混凝土裂缝论文范例6篇

前言:中文期刊网精心挑选了混凝土裂缝论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

混凝土裂缝论文

混凝土裂缝论文范文1

关键词:连续刚构悬臂施工挂篮设计有限元

1.工程概况

韩家店1号特大桥是国道主干线重庆至湛江公路贵州省境内崇溪河至遵义高速公路上的一座特大型三跨预应力混凝土连续刚构桥,该桥主桥全长为454m,跨径设置为122m+210m+122m。该桥箱梁0号段长15m,其中桥墩两侧各外伸1.5m,每个“T”构沿纵桥方向分为36个对称梁段,梁段数及梁段长度从根部至跨中分别为10×2.2m,10×2.5m,13×3m,3×3.5m。桥体按整幅设计,箱梁采用单箱单室截面,顶板宽22.5m,底板宽11m,外翼板悬臂长5.57m,梁高由0号块处的12.5m以半抛物线形式从根部过度到跨中的3.5m。

2.挂篮形式的选取

2.1分段施工法与悬灌挂篮的演化

预应力混凝土桥梁的分段施工法是从预应力原理、箱梁设计和悬臂施工法综合演进而成的。自从二十世纪五十年代PC箱梁的分段施工法在西欧诞生以来[1],国内外大跨度桥梁多采用此法。除悬臂拼装法以外,尤其是特大桥梁中更是普遍应用平衡悬臂灌筑法——即单“T”的每一个设计节段利用挂篮对称就地浇筑混凝土。悬臂灌筑法中不需要象满堂支架法那样大量的施工支架和临时设备,不影响桥下通航和通车,施工不受季节、河道水位的影响。

平衡悬灌法施工的成败及质量控制的优劣在于挂篮的工艺设计,挂篮设计的好坏直接影响到施工进度,它是特大桥梁施工中的一项关键技术。

就挂篮总重与悬浇最大梁段的重量比而言,PC桥梁的悬臂施工挂篮的演化过程[2][3]大致经历了从平行桁架式,三角型组合梁式,曲弦桁架式(或称弓弦式),菱形式到滑动斜拉式的阶段变化。特点是结构越来越轻型化,受力越来越合理,有些挂篮的行走系统还设计有统一的液压伺服装置来控制挂篮的升降和行走,使得挂篮操作及施工控制越来越趋向智能化[4]。

2.2挂篮设计的轻型化

目前,挂篮已向轻型、重载方向发展。其中可以用两个主要控制指标β,β’来反映挂篮的设计优化与否。设定β=挂篮总重/悬浇节段重量,β’=主承重结构/悬浇节段重量。

β值越低,表示承受节段单位重量使用的挂篮材料越省,整个挂篮(包括模板)设计越合理;β’值越低,表示挂篮主承重构件使用的材料越省,设计越合理。另外,减轻挂篮自重采用的手段除优化结构形式外,最重要的措施是不设平衡重,并改善滑移系统,同时改进力的传递系统。

图1列出了国内外20座大桥的的β值分布,其中最大为2.18,最小为0.31。

图1国内外20座大桥的β值分布

2.3韩家店挂篮形式的选取

因悬灌施工中有多种因素制约挂篮的布置和结构设计,如施工状态大桥主梁的强度及变形要求,近海施工风荷载的影响,吊机的吨位及安装位置等等。一般来说,采用的挂篮须满足:结构简单,重量轻,安装、拆除方便,安全可靠,灌注混凝土过程中变形小等特点。

韩家店挂篮形式在参考了平弦无平衡重挂篮、菱形挂篮、弓弦式挂篮、斜拉式挂篮等结构形式后,从中选取了三角形挂篮形式,该挂篮与其它形式挂篮比较有如下突出特点:

⑴、三角形挂篮与菱形挂篮相比,降低了前横梁高度,即挂篮重心位置大大降低,从而提高了挂篮走行时的稳定性。

⑵、结构简单,拆装方便,重量较轻。设计中三角形挂篮主桁架和主要结构体系采用钢板和型钢焊制的箱形结构,单件重量较轻,主桁架杆件间采用法兰结构用高强螺栓连接,易于搬运和拆装。

⑶、该三角形挂篮平衡重系统利用已成形梁段竖向预应力钢筋作为后锚点,取消了平衡重的压重结构。

⑷、挂篮走行采用液压走行系统,由导梁、走行轮、反扣轮、走行油缸组成,该系统具有挂篮就位准确、走行速度快、安全可靠等特点。

⑸、该挂篮通用性强,稍做改装即可用于其它幅宽和梁高的桥上。

3.挂篮结构布置

该三角形挂篮由主桁、前横梁、底篮系统、前吊系统、内外模滑梁系统、后锚系统组成,挂篮总重(含内外模)约为1160kN,因模板以及吊杆随施工过程中截面高度的不断降低有一部分将会移去,对跨中合拢梁段所要求的支架重量须小于1300kN是显然满足的,所以减小荷载后的挂篮仍然可以作为中跨合拢的支架方案使用。总体布置图以及吊挂系统如图2-1、2-2所示。

4.挂篮的设计

4.1挂篮构件的传力过程

考察主梁设计截面的形状,单箱单室的截面形式至多可用8个相对独立的内外模板(外顶模2块+外侧模2块+底模1块+内顶模1块+内侧模2块)拼接而成。作为待浇梁段混凝土的支撑面,内、外顶模支撑翼缘板与顶板的混凝土重量,模板以上的重量则由间隔分布的8根内、外纵滑梁承受,内、外纵滑梁则把力传递到已浇梁段的顶板和前上横梁上安装的吊杆上。待浇腹板和底板混凝土的重量则通过底模传递给底栏纵、横梁,通过前、后下横梁上安装的吊带传力给已浇梁段的底板和前上横梁。而前上横梁的所有荷载则都传递到三角形主桁架上,三角形主桁架的前支点和后锚点把力再传给已浇梁段的顶板。浇注某一节段混凝土时挂篮构件的传力过程如图3所示。

图3浇注混凝土时挂篮构件的传力过程

4.2构件内力的计算

挂篮必须适应整个施工过程,因施工过程中节段荷载的不断变化,挂篮中各杆件的受力也是在不断变化之中,因此拟订一个最不利的施工过程进行计算,既可以优化杆件的设计,又可以确保施工安全。一般而言,拟订最不利施工过程的依据是待浇梁段混凝土的总体积最大,总重量最重。按设计划分的单“T”沿36个梁段的体积分布如图4所示。因为各构件在所有施工过程中的受力具有相对的独立性,有必要根据设计分段的情况把主梁截面细分,如34#节段(最长3.5m梁段)混凝土重量可能会对翼缘板外滑梁和顶板内滑梁产生最不利影响,1#节段(最重2.2m梁段)可能会对底模纵横梁以及前后吊挂构件产生最不利影响。事实上,根据设计节段长度的变化,拟订1#,11#,21#,34#四个施工节段混凝土重量对挂篮构件的效应可以涵盖其它施工节段,挂篮构件内力计算即以这四个施工节段为基准,空挂篮状态则以1#施工节段为基准计算。

