前言:中文期刊网精心挑选了移动接收技术范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
移动接收技术范文1
〖正文〗
随着数字技术、信息技术和网络技术的迅猛发展,无线传播领域正在引发一场深刻的技术革命,就在这一两年间,无线数字媒体的类型骤然丰富,除传统媒体之外,手机电视、车载移动电视,楼宇分类电视,多媒体信息亭、地铁多媒体信息系统等新兴媒体纷纷涌现,移动接收是个热点,尤其是广播电视的移动接收,成为发展方向之一。在早期,这种移动性主要受电源供电、设备尺寸的限制,基本上没有办法实现,移动接收带来的技术问题也没有提到议事日程上。在电子管时代,器件的尺寸比较大,耗电也多,真正的“移动”只在军事方面,便携式的收音机也有,但一直不能普及。到了晶体管时代,收音机小到可以放在口袋里,广播的移动接收算是在一定程度上解决了。但是电视的移动接收问题要比广播的移动接收困难得多,所以至今还没有得到解决。
一、数字电视地面广播(DTTB:DigitalTelevisionTerrestrialBroadcdsting)
在现代通信中,通信传输手段主要是光纤、卫星、数字微波等,加上地面无线电视广播电视发射构成信息主体。目前在我国数字电视按信号传输方式可以分为地面无线传输数字电视、卫星传输数字电视、有线传输数字电视三类。而移动电视是数字电视地面广播的重要应用。数字电视地面广播在应用需求上要求实现移动和便携接收的功能,使整个技术系统的要求最高。它具备无线数字系统所共有的优点,较之卫星接收,有实现容易、价格低廉的特点;较之有线接收不易受城市施工建设、自然灾害战争等因素造成的断网影响;数字电视地面广播通过电视台制高点天线发射无线电波,覆盖电视用户,用户通过接收天线和电视机收看电视节目,主要的受众也是针对本地区的。完善的数字电视地面广播系统所具备的蜂窝单频网功能,不仅提高了频谱的利用率,而且可应用与宽带无线接入市场;而移动和便携的独特优势使该系统能满足现代信息社会“信息到人”的要求,也就是无论何人何时在何地均能任意获取他想得到的信息。
二、移动接收所遇到的主要问题
移动接收采用的方式是无线数字信号发射、地面接收。因此,移动接收所遇到的问题之一就是衰落,这是所有无线通信系统都会遇到的问题。对于固定接收可以采用分集接收等方法予以克服,但对于移动接收而言分集接收的方法显然不实用,因此衰落问题尤为突出。
电波在沿地表传播中会受到各种阻碍物的反射、散射和吸收,实际到达收信天线处的电波除了来自发射天线的直接波外,还存在来自各种物体(包括地面)的反射波和散射波。反射波和散射波在收信天线处形成干涉场,此外,在移动通信中,还存在因移动台(天线)的快速移动而划过颠簸的波节和波幅的驻播现象及由于多普勒效应而造成的相移,凡此种种原因,就使得实际移动台接收到的场强在振幅和相位上均随时随地在急骤变化,使信号很不稳定,这就是无线电波的衰落现象。衰落的严重程度通常随频率或路径长度的增加而增大。目前还无法对衰落进行精确的预测,但区分绕射衰落和多径衰落两种不同类型的衰落是十分重要的。前者为慢衰落,短期信号中值电平在长期中的起伏;后者为快衰落,即瞬时信号电平在短期中的起伏。这两种衰落的表现和影响是不同的。
另外,与其他无线通信系统不同的是,移动接收的关键点是移动。因此,移动接收还存在一个其他无线通信不会遇到的问题,这就是多普勒效应。
在日常生活中,我们会注意到远处迎面驶来发出警报声的警车在离你越近时,汽笛声的音调越高。从警车到达你所在位置开始,音调开始降低,而当警车离开你后,听到的音调会越来越低,这种现象就称为多普勒效应。奥地利物理学家多普勒是这样解释这种现象的:朝你驶来的警车发出的声波对你而言稍微压缩从而相对集中,这时你听到的声音波长短于该声源静止时的波,而短波音调是高的。相反,离你而去的声源的声波稍微扩散,这时你听到的波长比该声源静止时的波长长,长波音调是低的,这样的效应对电磁波同样适用。比如一个趋近我们的天线发出的信号,它的频率高于该天线相对于我们静止时的频率,波长相对变短;相反,一个离我们远去的天线发出的信号,其频率则会低于该天线在相对我们静止时相对于我们的频率,波长相对变长。同时波长的位移量与天线的运动速度存在正比关系,即速度越快,则波长移动越大。以上现象就是多普勒效应(Doppler)。
系统方面,移动接收还要考虑覆盖网的建设,接收机(特别是便携机)的耗电,接收天线的安装等问题。
从基本原理考虑,模拟广播电视信号是不宜实现移动接收的。为了解决移动接收中遇到的问题,广播电视信号必须首先实现数字化。利用数字技术无线接收,可有效解决以上问题。只要在信号有效覆盖范围内,所有移动交通工具,只要配有接收设备,都可以接收数字移动电视信号。
三、移动接收中的关键技术——OFDM
OFDM是正交频分复用(OrthogonalFrequencyDivisionMultiplexing)的缩写,是在严重电磁干扰的通信环境下保证数据稳定完整传输的技术措施.
