如拼装、翻身等)的受力情况、在高强度石灰岩层中掘进时千斤顶反力集中对管片的作用以及在松软地层中管片的受扭不利工况等。管片采用C50混凝土,厚度为500mm,含钢量为90kg/m3。管片环宽为1.7m,1环包括9块管片,即6块标准块、2块临块和1块封顶块,每块标准块的质量为10.3t,1环的总质量为82t。管片的环向和纵向均采用M25高强度螺栓连接。根据隧道线路布置,最小转弯半径仅250m,管片最大楔形量为110mm。管片不设直线环,直线环由左曲环和右曲环交替拼装而成。中间3.0km公路段,采用双层结构布置,由2道横隔板将隧道分成3部分空间,上部为向南的车道,中间空间为向北的车道。底部的空间用于运营模式2和模式3情况下泄洪。每层各提供3个车道,包括2个宽3.35m的正常车道和1个应急车道。受空间限制,隧道内只能通过高度不超过2.55m的小型车辆。隧道内的设计限速为60km/h,实际显示的限速为50km/h。隧道的内部结构布置见图6。

3.2防水设计

对SMART隧道工程而言,由于兼具排洪和公路交通的双重功能,因此对隧道的防水设计也提出了特殊要求,内部结构的防水要求较常规交通隧道要高得多。盾构隧道管片的防水通过在管片上预留密封沟槽安装EPDM橡胶密封实现,最大压力水头按32m考虑。中间3km的公路隧道段在运营模式2情况下,底部的空间水流按有压流考虑,而中部和上部均为无水环境下的公路交通,因此必须要防止水从底部渗漏到中上部空间,这是SMART隧道防水设计的关键与难点所在。为了最大限度减少水从底部渗漏到下隔板,所有施工缝的钢筋都全部连通,并在接缝处预留压浆管。隔板和竖墙的配筋要足够,以防止混凝土施工的早期裂缝。在C40混凝土配合比设计中选用低水化热的PFA水泥,混凝土浇筑的温度严格限制在60℃以内,对浇筑的隔板采取蓄水养护。为防止水通过管片环缝渗入上隔板,在环缝处设“T”形止水带。另外,在隧道管片衬砌与内衬之间预留压浆管。

3.3防灾减灾设计

SMART隧道工程设计开始于2001年,恰逢欧洲勃朗峰隧道火灾(1999年)和阿尔卑斯山隧道火灾(2000年)不久,因此公路隧道的防灾减灾设计尤为受到关注,为此咨询公司专门开展了火灾的数值模拟分析。假定隧道的下层道路发生2~3辆小汽车相撞产生10MW的大火燃烧60min。采用一维数值模拟分析了中间隔板底部的导热情况,通过分析不同深度混凝土结构的温度来推测混凝土剥落的情况。分析结果表明大火情况下混凝土剥落现象仅限于30mm深度范围,混凝土内部的钢筋不致发生软化现象。另外,作为防灾减灾措施的通风系统也十分重要。3km长的公路隧道按1km间隔共设4座风井,每座风井安装8套通风扇和增压风扇为上下层交通隧道供风,增压风扇主要作用是阻止火灾情况下烟雾进络通道,隧道通风模型见图8。在隧道的出入口设置轴流式风机进行新风补充。通风系统的操作系统与隧道SCAVADA系统相连。用于监测隧道内CO浓度与可视度的仪器安装在联络通道附近,整个通风系统根据监测的结果自动调节风量与风速。3km公路隧道沿线每250~300m间隔设联络通道用于连接上层与下层隧道,具置则根据具体地质情况与施工条件确定。一旦发生火灾,在无事故的隧道层则供增压风,以阻止烟雾进入非事故隧道。电气开关房布置在联络通道的中间,见图9。在联络通道与隧道的连接处设水密门,确保泄洪期间水不进络通道。根据地质条件的不同,联络通道采用马蹄形开挖断面+现浇混凝土衬砌和椭圆形开挖断面+喷射混凝土衬砌2种形式。

3.4洪水监测与预警系统

由于SMART工程主要的功能是泄洪,并且还要实现泄洪与公路交通不同运营模式之间的转换,因此洪水的监测与预报系统(FloodDetectionSystem简称FDS)必不可少。该系统除了为公路隧道区间不同运营模式间的转换提供水情预报外,还对SMART工程中各个子系统运营状态进行监测与预警。这些系统包括通信系统、预警系统、隧道内安设的传感器、公路隧道出入口的水密门以及蓄洪池的闸门等。更重要的是在公路隧道按模式2或模式3运行时,该系统将为SMART工程中控室和交通管理中心提供实时完整的信息。洪水监测系统安装在SMART工程中控室,包括7个子系统:1)产流区域监测系统。28个遥感水文站,对河流与产流区域的流量进行实时监测,为FDS系统模型提供输入;2)预报模型系统。带有自动模拟与数据信息处置能力的水文与水动力学模型,可以对所选的地点进行长达2h的流量过程预报;3)预警系统。设置在关键位置的警报站;4)监测与控制系统。对各子系统信息进行整合与智能管理的软件系统;5)CCTV系统。设置在重要位置的摄像头和照相机等,以便对现场进行实时监督;6)SCADA系统。包括FDS与MCC系统的界面,用以SMART系统信息与传播的SCX系统;7)无线与光纤通讯系统。包括无线网络、电话以及光纤通讯系统等。