图4单“T”沿36个梁段的体积

计算中挂篮系统采用空间(杆系+板块)有限元进行弹性分析,其中三角形主桁杆件、横联,上、下横梁,底篮纵梁,内、外纵滑梁用梁单元来模拟;吊杆、吊带用只拉杆单元来模拟;底篮模板采用具有较大刚性的板单元来模拟,计算模型如图5所示。这种空间模型较一般采用的平面杆系模型更能反映每根杆件或每块模板的受力和变形情况,避免了平面杆系模型中三角形主桁片杆件合并带来的杆件受力、变形平均化问题,对分析各杆件的真实受力状态有益,也对挂篮总体变形及施工标高的控制有益。

有限元法计算中的部分参数如表1所示。

表1挂篮构件内力计算中参数的选定

序号

材料

序号

荷载

16Mn钢

[σ]=200MPa

施工临时荷载重

2.0kN/m2

A3钢

[σ]=140MPa

施工冲击荷载重

1.5kN/m2

混凝土

容重γ

26.0kN/m3

模板重量根据该节

所用数量确定

模板采用

定型钢模

结构自重

程序自动加载

图5空间计算模型示意(其中符号:,分别表示支点和吊点)

图中A:三角形主桁架;B,C,D:上、下横梁;E:内、外滑梁;F,G:底篮前后吊带;H:纵滑梁吊杆;I:底篮模板及纵梁

4.3计算结果及分析

表2列出了挂篮在4个浇筑阶段(1#,11#,21#,34#施工节段)和空挂篮在1个行走阶段(1#2#施工节段)的构件应力计算结果。

表2浇筑阶段和行走阶段挂篮构件的最大应力(绝对值)(MPa)

杆件

编号

杆件

名称

浇筑阶段

行走阶段

1#

11#

21#

34#

1#2#

前后下弦杆

27.2

23.6

23.3

23.1

11.2

立柱

13.0

11.1

11.0

10.9

4.6

前后斜杆

40.7

35.1

34.5

34.2

15.0

前上横梁

38.4

33.5

34.8

36.2

14.9

前下横梁

18.7

15.1

13.1

9.4

4.5

后下横梁

22.3

17.5

10.5

6.6

6.0

底篮纵梁

93.8

73.8

48.8

26.0

3.0

前吊带

15.5

13.1

10.2

6.7

3.1

后吊带(绳)

35.1

28.1

19.7

11.4

74.7*

内外滑梁

112.4

99.6

113.4

125.1

97.5

滑梁吊杆

83.0

87.9

94.3

97.9

40.1

注:表中“*”号表示行走阶段后吊点采用钢丝绳。

与表2中五种工况对应的挂篮底篮的最大变形分别为:1#:11.3mm;11#:9.4mm;21#:8.8mm;34#:8.0mm;挂篮从1#行走至2#节段时为15.8mm。

从计算结果看,挂篮在整个施工过程中构件的应力是能够满足材料的允许值要求的。浇注混凝土过程中挂篮的变形较小说明挂篮的整体刚度较大,这有益于在实际施工中对线型及标高的控制,进而提高施工质量。

5结束语

韩家店1号特大桥通过选择三角形挂篮这种合理的挂篮形式,设计中充分了解了挂篮在施工过程和走行过程中各构件的传力机理,对挂篮在各种工况下建立了适用、合理的三维空间有限元模型,以至于能够比较完整地了解各杆件的受力和变形情况,计算结果满足各施工过程受力和变形的要求。

每一座悬灌施工的大桥都有其自身的特点,这需要综合考虑大桥本身因素以及围绕大桥伴生的各种因素对挂篮选择的影响。技术层面上,对选定的挂篮还需进一步优化结构形式和杆件的设计。轻型、重载的挂篮结构形式对增强施工现场的可操作性、创造经济效益有着重要意义!

参考文献:

[1]预应力混凝土桥梁分段施工和设计,[美]小沃尔特·波多尔尼[法]J·M·米勒尔,1986.4,万国朝,黄邦本译

[2]PC桥梁悬臂灌注施工挂篮的发展,王武勤,桥梁建设,1997年第4期,p55~p57

混凝土裂缝论文范文2

该法适合于修补较宽裂缝大于0.5mm,采用环氧树脂:10,聚硫橡胶:3,水泥:12.5,砂:28。首先用人工将晒干筛后的砂、水泥按比例配好搅拌均匀后,将环氧树脂聚硫橡胶也按配比拌匀。然后掺入已拌好的砂、水泥当中,再用人工继续搅拌。最后用少量的丙酮将已拌好的砂浆稀释到适中稠度(约0.4斤丙酮就可以了)。及时将已拌好的改性环氧树脂砂浆用橡胶桶装到已凿好洗净吹干后的混凝土凿槽内进行嵌入。

1.2低压注浆法修补裂缝

低压注浆法适用于裂缝宽度为0.2mm~0.3mm的混凝土裂缝修补。修补工序如下:裂缝清理-试漏-配制注浆液-压力注浆-二次注浆-清理表面。

当裂缝数量较多时,先要在裂缝位置上贴医用白胶布,再用窄毛刷沾浆沿裂缝来回涂刷封缝,使裂缝封闭,大约10分钟后,揭去胶布条,露出小缝,粘贴注浆嘴用键包严。固化后周边可能有裂口,必须反复用浆补上,以避免注浆漏浆。注浆操作一般在粘嘴的第二天进行,若气温高的话,半天就可注浆。操作时先用补缝器吸取注浆液,插入注浆嘴,用手推动补缝器活塞,使浆液通过注浆嘴压入裂缝,当相邻的嘴中流出浆液时,就可拔出补缝器,堵上铝铆钉。一般由上往下注浆,水平缝一般从一端到另一端逐个注浆。为了保证浆液充满,在注浆后约半小时可以对每个注浆嘴再次补浆。

1.3表面覆盖法修补裂缝

这是一种在微细裂缝(一般宽度小于0.2mm)的表面上涂膜,以达到修补混凝土微细裂缝的目的。分涂覆裂缝部分及全部涂覆两种方法,这种方法的缺点是修补工作无法深入到裂缝内部,对延伸裂缝难以追踪其变化。

表面覆盖法所用材料视修补目的及建筑物所处环境不同而异,通常采用弹性涂膜防水材料,聚合物水泥膏、聚合物薄膜(粘贴)等。施工时,首先用钢丝刷子将混凝土表面打毛,清除表面附着物,用水冲洗干净后充分干燥,然后用树脂充填混凝土表面的气孔,再用修补材料涂覆表面。

结论。裂缝是混凝土结构中普遍存在的一种现象,它的出现不仅会降低建筑物的抗渗能力,影响建筑物的使用功能,而且会引起钢筋的锈蚀,混凝土的碳化,降低材料的耐久性,影响建筑物的承载能力,因此严格按规程、规范要求施工,严把质量关,防患于未来,尽可能地降低混凝土裂缝的出现;对混凝土裂缝进行认真研究、区别对待,采用合理的方法进行处理,并在施工中采取各种有效的预防措施来预防裂缝的出现和发展,保证建筑物和构件安全、稳定地工作。

参考文献

[1]钢筋混凝土结构设计规范.中国建筑工业出版社,1999.2.