OFDM的基本原理是:高速信息数据流通过串/并变换,分配到速率相对较低的若干子信道中传输,每个子信道中的符号周期相对增加,这样可减少因无线信道多径时延扩展所产生的时间弥散性对系统造成的码间干扰。另外,由于引入保护间隔,在保护间隔大于最大多径时延扩展的情况下,可以最大限度地消除多径带来的符号间干扰。如果用循环前缀作为保护间隔,还可避免多径带来的信道间干扰。
在过去的频分复用系统中,整个带宽分成N个子频带,子频带之间不重叠,为了避免子频带间相互干扰,频带间通常加保护带宽,但这会使频谱利用率下降。为了克服这个缺点,OFDM采用N个重叠的子频带,子频带间正交,因而在接收端无需分离频谱就可将信号接收下来。
OFDM的特点是各子载波相互正交,扩频调制后的频谱可相互重叠,不但减少了子载波间的相互干扰,还大大提高了频谱利用率。主要技术特点如下:
1)可有效对抗信号波形间的干扰,适用于多径环境和衰落信道中的高速数据传输;
2)通过各子载波的联合编码,具有很强的抗衰落能力;
3)各子信道的正交调制和解调可通过离散傅利叶反变换和离散傅利叶变换实现;
OFDM能够有效地对抗衰落和多普勒现象带来的负面影响,使受到干扰的信号能够可靠地接收。OFDM码率低,又加入了时间保护间隔,具有极强的抗干扰能力。其多径时延小于保护间隔,所以系统不受码间干扰的困扰。
在有关移动接收的几种标准的制定过程中,都采用OFDM作为其核心技术。
四、移动接收制式
众所周知,地面数字电视广播系统目前有多种制式,这些制式总体上可以分为单载波方式和多载波方式两类,美国用的ATSC是单载波的,欧洲的DVB-T是多载波的。英国是实施DVB-T标准最成功的一个国家,并成功地开通了地面数字电视广播。法国、瑞典、西班牙在实施地面数字广播方面也获得了成功。除我国自己提出的若干种制式,我国DTTB的制定原理是:(1)传输信息要大,支持包括高清电视的多媒体广播服务;(2)抗干扰能力强,在一般室内环境下可接收;(3)与现有模拟广播电视频道兼容,并有利于频道规划和摸拟向数字过渡;(4)具有灵活性;支持标准高清晰度和高清晰度兼容的是视广播,支持移动接收设备,支持便携接收设备;(5)具有可扩展性;支持包括互联网的交互数据综合业务,支持广播网络化的发展需要。整体性能指标应优于或相当于相应的国外现有标准的性能。
在欧洲,针对DVB-T(DigitalvideobroadcastingTerrestrial)在移动接收中的不足,人们提出了一种DVB-H的制式专门用于移动接收,而原有的数字音频广播(DAB)也发展到播出多媒体,下文将重点比较DVB-H和DAB的差别。
DAB是在1988到1992年间开发的。系统当初主要打算作为音频广播,但对传送数据和多媒体业务也有准备。尽管到目前为止在许多国家没有达到普及的程度,但DAB业务已经在多个国家开始。DAB系统,尤其是它的传输网络,是以1.5m的天线高度作为户外的接收而设计的。因此,DAB为汽车接收提供良好的覆盖。
DVB-H(Digitalvideobroadcastinghandheld),通过地面数字广播网络向便携/手持终端提供多媒体业务所制定的传输标准。该标准是欧洲的数字电视标准DVB-T的扩展应用。和DVB-T相比,DVB-H终端具有功耗更低、移动接收和抗干扰性更强的特点,因此该标准适用于移动电话、手持计算机等小型便携设备通过地面数字电视广播网络接收信号。也可以说DVB-H标准依托DVB-T传输系统,通过增加一定的附加功能和改进技术使手机等手持便携设备能够在固定和移动状态下稳定地接收广播电视信号。如图1
DVB-H采用时分数字多媒体广播带宽、以脉冲方式发送各频道的数据。一般情况下,除接收所需频道的数据外,调谐器电路在其它时间均处于关闭状态,因此可有效减少耗电。图2是DVB-H传输系统框图。
图2