4主体隧道工程施工情况

4.1盾构设备选型

针对地下水位高、复合地层以及Karst地层特点,盾构选型的准则与依据如下:1)马来西亚土地(包括地下)属于私有财产,根据土地征用的具体要求,隧道的线路尽可能落在地面公路的土地使用范围内,盾构设备必须满足最小半径250m的急转弯情况;2)覆土厚度范围10~20m,因此盾构设备必须满足浅覆土施工的工况条件;3)为提供开挖面正面平衡精度,防止施工过程中开挖面前方坍塌,盾构采用泥水-气平衡系统;4)盾构绝大部分都是在石灰岩中进行掘进,部分区域会遭遇溶洞或岩石露头的突变等情况,盾构必须具备在复合地层中掘进施工的能力。经综合比选,SMART隧道采用2台外径13.21m的泥水平衡盾构进行施工。所采用盾构由德国Herrenknecht公司提供,第1台在合同签订后12个月供货,第2台的到货时间滞后2个月。刀盘的配置必须满足在复合地层掘进的需要,值得一提的是盾构采用了球形主轴承,这样允许刀盘与主轴承间以小于90°的夹角进行切削以满足急曲线转弯的超挖需要,同时也减小了作用在隧道管片上千斤顶的行程差,这样可以实现最大的超挖量达到400mm。这一特性还可以满足在岩石地层条件下,将刀盘缩回为查刀与换刀提供一定空间。为满足不间断地进行气压条件下对刀盘上的刀具进行更换,盾构配备了2个气闸室和1个小一些的材料闸室。盾构还配备了2套超前钻探设备和1套振动探测系统以供对开挖面前方的地层进行超前探测。

4.2隧道主体施工情况

隧道的掘进施工始于2003年11月25日。采用2台直径13.2m的泥水平衡盾构从北侧风井始发朝相反的2个方向始发掘进,盾构TUAH用于北侧隧道掘进施工,盾构GEMILANG则朝南掘进。盾构TUAH于2004年6月从北侧风井始发,经过24周的掘进,于2004年11月,到达北侧分岔井,共掘进了737m。2005年1月底,盾构TUAH从北侧分岔井重新始发开始第2段区间隧道的掘进施工,掘进的长度为4550m。SMART北侧盾构隧道的部分参数见表2。工程经过多次延误后,公路隧道段于2007年5月14日下午3:00正式通车,而泄洪隧道段最终于2007年7月底竣工。就在公路隧道通车后的几个星期内,隧道就进入运营模式3泄洪。截至2010年7月18日,SMART系统对7次灾难性的暴雨洪水成功实施分流,从而使吉隆坡市中心免遭内涝之灾。

4.3施工的主要挑战与应对策略

盾构掘进施工中潜在的风险与挑战主要包括:地层沉降或坍塌、Karst溶洞或坑穴以及泥水逃逸导致地表坍塌隆起、开挖面坍塌和泥水溢出地面等。为了防止所述风险并尽量减少泥水损失,施工中采用了一系列的技术措施与方法:1)针对溶洞的位置、大小、地层特点等信息,基于Mohkam模型对开挖面的平衡压力进行计算分析;2)根据地层特点将掘进分为均质地层中掘进、复合地层(掘进断面中含岩石和沉积土)中掘进、交界面中掘进以及在Karst溶洞中掘进等工况,针对不同的工况条件制定相应的盾构掘进施工参数体系;3)对地表沉降进行实时监测,通过监测数据及时反馈给盾构操作人员以降低地表隆沉与冒浆的风险。施工中采用的一些其他措施还包括:1)根据不同的地层情况及泥浆的损失情况及时调整泥浆的组成成分并补充泥浆量;2)在敏感环境区域采用补偿注浆、压密注浆和岩石裂隙注浆3种方法从地表对开挖面前方地层进行注浆加固。根据不同的具体情况选择不同的注浆方法与浆液配比。当地面不具备条件时,也可以从盾构内部进行注浆加固。