混凝土裂缝论文范文3

关键词:现浇钢筋混凝土楼板裂缝建筑设计结构设计

前言

自2001年起,苏州市从预制多孔板体系转化为商品混凝土现浇板体系。现浇钢筋混凝土楼板在结构安全和使用功能方面比预制板优越得多,但是楼板裂缝不断增加。大多数消费者对楼板裂缝缺乏必要常识,统视裂缝为有害,担心楼板裂缝会引起建筑物倒塌,反应极为敏感,近年来成为投诉热点,开发商和承包商为此的花费亦逐年增长。

1楼板裂缝种类

1.1温差裂缝

由于温度变化,混凝土热胀冷缩而形成的裂缝,此类裂缝一般集中在东西单元的房间、屋面层和上部楼层的楼板。

1.2结构裂缝

虽然现浇楼板承载力均能满足设计要求,但由于预制多孔板改为现浇板后,墙体刚度相对增大,楼板刚度相对减弱。因此在一些薄弱部位和截面突变处。往往容易产生一些结构性裂缝。例如:墙角应力集中处的45°斜裂缝,板端负弯矩较大处的板面裂缝等。

1.3构造裂缝

PVC管处混凝土厚度减薄,容易出现裂缝。

1.4收缩裂缝

混凝土在塑性收缩、硬化收缩、碳化收缩、失水收缩过程中易形成各种收缩裂缝。

2楼板裂缝形式

2.145°斜裂缝

该裂缝常出现在墙角,特别是房屋东西两端房间,呈45°状。

2.2纵横向裂缝

该裂缝一般出现在跨中、负弯距钢筋端部、PVC电线暗管敷埋处。

2.3长裂缝

一部分房间预埋PVC电线管的板面上出现裂缝,裂缝宽度达0.2mm~0.3mm左右。这种裂缝仅在楼板表面出现,板底无裂缝。

2.4不规则裂缝

裂缝出现部位形状无规则,或散状或龟裂状。一般发生在房屋东西两单元、阁楼顶层部位。

3从设计方面分析裂缝及控制方法

造成现浇钢筋混凝土楼板开裂有设计原因、施工原因、材料原因,本文仅从设计方面进行探讨。随着苏州市经济的快速发展、建设任务增加迅猛,勘察设计队伍亦在迅速扩大,苏州市住宅工程相当一部分是由乙级和丙级设计单位承担。住宅设计单位低资质,或由于设计市场管理的不到位,造成低资格设计人员挂靠设计,而挂靠单位收取一定比例管理费后,就盲目盖章、签字,根本不对图纸的结构安全、合理性、完整性等认真审核。结果是一部分住宅工程勘察设计质量低下,问题较多。另一个原因是,一些住宅开发商任意压价,片面降低勘察设计费,以收费最低为主要条件选择勘察设计单位,同时又不讲合理设计时间,限期开工,逼迫提前出图,造成施工图设计深度不够,问题必然较多。

3.1建筑设计方面原因

3.1.1斜屋面、露台、外墙节能保温措施不够

苏州市一年之内气温变化较大,夏季最高温度可达40℃以上,冬季温度最低可达-4℃~-7℃,由于夏天室外墙体温度高于室内温度,结构外墙面在高温下发生受热膨胀,如果未采取保温措施,在纵横两外墙面的变形对楼板产生牵拉作用下,东西单元的卧室楼板被外墙向外拉伸就容易引起裂缝。同样,屋面如果未设保温层,顶层楼板会因热胀冷缩而引起开裂。

目前与温度有关的裂缝计算公式有:

连续式约束条件下楼板、长板、剪力墙、大底板等最大约束应力计算公式:

σ*xmax=-EaT1-1chβL2H(t,τ)(1)

或按时间增量的计算公式:

σ*xmax=∑ni=1Δσi=-a1-u∑ni=11-1chβiL2ΔTiεi(t)H(t,τ)(2)

当应力超过混凝土的抗拉强度时,可求出裂缝间距:

Lmax=2EHCxarcchaTaT-εp(3)

L=1.5EHCxarcchaTaT-εp(4)

Lmin=12Lmax(5)

式中,T-包含水化热、气温差及收缩当量温差。同号叠加,异号取差,由此可见,夏天炎热季节浇筑混凝土到秋冬冷缩都是叠加的,拉应力较大;

H(t,τ)-松弛系数。在保温保湿养护条件下(缓慢降温即缓慢收缩),松弛系数取0.3或0.5,当寒潮袭击或激烈干燥时,松弛系数取0.8,应力接近弹性应力,容易开裂;

T=T1+T2+T3(T1为水化热温差、T2为气温差、T3为收缩当量差,取代数和);

εp-混凝土的极限拉伸。级配不良,养护不佳,取0.5×10-4~0.8×10-4;正常级配,一般养护,取1.0×10-4~1.5×10-4;级配良好,养护优良,取2×10-4;配筋合理(细一些,密一些),可提高极限拉伸20%~40%。构造配筋宜为0.3%~0.5%;

H-均拉层厚度(强约束区);

E-混凝土弹性模量;

Cx-水平约束系数;

ch、arcch-双曲余弦及双曲余弦反函数;

a-线膨胀系数,一般情况εp≤|aT|,当εp≥|aT|时取εp=|aT|,[L]∞。

裂缝开展宽度:

δf=2ψEHCxaTthβL2(6)

δfmax=2ψEHCxaTthβLmax2(7)

δf=2ψEHCxaTthβLmin2(8)

β=CxEH(9)

式中,ψ-裂缝宽度经验系数;

Cx-约束系数。

3.1.2住宅长度超长

住宅平面超长,由于温差和材料变形,会造成墙体和楼板横向开裂。仅就长度而言,结构长度与应力呈非线性关系,如结构长度小于规范要求,结构内力影响很小。

3.1.3平面形状

当住宅卧室沿长度、宽度方向尺寸变化,由于楼板刚度不一致,会产生不相同变形,引起薄弱部位开裂。

3.2结构设计方面原因

3.2.1近代国际上结构的设计原则是,整个建筑结构的功能必须满足两种状态的要求:①承载力极限状态,以保证结构不产生破坏,不失去平衡,不产生破坏时过大变形,不失去稳定。②正常使用极限状态,以确保结构不产生超过正常使用状态的变形、裂缝及耐久性、振动及其它影响使用的极限状态。目前人们对第一极限状态已给于足够重视并严格执行,而对第二种极限状态却经常被忽视。