DAB(DigitalAudioBroadcasting)适合于多媒体的分发,而DVB-H则是来自DVB的最新标准,它们有不同的历史:
DVB-T接收机的普及是令人鼓舞的。在德国的柏林,2003年从模拟转换到数字电视之后,卖出的DVB-T接收机达到250,000台。不同的欧盟赞助项目,如ACTS-MOTIVATE(1998-99),MCP(2000-2001)和CONFLUENT(2002-2003),对DVB-T用作移动和手提式接收进行过考察,也对接收机进行了优化。结论是,使用(双天线)分集接收机技术可以使DVB-T实现高速移动接收。
在对DVB-T的移动性进行测试的时候,也提出了DVB-T在移动环境下是否适合其他多媒体应用的问题。移动电话制造商,对通过DVB-T的高数据率的应用提供移动的多媒体服务特别感兴趣。其动机是,在移动电话商业价值链中,电视是最后一个不在手上的链路。由于用DVB-T向移动电话广播有缺点,所以有了制定以DVB-T为基础的,专用于手持接收机的标准的主意。这方案叫做DVB-H。
DVB-H的基本商业要求是用电池供电的小的屏幕移动终端。它应该能够在手提式的,移动的和室内的环境中,使用单一天线接收多媒体业务。
五、DAB和DVB-H在技术上的异同
从总体上看,DAB和DVB-T/H传输系统是以相同的调制和编码技术为基础的,这就是编码正交频分频复用(COFDM)。它们之间的差别主要是在特定的区域,如载波间隔,载波调制,FFT的大小(也就是副载波的数量)等等。
FFT大小:DAB在一个1.5MHz的信道里,可以应用256,512,1k和2k的FFT;DVB-H可以在5,6,7或8MHz带宽的信道中应用2k,4k和8k的FFT。
时间分片:DVB-H的时间分片是一种在接收机上节省功率的新机制。如果在没有业务传输的那些时间段,接收机可以断开,那么就可以节省电池的电力。DVB-H的时间分片意味着数据是以突发脉冲串的方式传输的,这些脉冲串从几毫秒到几秒之间。这项技术以下列二个与业务有关的问题的折衷为基础:业务需要什么数据率?而在接收机这边应当节省多少电池的电力?
DAB也是用串的形式传输数据的。这种“数据脉冲串”是DAB帧的一部份,帧跟随在一个无效符号后,持续24ms。
时间交织:DVB-H没有采用时间交织,因为DVB-T标准不提供时间交织:DVB-T原先不是作为高速移动接收而设计的。DAB从一开始就是为移动接收而设计的。时间交织解决了在单天线的移动接收条件下的衰落问题。时间交织把突发误码分配在一个较大的时段上,使得FEC能够校改正这些误码。在移动接收中,更有可能出现的是突发误码而不是单个误码。在DAB中,时间交织工作在16个“数据串”上。一个数据串持续24ms,使得时间交织工作在384ms上。
不相等的误码保护(UEP):不相等的误码保护意味着在解码过程中,较重要的比特的保护优于较低重要性的比特。DAB支持UEP。这意味着对解码过程,比特是依照它们的重要性进行保护的。这对移动和便携接收是非常重要的,因为一般来说,恶劣的接收条件是无可避免的,在恶劣的接收条件下的服务性能是关键问题。借助UEP,通过设计相对于主业务保护的不同的误码保护类型,就可以把失效特性对客观或主观的服务品质实现最佳化。DVB-T/H没有准备UEP。这意味着,那些损害某些重要信息(例如控制信息)的误码只能像那些不明显的比特那样来保护。对于用户,不明显的比特是否被破坏是不要紧的,他们最关心的是,重要的同步是否丢失。