5结论与讨论

隧道论文范文6

(1)施工现场技术管理缺位是大部分量问题普遍存在的重要原因。部分施工单位对个别隧道存在以包代管的现象,施工技术方案的编制、复核、审批程序流于形式,方案内容缺乏针对性和可操作性,施工现场过程控制流于形式。(2)工序验收把关不严是造成大部分质量问题重复发生的主要原因。部分施工、监理单位现场技术管理人员业务素质不高、责任心不强,对工序的自检、互检、交接检制度落实不到位,现场检查验收过程中未认真核对设计文件和现场实际情况签署质量验收文件,部分检验批验收资料与实际情况明显不符。(3)勘察设计工作不到位。由于前期勘察工作不细,地质资料不详细,造成部分隧道开挖工法和支护措施不合理;施工现场设计配合不到位,部分隧道围岩状况变化后设计变更不及时,尤其是在围岩变弱的情况下支护措施明显不足。(4)教育培训流于形式。部分施工单位的三级安全、技术交底资料仅为应付上级检查、未落到实处,部分作业指导书和技术交底编制内容缺乏针对性和可操作性,技术交底未做到“横向到边、纵向到底”,造成部分作业人员不清楚各工序的施工质量标准和作业要求,甚至存在部分现场作业人员违章蛮干的现象。(5)考核机制落实不到位。部分参建单位内部考核的激励约束机制未有效运转,部分管理人员对施工质量问题的重视程度不高,对施工现场存在的质量安全问题“视而不见”、“习以为常”。个别建设单位对施工、监理、设计单位企业信用评价未能严格按照相关文件要求对标考核。

2预防控制措施建议

(1)建设单位要充分发挥建设管理龙头作用,以标准化管理为抓手,强化源头、过程和细节控制,积极推进机械化、工厂化、专业化、信息化等现代化施工管理手段的应用,认真落实安全风险和质量控制关键环节的监管,强化隧道工点的围岩监控量测、超前地质预报的管理,切实提高参建各方的质量安全意识和管理水平。在工厂化方面,建议在指导性施工组织设计中明确要求组建钢结构加工厂,对隧道模板台车、型钢钢架、钢筋网片、超前小导管等钢构件集中加工制作、统一配送,有效卡控偷工减料、质量不达标等问题发生。在机械化方面,组织研发防水板铺设机,大力推广使用移动栈桥、喷射机械手等先进设备,提高工序施工质量和效率。在专业化方面,全力推行架子队管理,坚决清理违法分包、转包、以包代管等行为,强化过程控制和现场管理的标准化。在信息化方面,推广应用工地试验室压力机、万能材料试验机等检测数据的在线实时监控,混凝土拌和站计量偏差、拌合时间等数据的在线实时监控,隧道围岩量测断面数据采集和围岩收敛情况的实时报告、分析等,及时防范和消除质量安全隐患。(2)强化勘察设计工作在隧道施工质量安全管理的源头作用。在前期勘察过程中,工作要细致,在遇到不良地质及软弱围岩隧道时要加大地质钻孔的频率,选择合理的开挖工法和支护措施,确保工法适应现场;在隧道施工过程中,设计配合工作要及时、到位,遇到围岩状况发生变化时要及时核实现场地质情况,及时出具变更设计文件,及时指导现场施工。(3)强化质量安全“红线”管理,施工现场存在擅自改变设计工法和安全步距超标时必须暂停掌子面掘进,上道工序未验收合格严禁进入下道工序施工。(4)超前地质预报和围岩监控量测,要严格纳入工序管理,选择专业队伍实施。实施过程中确保预报成果和监控量测数据的真实、有效,及时指导现场施工。(5)强化第三方检测管理,必要时超前地质预报和围岩监控量测可实行第三方监测管理,做到及时发现问题、及时整改,强化过程控制。(6)按照工程质量终身负责制,各建设单位要对隧道工程的施工、监理单位管理人员和检验批等验收签字人员的资格情况进行逐一登记、审核,按规定程序进行变动人员审批管理,确保责任落实的可追溯性,严把检验批、分部分项工程、单位工程验收关。(7)强化教育培训制度,不走过场,真正落到实处。一方面对作业层要坚持安全、技术交底,让每一名作业人员都清楚各工序的作业内容、作业标准、工艺要求以及安全注意事项,做到简明扼要、有针对性和可操作性,有条件可实行班前安全交底和现场实作过程交底;另一方面对管理层要将项目部制定的标段、单位工程施工组织设计以及分部分项施工专项方案传达至各级管理人员,让管理人员明确各自的工作内容、验收标准,并有针对性的进行现场巡查。(8)建立长效考核激励约束机制。一方面建设单位要对各参建单位在铁路建设中的合同履约、质量安全管理行为、工程实体质量、现场施工安全等方面加强检查,对发现符合不良行为条件的应及时进行记录、公示、确定并上报相关部门和单位,严格企业信用评价,并将评价结果与招投标挂钩;另一方面各参建单位要建立内部考核机制,落实岗位职责,将建设项目管理目标层层分解,逐级落实至每一岗位、每一管理人员,对质量安全管理做到分工明确、各负其责。

3结语

上一篇西医论文

下一篇医疗论文