3.2.2从钢筋混凝土现浇楼板各种受力体系分析,无论是按单向板设计还是按双向板设计,是单跨还是多跨连续板设计;无论是板端支承在砖墙上还是支承在过梁或剪力墙内,受力状态考虑都是局限于楼板平面的应力变化(按弯矩配置抵抗正、负弯矩的受力钢筋)、板平面的受剪变形。即使是考虑板端嵌固端节点产生弯矩,也只是考虑板平面弯曲或屈曲所产生的应力。在楼板受力体系分析时,对于现浇结构构件之间在三维空间中如何分配内力、协调变形,根本没有考虑。

3.2.3目前不少设计人员只按单向板计算方法来设计配置楼板钢筋,支座处仅设置分离式负弯矩钢筋。由于计算受力与实际受力情况不符,单向高强钢筋或粗钢筋使混凝土楼面抗拉能力不均,局部较弱处易产生裂缝。部分设计人员对构造配筋,放射筋设置不重视或不合理,薄弱环节无加强筋。

3.2.4结构设计对板内布线引起裂缝的构造考虑不够。住宅电器、电信快速发展的今日,现浇楼板内暗敷PVC电线管越来越多,甚至有些部位三根交错叠放,两根管交错叠放更为普遍。PVC管错叠处板的抗弯高度大大降低,从而减弱了板的抗弯性能。

3.2.5对开口楼板,特别是开洞口比较大的双向板,设计时往往只考虑楼板在竖向荷载作用下的洞口四周加强配筋。由于纵向的受力钢筋被切断,而忽视了板与墙体或板与梁的变形协调问题。这时如墙或梁的刚度较大,板的孔边凹角处未必出现应力集中现象,开洞板易发生翘曲。

3.3建筑设计控制措施

3.3.1屋面与外墙采取保温措施按照国外建筑设计常规的做法,屋面设保温隔热层,使屋面的传热系数≤1.0W/m2·K;外墙外表面或内表面相应设置保温隔热层,同时外墙面宜采用浅色装饰材料,增强热反射,减少对日照热量吸收。根据苏州的具体情况,屋面和外墙的保温设计应通过热工计算,在不同季节均应能达到《夏热冬冷地区居住建筑节能设计标准》和《江苏省民用建筑热环境与节能设计标准》要求,彻底解决温度应力对屋面和墙体的破坏。

3.3.2适当控制建筑物长度根据《混凝土结构设计规范》(GB50010-2002)和《砌体结构设计规范》(GB50003-2001),为避免结构由于温度收缩应力引起的开裂,宜采取设置伸缩缝,伸缩缝间距为30m~50m。多层住宅建筑控制长度建议不大于50m,高层应控制在45m以内。如果超过此长度,应设置伸缩缝。超长量不大时,可采用设置后浇带的方法,以减少混凝土楼板收缩开裂。

3.3.3住宅平面形状控制住宅平面宜规则,避免平面形状突变。当楼板平面形状不规则时,宜设置梁使之形成较规则平面。当平面有凹口时,凹口周边楼板的配筋宜适当加强。

3.4结构设计控制措施

3.4.1工程裂缝产生的主要原因是混凝土的变形。如温度变形、收缩变形、基础不均匀沉降变形等,此类因变形引起的裂缝几乎占到全部裂缝的80%以上。在变形作用下,结构抗力取决于混凝土的抗拉性能,当抗拉应力超过设计强度时,应验算裂缝间距,再根据裂缝间距验算裂缝宽度。

3.4.2现浇板板厚宜控制在跨度的1/30,最小板厚不宜小于110mm(厨房、浴厕、阳台板最小厚度不小于90mm)。有交叉管线时板厚不宜小于120mm。

3.4.3楼板宜采用热轧带肋钢筋以增加其握裹力,不宜采用光圆钢筋。分布钢筋与构造钢筋宜采用变形钢筋来增加与现浇混凝土的握裹力,对控制楼板裂缝的效果较好。

3.4.4设计时注意构造钢筋的布置十分重要,它对构造抗裂影响很大。对连续板不宜采用分离式配筋,应采用上、下两层连续式配筋;洞口处配加强筋;对混凝土梁的腰部增配构造筋,其直径为8mm~14mm,间距约200mm。

3.4.5屋面层阳角处、东西单元房间和跨度≥3.9m时,应设置双层双向钢筋,阳角处钢筋间距不宜大于100mm,跨度≥3.9m的楼板钢筋间距不宜大于150mm。跨度<3.9m的现浇楼板上面负弯矩钢筋应一隔一拉通。外墙转角处应设置放射钢筋,配筋范围应大于板跨的1/3,且长度不小于2.0m,每一转角处放射钢筋数量不少于7根,钢筋间距不宜大于100mm。

3.4.6现浇楼板的混凝土强度等级不宜大于C30,特殊情况须采用高强度等级混凝土或高强度等级水泥时,要考虑采用低水化热的水泥和加强浇水养护,便于混凝土凝固时的水化热释放。

3.4.7在预埋PVC电线管时,必须有一定的措施,PVC管要有支架固定,严禁两根管线交叉叠放,确须交叉时应采用专门设计的塑料接线盒,以防止塑料管在管线交叉对混凝土厚度削弱过多。在预埋电线管上部应配置钢筋网片,(4@100mm宽度600mm)。若用铁管作为预埋管时,宜采用内壁涂塑黑铁管,一方面既能保证黑铁管(不镀锌钢管)与混凝土的粘结力,同时也有利于穿线和不影响混凝土的计算高度。

3.4.8后浇带处理

(1)后浇带应设置在对结构受力影响较小部位,一般应从梁、板的1/3跨部位通过或从纵横相交部位或门洞口的连梁处通过。后浇带间距不宜超过30m。

(2)后浇带宽度为700mm~1000mm,板和墙钢筋搭接长度应不低于45d,且同一截面受力筋搭接不超过50%。梁、板主筋不宜断开,使其保持一定联系性。

(3)后浇带浇筑时间不宜过早,以能将混凝土总降温及收缩变形完成一半以上时间为佳。从目前混凝土的收缩量来看,估计3~6月方能取得明显效果,最短不少于45天。在苏州这样软土地区,后浇带浇筑时间应在主体封顶以后,方可有效地释放沉降的应力。

(4)后浇带中垃圾应清理干净,接缝应密实,新老混凝土界面用1:1水泥砂浆接浆。后浇带混凝土强度等级比原混凝土强度等级提高一级,且采用微膨胀混凝土,以防止新老混凝土界面产生裂缝。