多协议封包-前向误码纠错(MPE-FEC):在DVB-H中,多协议封包结合附加的前向纠错(FEC),是用来改善单天线的移动接收的。但是这种误码保护只在一个时间片工作。但传输的误码通常不是单个的误码而是作为突发误码串出现的,如果时间片被扰乱太多,业务就丢失,不仅在时间片的期间,也延伸直到下个时间片被传输的期间。MPE-FEC是一个在较高的协议层的附加FEC,能够校正在较低层上的剩余误码,但只能在某个范围内。因此,DVB-H对它的有效比特没有独立的保护。现在计划进行进一步的实验室测试和现场试验,以研究带和不带MPE-FEC两种情况下,只用一个天线的DVB-H的接收性能。DAB不使用MPE-FEC,因为这只是在一个较高的传输层上的一个附加的误码保护机制。不过在DAB中使用MPE-FEC或类似的误码保护系统也不是问题。WorldDAB协会现在正在考虑DAB标准的扩展,它会包括像DVB-H那样基于MPE-FEC的误码保护方案,或者如DVB-T和DVB-S标准所用的,MPEG-2传输流的基于R-S码。
可扩缩性:DAB的复接是以864个容量单元为基础的,它们可以组合起来以适合业务需要的任何数据率。因此业务数据率的最小值受容量单元的限制。根据所选择的误码保护,这在1.3kbit/s的数量级:作为数据业务,通常用8kbit/s的倍数。DVB-H提供的业务可以从0-10Mbit/s。它只取决于时间片的大小。
因为各种不同的理由,如果每个业务用的数据率为300kbit/s或更少,DAB更适合移动终端的技术需求。举例来说,它在多工方面比较简单。经由DAB可以传输四到六套节目,然而在DVB-H有30套或更多的节目需要复接。这么多节目的处理是更困难的。利用差分相移键控(DQPSK),DAB的解调技术比较简单。藉由这种解调技术,接收机的复杂性减少了。在接收机方面,DAB只需要DVB-T的5-20%的功率,而DVB-H消耗DVB-T的大约33%的功率。功率的减少取决于业务的数据率。
相对DVB-H,DAB的带宽较低,DAB发射网络比DVB-H发射网络的功率小得多。DVB-H网络的发射功率至少与DVB-T相同。通过利用大的SFN,DAB可以提供高的网络频谱效率。此外,通过为每个业务运行者进行频谱规划,频率资源可以非常有效地利用。今天,DAB音频业务在L波段上用得不多,这波段仍然有DAB多工可用的频谱。
六、DVB-H和DAB的其他方面
全国性的单频网:大体而言,DVB-H和DAB都可能建立全国性的单频网,但是,因为减少自扰的灵敏度,DAB允许大的SFN。这是非常有频谱效率的。与此相比,用16QAM模式的DVB-T/H,最大的SFN大约是200km。
在欧洲,DVB-H和DAB之间开始合作,目标是回答下列问题:是否有一个以DAB为基础的,类似DVB-H的,有用的或可能的标准一种迎合两个标准的最终用户器件是否容易实现?DAB向移动用户提供DVB-H业务需要什么?人们正在协调DAB和DVB-H。例如让DAB能使用DVB-H的MPE-FEC。另外,另一种可能性可能在比较高层,例如视频编码(MPEG-4,H.264)和传输层(IP的使用)。真正需要的是在IP-Datacast/DVB-H业务和DAB物理层之间有一个公共接口定义。
有人提出,移动接收应当用DAB,他的理由是:从标准化进程的最开始,DAB就是为用单天线作移动接收而设计的;数据率从小显示到1.2Mbit/s(在较低的误码保护为1.5Mbit/s)是可扩展的;DAB发射网络的建立比DVB-H网络便宜;由于它的时间交织特征,DAB对脉冲噪声是稳健的;DAB需要的发射机功率比DVB-H低;不管音频还是多媒体业务,DAB都是由广播界推动的。
小结
广播电视的移动接收作为当前的技术热点,尽管它的市场前景和受众分析还有待进一步的研究,但它的技术还在发展中。要说哪一种制式最适合移动接收还为时尚早,因为每种制式都会根据市场的需要及时改进其技术,从而改善其移动接收的性能。
参考文献:
《新一代多媒体移动标准DVB-H》北京邮电大学移动多媒体实验室
移动接收技术范文2
关键词:广播电视;移动;接收技术
前言
科学技术的飞速发展给各行各业带来了挑战和机遇,随着广播电视事业的不断发展和进步,移动接收成为发展方向之一。广播电视虽然有很长的历史,但移动接收的进展却不尽人意。即使是调频广播,在汽车高速行驶中的接收也往往遇到困难。电视的移动接收问题要比广播的移动接收困难得多,所以至今还没有得到解决,因此广播电视的移动接收引起广电界的重视。