(5)后浇带混凝土接缝宜设置企口缝,混凝土浇筑温度尽量与原老混凝土浇筑时温度一致。

混凝土裂缝论文范文4

随着我国改革开放和现代化进程的加快,我国的建设规模正日益增大,如何保证建筑工程质量也日益受到各级政府和社会各界的广泛关注。在众多的工程质量问题中,混凝土裂缝现象则更为突出,因此必须十分重视混凝土裂缝成因的分析及预防。应该指出的是混凝土中有些裂缝是很难避免的,例如普通钢筋混凝土受弯构件,在30%~40%设计荷载作用下就可能开裂;而受拉构件开裂时的钢筋应力仅为钢筋设计应力的7%~10%。工程实际中除了荷载作用造成的的裂缝外,更多的是混凝土收缩、温度变形和不均匀沉降等导致开裂。虽然有些裂缝对使用无多大危害,但在实际施工中仍有必要对其进行有效控制,特别是避免有害裂缝的产生。本文分别就地下室底板大体积混凝土、地下室墙板混凝土、地面混凝土、现浇楼板混凝土及屋面防水细石混凝土简要分析其裂缝产生的主要原因,然后提出若干有针对性的预防措施与大家商榷。

二、地下室底板大体积混凝土裂缝的主要原因及预防措施

裂缝产生的主要原因是温度和干缩变形,其次是砼的水灰比等,其预防措施如下:

1、严格控制水化热。在满足设计强度要求和征得设计同意的前提下,混凝土配合比设计可考虑采用60天强度,以减少水泥用量,同时,应选择低热水泥,减少水泥水化热。

2、通过“双掺”技术(掺加缓凝高效减水剂及粉煤灰),以减少水泥用量,并改善混凝土的和易性,提高混凝土的可泵性。

3、浇筑顺序采用“分段定点,一个坡度,薄层浇筑,循序推进,一次到顶”的方法,一次整体连续浇筑结束。

4、大体积混凝土浇捣完毕后,初凝前用长刮尺刮平,经6小时先用铁滚筒滚压数遍,再用木抹子在混凝土表面拍实并搓毛两遍以上,以闭合收水裂缝,防止产生表面收缩裂缝,约12~14小时后,覆盖塑料薄膜和草包进行保温保湿养护。并按规定时间测量混凝土各部位的温度,确保混凝土内外温度差不超过25℃。

三、地下室墙板裂缝主要也是由于干缩引起,其预防措施如下:

1、在不改变墙板钢筋总量的情况下,对墙板水平钢筋进行等截面代换,将原来的粗钢筋大间距改为细钢筋小间距,从而防止墙板产生裂缝。

2、墙板混凝土浇筑后,摸板至少7天后方可拆除,并在墙顶设淋水管,进行24小时不间断淋水养护。

四、地面混凝土裂缝的主要原因有:

不均匀沉降(地面的沉降往往与主体结构中柱、墙等的沉降不一致,从而在它们的结合部位产生较大的裂缝)、温度及收缩变形。其预防措施如下:

1、地面混凝土浇筑时应与墙、柱间留有30mm的缝隙,以使墙、柱和地面的沉降相互独立。

2、垫层铺设前,其下一层表面应湿润。室内地面一般可不设伸缝。室外地面采用混凝土垫层时应设置伸缝,其间距为30m。室内外地面的混凝土垫层,均应设纵向缩缝和横向缩缝。纵向缩缝间距为3~6m,横向缩缝间距为6~12m。室外地面或高温季节施工的地面,缩缝间距宜采用下限值。垫层混凝土的纵向缩缝应做平头缝或加肋板平头缝。当垫层厚度大于150mm时,可做企口缝。横向缩缝应做假缝。平头缝和企口缝的缝间不得放置隔离材料,浇筑时应互相紧贴,企口缝的尺寸应符合设计要求,假缝宽度为5~20mm,深度为垫层厚度的1/3,缝内用1:3水泥沙浆填缝。工业厂房、礼堂、门厅等大面积水泥混凝土垫层应分区段浇筑,分区段应结合变形缝的位置,不同类型的建筑地面连接处和设备基础的位置进行划分,并应与设置的纵向、横向缩缝的间距相一致。

五、现浇钢筋混凝土楼板裂缝的主要原因有:

1、混凝土水灰比、塌落度过大。

2、板负筋位置不当。

3、混凝土早期养护不好。

4、建筑物建好后(特别是长期空置的商品房)长期关闭,室风相对湿度过低,混凝土收缩开裂。这一点往往被人们所忽视。即在正常湿度环境中,混凝土收缩产生的裂缝十分微小,而且裂缝不会进一步扩展。但当混凝土所处环境的相对湿度低于80%时,混凝土内部自由水蒸发加速,从而加剧了混凝土的收缩,若这一过程持续时间过长,微裂缝就会进一步扩展,进而可能形成通缝。

5、混凝土强度未到1.2N/mm²前,就在其上堆放材料、搭设支架。

预防措施如下:

1、严格控制混凝土施工配合比,对于商品混凝土的塌落度应加强检查。

2、在楼板浇捣过程中派专人护筋,避免踩下负筋的现象发生。

3、混凝土浇筑前先将基层和模板浇水湿透,浇筑完毕后应采取有效的养护措施,并满足以下要求:(1)应在浇筑完毕后12小时以内对混凝土加以覆盖并保湿养护;(2)混凝土浇水养护时间:对采用硅酸盐水泥、普通硅酸盐水泥或矿渣硅酸盐水泥拌制的混凝土,不得少于7天,对掺用缓凝型外加剂或有抗渗要求的混凝土,不得少于14天;(3)浇水次数应能保持混凝土处于湿润状态;(4)采用塑料布覆盖养护的混凝土,其敞露的全部表面应覆盖严密并应保持塑料布内有凝结水。

4、在一定的时间段(一般自混凝土浇筑完成后2年内)保持空置房间内的相对湿度与室外相对湿度基本一致并不宜低于85%,这一要求可采用经常开窗的方法得以实现,有条件的地方定期洒水增加湿度则效果更好。

5、混凝土强度达到1.2N/mm²前,不得在其上踩踏或堆放材料、安装模板及支架,以免由于振动等原因产生裂缝。

六、屋面细石混凝土刚性防水层开裂的主要原因有:

1、未设分格缝或分格缝设置不合理。

2、混凝土内钢筋网片在分格缝处未断开。

3、混凝土与基层间宜设置可靠的隔离层。

4、养护不好。

预防措施如下:

1、混凝土应在屋面板的支承端、屋面的转折处、突出屋面结构的交接处设置分格缝,其纵横间距不宜大于6m。

2、混凝土内钢筋网片应在分格缝处断开。

3、混凝土与基层间设置可靠的隔离层。

5、混凝土浇完后应按规定做好养护工作。

七、结语:

为了避免混凝土产生裂缝,我们在工程实际中应注意:

1、采用合理的配合比。

2、采用先进的施工工艺。(包括浇筑方法和表面处理方法等)

混凝土裂缝论文范文5

当然,引起水工建筑物混凝土结构产生裂缝的原因是多方面的。但是,归纳起来可分为荷载作用引起的裂缝和非荷载引起的裂缝两类。本文对这两类因素进行了分析,并根据实践经验对在施工中进行预防的措施,供参考。

2荷载作用引起的裂缝

2.1水工建筑物混凝土结构在使用荷载作用下,由于截面的混凝土拉应变大多是大于混凝土极限拉伸值的,所以构件在使用时总是带缝工作的。这类裂缝总是与主拉应力方向大致垂直,且最先在荷载效应最大处产生。如果荷载效应相同,裂缝首先在混凝土抗拉能力最薄弱处产生。

2.2预防荷载作用引起的裂缝的措施是合理的配筋。在施工过程中,选用混凝土粘结较好的变形钢筋,控制钢筋的应力不过高,钢筋的直径不过粗,并用钢筋不在混凝土中分布比较均匀。这样就能较好地控制正常使用条件下裂缝宽度,不致过宽。

3非荷载引起的裂缝

在水工建筑物混凝土物件中,大部份缝是由非荷载因素引起的,如温度变化、混凝土收缩、基础不匀沉降、塑性坍落、钢筋锈蚀、碱—骨科化学反应等等。

3.1温度变化引起的裂缝

3.1.1水工建筑结构件随着温度的变化而产生变形,即通常所说的热胀冷缩。当变形受到约束时,便产生了裂缝,约束的程度越大,裂缝就越宽。

预防热胀冷缩的措施:一是撤去约束,允许自由的产生变形;二是设置伸缩缝。

3.1.2水泥和水所引起化学反应引起裂缝。大体积混凝土开列的主要原因之一,是由于混凝土在硬化过程中,水泥和水起化学反应,产生大量的水化热引起混凝土的温度上升,如果热量不能很快散失,内部和外部温差过大,就将产生温度应力,使结构内部受压,外部受拉。混凝土在硬化初期,只有很低的抗拉强度,如果由内外温度差引起的拉应力超过混凝土早期抗拉强度时,混凝土就要产生裂缝。

防止这类裂缝产生的措施是:①尽量选用低热或中热降低泥矿渣水泥、粉煤灰水泥;②减少水泥用量,将水泥用量尽量控制在450kg/m2以下;③降低水灰比,一般混凝土的水灰比控制在0.60以下;④改善骨科级配,掺加粉煤灰或高效减少水剂等来减少水泥用量,降低水化热;⑤改善混凝土的搅拌工艺,采用“二次风冷”新工艺降低混凝土的浇筑温度;⑥在混凝土中掺加一定量的具有减水、增塑、缓凝等作用的外加剂,改善混凝土拌和物的流动性、保水性,降低水热化,推迟热峰出现的时间;⑦合理安排施工工序,分层、分块浇筑,以利于散热,减小约束;⑧在大体积混凝土内部设置冷却管道,通过冷水或冷气冷却,减小混凝土的内部温差;⑨加强混凝土温度的监控,及时采取冷却保护措施;⑩加强混凝土养护,混凝土浇筑后,及时用湿润的草帘、麻片等覆盖,并洒水养护,适当延长养护时间,保证混凝土表现缓慢冷却,在寒冷季节,混凝土两面必须采取保温措施,以防寒潮袭击。

3.1.3构件硬化成型后,在使用中,如果温度较大,构件内部温度梯度就极大,也会引起构件开裂。

3.1.4预防产生比类裂缝的措施是:采用隔热(或保温)措施,尽量减少构件内部温度梯度,在配筋时应考虑温度力的影响。

3.2混凝土收缩引起的裂缝

3.2.1混凝土在空气中结硬时,体积要缩小,产生收缩变形,当受到约束时,就可能导致裂缝的产生。

3.2.2在配筋率较高的构件中,由于钢筋对周围混凝土的约束作用增强,混凝土的收缩也会受到钢筋的限制而产生拉应力,引起构件局部裂缝。

3.2.3新老混凝土界面容易产生收缩裂缝。

3.2.4防止和减少收缩裂缝的措施:①合理设置收缩缝;②改善水泥土性能,降低水灰比,减少水泥用量;③配筋率不宜过高,设置构造钢筋收缩裂缝健分布均匀,避免发生集中的大裂缝;④加强混凝土的时期养护,并适应当延长混凝土保温覆盖时间,并涂刷养护剂养护。

3.3混凝土塑性坍落引起的裂缝

3.3.1混凝土塑性坍落发生在混凝土浇筑后的头几个小时内,这时混凝土还处于塑性状态,如果混凝土出现泌水现象,在重力作用下混合料中的固体颗粒有向下沉移而水向上浮动的倾向。这种移动当受到钢筋骨架或者模板约束时,在上部就容易形成沿钢筋长度方向的裂缝。

3.3.2预防措施是:①要仔细选择集料的配级,做好混凝土的配合比设计,特别是要控制水灰比,采用适量的减水剂;②施工时混凝土既不能漏振也不能过振,避免混凝土泌水现象的发生,防止模板沉陷;③如果发生这类裂缝,可在混凝土终凝以前重新抹面压光,使裂缝闭合。3.4基础不均匀沉降引起的裂缝

3.4.1基础不均匀沉降,使超静结构受迫,从而导致裂缝。

3.4.2防止基础不均匀引起裂缝的措施是:根据地基条件及上部结构形式,采用合理的构造措施及设置沉降缝。

3.5冰冻引起的裂缝

3.5.1水在结冰过程中,荷重要增加,因此,水在设灌浆或灌浆不饱满的预应力构件孔道中结冰,就可以产生沿着孔道方向的纵向裂缝。

3.5.2预防冰冻裂缝的措施:在建筑物基础梁下填一定厚度的松散材料(炉渣)。

3.6钢筋锈蚀引起的裂缝

3.6.1原因:钢筋的生锈过程实际上是电化学反应过程,这种效应可在钢筋周围的混凝土中产生胀拉应力,如果混凝土的保护层比较薄,不是以抵抗这种拉应力时,就会沿着钢筋形成一条顺筋裂缝。顺筋裂缝一旦产生,又进一步促进钢筋锈蚀程度的增加,形成恶性循环,最后导致混凝土保护层剥落,甚至钢筋锈断。这种顺筋裂缝对结构的耐久性影响最大。

3.6.2预防措施:防止顺筋裂缝的措施是提高混凝土的密实度和抗渗性,适当加大保护层的厚度。

3.7碱——骨科化学反应引起的裂缝

3.7.1原因和分析:碱——骨科反应是指混凝土孔隙中水泥的碱性溶液与活性骨科(含活性Si02)化学反应,生成碱——硅酸凝胶,碱硅胶温水后可产生膨胀,使混凝土胀裂,开始时在混凝土表面形成不规则的细小裂缝,然后由表及里地发展,裂缝中充满了白色深沉。

3.7.2预防措施:碱——骨科化学反应对结构件的耐久性影响极大,为了控制碱——骨科的化学反应速度应选择优质骨科和低含碱量水泥,并提高混凝土的密实度和采用较低的水灰比。