1 移动接收所遇到的主要问题
移动接收采用的方式是无线数字信号发射、地面接收。因此,移动接收所遇到的问题之一就是衰落,这是所有无线通信系统都会遇到的问题。对于固定接收可以采用分集接收等方法予以克服,但对于移动接收而言分集接收的方法显然不实用,因此衰落问题尤为突出。
电波在沿地表传播中会受到各种阻碍物的反射、散射和吸收,实际到达收信天线处的电波除了来自发射天线的直接波外,还存在来自各种物体(包括地面)的反射波和散射波。反射波和散射波在收信天线处形成干涉场,此外,在移动通信中,还存在因移动台(天线)的快速移动而划过颠簸的波节和波幅的驻播现象及由于多普勒效应而造成的相移,凡此种种原因,就使得实际移动台接收到的场强在振幅和相位上均随时随地在急骤变化,使信号很不稳定,这就是无线电波的衰落现象。衰落的严重程度通常随频率或路径长度的增加而增大。目前还无法对衰落进行精确的预测,但区分绕射衰落和多径衰落两种不同类型的衰落是十分重要的。前者为慢衰落,短期信号中值电平在长期中的起伏:后者为快衰落,即瞬时信号电平在短期中的起伏。这两种衰落的表现和影响是不同的另外,与其他无线通信系统不同的是,移动接收的关键点是移动。因此,移动接收还存在一个其他无线通信不会遇到的问题,这就是多普勒效应。系统方面,移动接收还要考虑覆盖网的建设,接收机(特别是便携机)的耗电,接收天线的安装等问题。从基本原理考虑,模拟广播电视信号是不宜实现移动接的。
为解决移动接收中遇到的问题,广播电视信号必须首先实现数字化。利用数字技术无线接收,可有效解决以上问题。只要在信号有效覆盖范围内,所有移动交通工具,只要配有接收设备,都可以接收数字移动电视信号。
2 移动接收中的关键技术
PFDM是正交频分复用(0rthogonal Frequency Division Multiplexing)的缩写,是在严得电磁干扰的通信环境下保证数据稳定完整传输的技术措施。OFDM的基本原理是:高速信息数据流通过串/并变换,分配到速率相对较低的若干子信道中传输,第个子信道中的符号周期相对增加,这样可减少因无线信道多径时延扩展所产生的时间弥散性对系统造成的码间干扰。另外,由于引入保护间隔,在保护间隔大于最大多径时延扩展的情况下,可以最大限度地消除多径带来的符号间干扰。如果用循环前缀作为保护间隔,还可避免多径带来的信道间干扰。在过去的频分复用系统中,整个带宽分成N个子频带,子频带之间不重叠,为了避免子频带间相互干扰,频带间通常加保护带宽,但这会使频谱利用率下降。为了克服这个缺点。OFDM采用N个重叠的子频带,子频带间正交,因而在接收端无需分离频谱就可将信号接收下来。OFDM的特点是各子载波相互正交,扩频调制后的频谱可相互重叠,不但减少了子载波间的相互干扰,还大大提高了频谱利用率。主要技术特点如下:(1)可有效对抗信号波形间的干扰,适用于多径环境和衰落信道中的高速数据传输;(2)通过各子载波的联合编码,具有很强的抗衰落能力;(3)各子信道的正交调制和解调可通过离散傅利叶反变换和离散傅利叶变换实现;OFDM能够有效地对抗衰落和多普勒现象带来的负面影响,使受到干扰的信号能够可靠地接收。OFDM码率低,又加入了时间保护间隔,具有极强的抗干扰能力。其多径时延小于保护间隔,所以系统不受码间干扰的困扰。在有关移动接收的几种标准的制定过程中,都采用OFDM作为其核心技术。
3 移动接收制式
众所周知,地面数字电视广播系统目前有多种制式,这些制式总体上可以分为单载波方式和多载波方式两类,美国用的ATSC是单载波的,欧洲的DVB-T是多载波的。英国是实施DVB-T标准最成功一个国家,并成功的开通了地面数字电视广播。法国、瑞典、西班牙在实施地面数字广播方面也获得了成功。除我国自己提出的若干种制式,我国DTTB的制定原理是:
(1)传输信息要大,支持包括高清电视的多媒体广播服务;(2)抗干扰能力强,一般室内环境下可接收;(3)与现有模拟广播电视频道兼容,并有利于频道规划和模拟向数字过渡;(4)具有灵活性;支持标准高清晰度和高表晰度兼容的电视广播,支持移动接收设备,支持便携接收设备;(5)具有可扩展性;支持包括互联网的交互数据综合业务,支持广播网络化的发展需要。整体性能指标应优于或相当于相应的国外现有标准的性能。通过地面数字广播网络向便携/手持终端提供多媒体业务所制定的传输标准。由于用DVB-T向移动电话广播有缺点,所以有了制定以DVB-T为基础的,专用于手持接收机的标准的主意。这方案叫做DVB-H。DVB-H的基本商业要求是用电池供电的小的屏幕移动终端。它应该能够在手提式的,移动的和室内的环境中,使用单一天线接收多媒体业务。
结束语
广播电视的移动接收作为当前的技术热点,尽管它的市场前景和受众分析还有待进一步的研究,但它的技术还在发展中。要说哪一N制式最适合移动接收还为时尚早,因为每种制式都会根据市场的需要及时改进其技术,从而改善其移动接收的性能,这才是关键所在。
参考文献
[1]陈影.数字地面广播电视移动接收技术分析[J].中国科技纵横,2011,20:101-102.
[2]马显阳.浅谈数字电视地面广播移动接收技术[J].中国新技术新产品,2011,7:44-45.
移动接收技术范文3
[关键词]上海虹桥交通枢纽东站盾构高支架 接收 滑移
1工程概况
上海轨道交通2号线西延伸工程隧道采用土压平衡盾构,盾构外径6.34m,衬砌外径6200mm,内径5500mm,环厚350mm,环宽1.2m,直螺栓通缝连接。盾构从1号井始发,穿越新建机场滑行道后下穿虹桥机场新建西航站楼约150m,在虹桥交通枢纽东站进洞。
盾构进洞位置在地下二层,中心标高-16.755m,接收井底板-22.970m,盾构底部距底板距离约3.1m。吊装孔位置在分别在上下行线盾构轴线外平行距离17.3m和34.9m,垂直距离18.56m,无法在盾构进洞位置直接吊装,需要进行双向平移。如下图所示:
附图1盾构进洞位置平面示意图附图附图2盾构进洞位置剖面图
2 方案设计
盾构机机头重达两百多吨,后续车架每节也在30吨左右,安全起见,平移大多在0.3m高的基座上实施,本工程中要将盾构机从接收位置双向平移至吊装孔位置有三种方案:
方案一:需要在盾构机平移的范围内搭设3m高满堂的钢结构平台或脚注混凝土平台,使盾构和低基座一起在平台上平移,则耗用的钢材或混凝土相当大。
方案二:搭设3m高度的固定钢支架平台,在盾构接收后再搭设辅助工作架,用钢绞线将盾构机和0.3m基座一起从3m高度位置下降到工作井底板上再实施平移。由于地下空间较小,不能采用大型设备,要架设和固定大量的辅助工作架,工作量相当大。
方案三:在工厂制作3m高可以双向平移的钢结构高支架平台作为盾构机的工作平台,钢结构加工量最小,但支架的强度和在滑移时的结构稳定性至关重要。为使盾构机和高支架在平移时震动较小,采用轨道方式,卷扬机结合滑轮组提供动力。本工程采用方案三实施。
附图3结构示意图附图4连接板及可换向式铜滚轮示意图
3 实施过程
实施中要解决现有技术中大型盾构机在较高位置两个方向的平移问题。采用可换方向式滚轮。其工作方法为,用卷扬机将高钢架和盾构机整体在预先铺设的钢轨上向X向移动,到达转换位置后,用4个200T组的千斤顶将高钢架平台和盾构机一起顶升,临时固定,将X向的钢轨移走,然后将换向滚轮换向,再再铺设Y向钢轨,将高钢架平台整体放下,再沿Y向轨道缓慢移动到达指定位置。
附图5实施示意图
在复杂的施工条件下要顺利完成盾构的进洞及平移工作,必须按如下步骤操作:
洞门坐标和底板标高复测;
平移的相关材料和机械进场
3cm黄沙找平,满铺3cm钢板,并铺设钢轨,将接收平台移至盾构进洞处,