4结语

裂缝是水利建筑物混凝土结构中普遍存在的一种现象,它的出现不仅会降低水利建筑物的抗渗能力,影响水利建筑物的使用功能,而且会引起钢筋的锈蚀,混凝土的碳化,降低材料的耐久性,影响水利建筑物的承载能力。所以,必须对混凝土裂缝进行深入细致的调查研究,区别对待,在施工中采取各种有效的预防措施来预防裂缝的出现和发展,以保证水利工程建筑物的构件的安全、稳定、经久、耐用。

论文关键词:水利工程建筑物;混凝土裂缝;防治措施

论文摘要:在许多水利工程建筑物中,混凝土的裂缝问题是一个普遍存在而又难以解决的工程实际问题,对水利工程中常见的混凝土裂缝的成因进行了探讨分析,并有针对性地提出了一些防治措施。

参考文献

混凝土裂缝论文范文6

1裂缝处理化学浆材的选择

化学浆材选择应掌握的原则:一是浆材的可灌性,所选化学浆材必须能够灌入裂缝,充填饱满,灌入后能凝结固化,以达到补强和防渗加固的目的;二是浆材的耐久性,所选用材料在使用环境条件下性能稳定,不易起化学变化,并且与混凝土裂缝有足够的粘接强度,不易脱开,对于一些活动裂缝和不稳定裂缝要特别注意这条原则。水工地下隧洞衬砌混凝土裂缝的特点是:裂缝开度较小、外水压力大、浆液较难灌入,一般处理要求既要满足补强又要防渗堵漏,灌浆材料一般采用高渗透改性环氧浆材。我们在渗水裂缝处理过程中采用了EAA、CW、LPL三种高渗透改性环氧浆材,详见表1。

以上三种材料各有优缺点,EAA、CW属糠醛、丙酮改性系列,具有亲水性、粘度低、可灌性较好,缺点是凝固时间长、脆性大,不适宜对变化的裂缝进行处理;LPL浆材属活性稀释剂改性系列具有亲水性、凝固时间快、脆性小、浆材本身不收缩的优点,但粘度大,对于细小裂缝的可灌性差。

表1采用的化学浆材性能比较表

--------------------------------------------------------------------------------

浆材名称

改性系列

粘度

(25℃/2h)

胶凝时间

/h

28d抗压强度

/MPa

28d粘接劈拉

强度/Mpa

适应范围

--------------------------------------------------------------------------------

EAA

糠醛、丙酮改性系列

18

30

36.2~85.7

5.7~23.9

渗水的缝、稳定的裂缝

CW

糠醛、丙酮改性系列

10cp

26

47.8

4.7

断层的改性、稳定的干裂缝

LPL

活性稀释剂改性系列

350cps

20

50

6.08

干缝、不稳定的缝

--------------------------------------------------------------------------------

2打斜孔埋管法处理渗水裂缝

2.1工艺流程

裂缝清洗钻斜孔清孔、埋管表面封缝通风检查浆液配制注浆封孔处理待凝检查表面处理

3.2重要工艺技术要求

(1)裂缝清洗:对缝面用高压水进行清洗,直至清晰地露出裂缝为止;

(2)钻孔:在裂缝中心线10~15cm两侧钻斜孔,孔径18mm,孔距40cm,深浅孔交替布置,浅孔深25~30cm,倾角约50°,深孔孔深40~45cm,倾角约70

(3)清孔、埋管:用高压水将孔清洗干净,每孔分上下两层埋设两根注浆管,一进一出,下层管径为8mm,埋至距孔底5cm,为主注浆管;上层管径为8mm,埋入孔内10cm左右,为排水排气回浆管,埋管材料用速凝水泥。

(4)表面封缝:用玻璃丝布或堵漏灵剂进行封堵,应保证封闭密闭可靠。

(5)通风检查:待埋管材料有一定的强度后,在裂缝和管口处涂少量肥皂水,采用0.2MPa的风压进行通风检查,对于盲孔应在附近重新打孔埋管。

(6)浆液配制:根据灌前压丙酮试验的漏量大小配制浆液,配浆时将固化剂、表面活性剂缓慢注入EAA(或CW)主液中,边注入边搅拌,保持浆液在25℃以下,以提高浆材的可灌性。

(7)化学灌浆

注浆方式:灌前单孔压丙酮量≥10ml者应单孔灌注,漏量<10ml者则可多孔灌注;灌注过程中若有串漏孔,可在排出积水和稀浆后进行并灌,灌浆应由下而上进行。

注浆方法:先灌深孔,从下层进浆管开始注浆,待上层回浆管排出孔内水、气后,封闭回浆管。根据吸浆量情况逐步升至设计压力,当吸浆率小于1ml/min时,应保持压力延续灌注30min即可扎管待凝。4~5h后检查注浆效果,对管口不饱满的胶管进行第二次注浆直至饱满。

灌浆压力:开灌压力0.4MPa,当吸浆率小于5ml/min时,逐渐加压至0.5~0.6MPa,二次注浆孔压力可提高至0.8MPa。

注浆过程监控:加强结构的抬动变形监测,如出现异常应及时降压并采取相应措施。

(8)质量检查:裂缝化学灌浆结束14d后采用压水和钻孔取芯相结合的方法进行。

检查孔压水:采用单点法压水,压力0.5MPa,孔径28,孔深30cm,合格标准透水率q≤0.1Lu。

钻孔取芯:孔径89mm,孔深浅于灌浆孔10cm,粘接强度应达到设计要求。

2.3打斜孔埋管法施工存在的缺点

(1)温度裂缝走向是个曲面,在混凝土内的走向复杂,一般从钢筋边通过,钻孔时易碰到钢筋,造成的“废”孔较多,对原混凝土结构的整体性造成损坏。

(2)钻孔时的微细粉尘难于有效清出,粉尘易堵塞灌浆通道,浆液难以进入缝面,降低化灌质量。

(3)渗水缝中不能有效地赶水,浆液和水混合影响环氧灌浆材料的固化;也不能满足浆液“从宽处往窄处灌浆最有利”的原则;一旦发现“死孔”无法及时采取补救措施。

(4)施工工序较多,施工工艺繁琐,管容、孔容大,浪费浆材(据统计孔容占58%以上);灌后的裂缝复灌量较大,且需多次复灌,增加了资金投入。

3无损贴嘴法处理渗水裂缝

3.1工艺流程

注浆嘴加工打磨冲洗裂缝描述贴嘴封缝压风检查灌浆注浆嘴清除质量检查。

3.2重要工艺技术要求

(1)注浆嘴加工。在外径为6mm、长度大于6cm的铜管一端焊上边长为3~4cm、厚度为1.5mm左右的方形铁片,铁片中间开直径等于铜管外径的进浆孔,铁片周边钻排列规则的小孔。

(2)打磨:采用砂轮机沿裂缝的两边各打磨20cm的宽度,除去混凝土表面杂物,以免影响注浆嘴的粘贴及封缝效果。

(3)冲洗:是贴嘴法施工最重要的工序,用高压冲毛机沿裂缝开口向两边冲洗,以保证缝口敞开无杂物。

(4)裂缝描述:用刻度放大镜测量裂缝宽度,并对裂缝走向及缝长进行描述,用以调整布置注浆嘴间距及灌浆压力。

(5)贴嘴:根据裂缝描述进行注浆嘴的布置。规则裂缝缝宽小于0.3mm时按间距20cm布嘴,缝宽大于0.3mm时按间距30cm布嘴;不规则裂缝的交叉点及端部均布置注浆嘴。将ECH-Ⅰ型胶抹在注浆嘴底板上,贴嘴时用定位针穿过进浆管,对准缝口插上,然后将注浆嘴压向混凝土表面抽出定位针,定位针未粘附胶认定注浆嘴粘贴合格。

(6)封缝:贴嘴3h后用堵漏灵胶泥将渗水缝口封堵住,2h后用碘钨灯将混凝土表面烘干并用无水酒精洗抹一遍;待干后刮抹一层ECH-Ⅱ型粘胶;当不粘手时再刮抹ECH-Ⅲ型面胶三遍,待ECH-Ⅲ型面胶基本固化后,用堵漏灵加固形成中间高,两边低的伞形封盖

(7)压风检查:封缝完成并养护2h后即可进行压风检查各孔的贯通情况,压风压力<0.25MPa;对于不串通的孔应查明原因进行分析和处理。

(8)灌浆:采用多点同步灌注方式,从下至上,从宽至窄,逐步推进,采用LilyCD-15双组分注射泵灌注LPL浆材,施工中采用稳压慢灌,每孔纯灌时间不少于90min,以保证灌浆质量。灌浆压力见表2。

表2裂缝宽度与灌浆压力关系

缝宽

<0.1

0.1~0.3

>0.3

灌浆压力/MPa

0.8~1.0

0.6~0.8

0.5~0.8

(9)注浆嘴的清除:灌浆结束48h后铲除注浆嘴,混凝土表面采用环氧胶泥封堵平整。

(10)质量检查及验收:灌后质量检查在注射树脂LPL灌浆结束7d后进行。

压水检查:现场布骑缝孔,冲击钻造孔(孔径18~20mm、孔深10~15cm)后,采用单点法压水,压水检查压力为0.3MPa。合格标准:压水检查透水率q≤0.1Lu。

钻孔取芯:取芯直径89mm,并进行岩芯鉴定、描述,绘制钻孔柱状图。

3.3无损贴嘴法的工艺特点

不破坏混凝土的整体性,适合薄型结构的裂缝处理。

(2)由于从缝的表面进行打磨冲洗,可避免微细粉尘对灌浆的影响,从缝口进浆可灌性得到了保证。

(3)使“以浆赶水”,多点依序同步灌浆成为可能。

(4)贴嘴封缝、采用多点同步灌浆的无损灌浆工艺,可在不破坏混凝土结构的条件下极大地提高可灌性,裂缝的灌入深度也能满足要求,加上使用低黏度、低收缩的化灌浆材,达到了“堵水、保护钢筋、恢复结构的整体性”的效果。

(5)工艺简单、复灌率低,节约昂贵的化学浆材,降低了成本,加快了施工进度。

3.4特殊情况处理

(1)渗漏点的复灌:

对有规律的渗漏点,即一段裂缝仍渗水,采用原施工方法进行复灌。

对单独的渗漏点采用打辅助孔的方法进行复灌,先在渗漏点贴嘴、封缝。然后用冲击钻在距渗漏点10cm沿原裂缝钻3个辅助斜孔(孔径18~20mm,孔距10~20cm,倾角50°,孔深25cm),并预埋外径为6mm的铜管。再用堵漏灵进行封堵埋管,在渗漏点贴嘴及封缝、辅助孔埋管及封堵完成后,其他工序按原方法进行施工

(2)浆液配比出现问题时的处理:灌浆时如出现长时间不进浆,且浆液粘度增加,即浆液配比出现问题。处理方法是打开机箱盖,清理两活塞杆运行系统,直至两活塞杆运行同步后,排弃部分混合液,然后重新注浆。

4复灌后仍局部渗水的处理

(1)经复灌后仍有渗水的部位采用嵌缝措施:开槽槽深×槽宽为5cm×5cm,并在槽内每1.5m用电钻打一个22排水孔,孔深>70cm;从孔底部埋一根铝管,在管口用堵漏灵封闭将水引出;将槽面清洗干净并尽量烘干,若无法烘干则在缝面用堵漏灵先堵水,然后涂环氧基液,再用丙乳砂浆锤填密实,并满足过流面平整度要求。

(2)嵌缝后再在表面粘贴玻璃丝布防渗,玻璃丝布宽15cm。粘贴方法:先将缝面清理干净,均匀刷一层1438胶,再贴一层玻璃丝布,三胶二布。对于灌浆后延伸的裂缝,若渗水不大或不渗水,则直接在缝面粘贴玻璃丝布,并延伸1.0m左右。

(3)待丙乳砂浆封闭7d后封闭引水管孔。先用干塑性水泥砂浆填充并用细钢筋捣密实,离孔口5cm时,改用预缩砂浆填充密实,对其表面涂刷环氧胶泥。

5结束语

混凝土裂缝处理难度较大,对有渗水的裂缝处理难度更大。通过参与水工地下隧洞混凝土渗水裂缝的处理,认为在处理过程中主要应注意以下几个问题:

(1)灌浆材料的正确选择:应选择低黏度、低收缩的环氧浆材。收缩大的材料需多次复灌,不但增加投入,而且复灌成功率小。目前采用主要是两种系列的改性环氧浆材,各有优缺点应根据缝的宽度、渗水情况及处理的结构要求,选择适宜的浆材。

(2)推广贴嘴无损法施工:混凝土温度缝一般较细,且不在一个平面上,裂缝很难找准,浆材难以灌入,最好是采用贴嘴无损法施工,既减少了钻孔量,又可减少孔容、管容的浆材耗用量,降低成本;结构的厚薄、裂缝的深浅对钻孔的要求较高,为了找准裂缝的深度以便准确地布置灌浆孔,不得不打出大量的检查孔,对结构造成严重破坏。

(3)避免微细粉尘对化学灌浆的影响:混凝土裂缝内部极不规则,其宽度受骨料、钢筋等的影响宽窄变化复杂,当化学浆液夹着微细粉尘在裂缝中灌入时,碰到较窄处,就会累积阻塞浆液通路。因此微细粉尘对化学灌浆的危害极大,但钻孔处理工艺无法避免粉尘影响。

(4)从宽处往窄处灌浆最为有利,“从上至下,从宽至窄,从一边至另一边“,这是化灌的基本原则。温度裂缝的形成最先在混凝土表面形成,随着温度应力的作用持续向纵深方向发展,因此在混凝土表面的裂缝开合度最大,从缝口进浆对灌浆质量的提高极为有利。

(5)必须保证连续稳定的灌浆压力:稳定的灌浆压力是保证浆液能否使裂缝充填饱满的关键,采用手摇泵灌浆很难做到这一点,应采用双液气压泵进行施工。