并用2根16m的Φ609钢管和H200型钢固定,以保证盾构进洞时整个平台系统稳定;
凿除洞门、安装止水弹簧板;
盾构进洞,聚氨酯和水泥水玻璃双液浆注浆,用钢板封闭洞口;
将盾构和台车分离,拆除螺旋机及拼装台;
将钢平台前端和钢平台主体分离;
平移钢平台至吊装洞口;
台车平移
台车平移参考盾构机,但台车平移需采用两个平台同时进行,两个平台标高一致,一个作为固定平台,一个作为平移平台。如图所示:
4 结语
移动接收技术范文4
【关键词】医院工程 洁净手术部 净化空调系统 自动化设计
引 言
手术感染一直都是临床治疗中的难点,医院洁净手术部在净化室内空气方面的作用尤为显著,可有效防止各类污染的发生且避免病菌的扩散。这不仅有助于医院创造良好的手术条件,也为病人和医务人员提供的健康的环境。高空气洁净度对于洁净手术室而言是很重点的要求,空气净化处理有助于达到手术室洁净标准的要求。因此,洁净手术室对空调自动控制技术要求远远高于一般的舒适性空调。必须有完善的自动控制系统,才能保证空调系统的正常运行,使洁净手术室可以达到技术指标要求。
1、实例概况
某医院病房大楼洁净工程处在5层手术部及6层重症监护室(ICU)。具体情况为,百级、千级洁净手术室净化空调系统选择一拖一形式,一台洁净空调循环机组供应一间手术室。万级洁净手术室选择一拖三形式,新风集中预处理。4台洁净空调循环机组运用于洁净走廊、污物走廊、辅助用房等。在重症监护室、辅助用房之间建立独立的系统,选择1台洁净空调循环机组,新风自取,空调系统选择一次回风方式。大楼洁净工程设计的中央空调系统为独立运行,选择4台风冷热泵式冷水机组,冷水机组(内置冷冻水泵)集中布置于6层裙房屋面。
2、空调控制系统的监控设计
2.1空调循环机组
2.1.1配置构成:空调循环机组结构中要设计多个功能段,包括:风管、送风、表冷、电加热、电极加湿等,选择的是二管制。机组把冷热盘管分布在正压段,这对冷凝水的排出有促进作用,避免机内积水而造成滋生细菌,防止空调系统出现新的污染。考虑到实现空气净化的效果,对循环机组布置初效、中效2级过滤,同时对静压箱处布置高效过滤器。
2.1.2 DDC监控:采取空调循环机组监控的最终目的是为了创造良好的运行环境,如:温度调节、湿度调节、压差调节、空气处理等。采取的监控方法包括:(1)状态监视方面。主要是检查初效、中效、高效过滤器等元器件的具体状态,也包括风机变频器、过滤器等方面的情况。(2)温度湿度方面。主要是对温度、湿度进行调节,包括:①送风温度自动控制。冬季时对热水阀开度自动调节,维持回风温度的科学性;夏季对冷水阀开度自动调节,维持回风温度的科学性。②回风湿度自动控制。按照湿度标准要求对加湿阀有效调整,确保湿度能达到洁净手术部要求。除湿控制一般包括:自动调节冷水阀开度、冷冻除湿机等。另外,结合温度的要求应该对电加热给予调整,通过加热处理保证湿度满足设定值要求。(3)压差调节。对空调循环机组的新风支管需添加相应的装置,通常都要安装电动双位定风量器,以持续把新风传送到各个循环系统中,确保了新风量及正压的条件。(4)空气洁净度。对空气洁净度的控制主要是设计过滤网,通常是利用3级过滤,即:初效、中效、高效等,保证室内空气满足标准的洁净度。(5)风机控制。风机控制箱需添加手动/自动选择开关,日常运行期间要保持在自动状态。护士站则根据自动控制系统中的远程控制对风机起/停进行操作。(6)联锁控制。电磁调节阀新风风门、风机起动之间的联锁反应。送风机开启之后,开冷水阀和新风风门,调节冷水阀。风机中断之后,新回风风门、电动调节阀、电磁阀自动关闭。通过这样的控制流程来实现空调机组的有效监控。
2.2新风系统
2.2.1配置组成:此次案例工程里提到的手术室新风选择集中预处理方法,一共布置了2台新风机组。新风机组的功能段较多,如:风机、均流、中效、亚高效过滤、表冷、抽湿再热、出风等,也选择二管制。机组把冷热盘管布置在正压段,这对冷凝水的有效排除有促进作用,可避免机内积水造成的滋生细菌,放置空调系统出现二次污染。考虑到这增强系统的净化空气效果,对新风处理机组同样设计了3级过滤,包括:初效、中效、亚高效等级别。另外,机组内配置特定波长的紫外线灯,有助于过滤网及盘管的杀菌处理。
2.2.2DDC监控:新风机组监控涉及到温度调节、湿度调节、空气洁净度处理。新风系统的各类模拟量输入(AI)、输出点(AO)与数字量输入(DI)、输出点(DO)等。
采取新风机组监控能发挥出多方面的作用,但在控制时要严格按照标准操作,具体情况为:(1)状态监视。对初效、中效、亚高效过滤器的具体状况详细检查分析,同时观察风机变频器、故障报警、过滤器堵塞等方面的情况。(2)实现温度、湿度的有效调控。①送风温度。冬季对热水阀开度自动调节,维持送风温度处于标准范围;夏季对冷水阀开度自动调节,维持送风温度在标准范围内。②送风湿度。考虑大医院建筑内无蒸汽,且该区域冬季湿度偏大,手术室空调净化系统冬季加湿选择新风集中加湿后送入各循环机组的方式。要想达到Ⅰ级手术室、ICU的湿度标准,循环机组内要添加相应的电极式加湿器。 (3)空气洁净度控制。利用所分布的3级过滤网,保证空气的洁净度处于标准范围。(4)风机控制。风机控制箱一般设计了手动/自动选择开关,正常情况下都属于自动状态。由护士站利用自动控制系统远程控制对风机起/停进行操控。(5)联锁控制。主要是电磁调节阀、新风风门与风机起动联锁。在送风机起动状态下,开冷水阀和新风风门,调节冷水阀;当风机中断运行后,新回风风门、电动调节阀、电磁阀则会自行关闭。通过新风机组与空调机组之间的相互连接,可以发挥出更好的调节作用,保证空调机组的正常运行。如果院内某一件手术室正在使用,则新风系统便会开启运行;而当手术部关闭后,新风机组才会随之中断工作。
2.3风冷热泵式冷水机组
此次研究的工程中,建立了一套风冷热泵式冷水机组系统,由于该系统是独立运行操控,可以给空调系统输送必要的冷热源。从现有的设计方案看,设计冷水机组的监控集中在以下两种方式:(1)经过RS-232或RS-485/422串口通信,将其和冷水机组构成全部开放式的数据通信。通过净化自控系统的协助运行下,中央站可随意收集冷水机组内部数据,最后得到系统具体的参数指标,从而改善了冷冻系统内部的控制性能,减小了机组故障的发生率。(2)干接点的方式。这种方案是在冷水机组的控制箱内传输干接点信号,且与控制器的I/O点之间相互连接。
风冷热泵、冷水机组的具体情况为:(1)冷负荷需求量。计算这一指标时要参照空调供水、回水温度、供水流量等三方面的具体情况,对建筑空调需要的冷冻负荷量自动计算。(2)冷水机组台数。控制台数是要按照建筑所需冷负荷、差压旁通阀开度等方面的情况自动调整,以保证系统运行后的能耗最小。(3)机组联锁控制。实现空调水蝶阀、起动循环水泵和开热泵机组的开启,以及停热泵机组和关闭循环水泵及空调水蝶阀。(4)空调水压差控制。根据空调供水与回水压差,自动调节旁通调节阀,维持供水压差恒定。(5)水泵保护。当开启水泵之后,水流开关则会对水流的状态进行检测,在发生故障之后则会自行中断系统。(6)机组定时起/停。按照之前安排的工作时间、休息时间,对机组的起/停定时操作。(7)机组参数。主要指的是系统的运行参数,监测系统会完成多个参数的检测,如:温度、压差等,根据参数指标情况判断系统是否存在故障。(8)水箱补水。对进水电磁阀的开起与关闭进行自动控制,让膨胀水箱水位处于标准状态,出现异常情况后可及时报警。
2.4排风机的控制
设计排风系统时都要对结构上添加手动风量调节阀、止回阀。而手术室排风口要添加F8中效过滤器,别的洁净区排风口带F5中效过滤器。排风系统具备的相关功能与操控方法:
(1)风机控制。通常控制风机可借助于两种开关方式,即:手动开关、自动开关。正常工作中的开关位属于自动状态,经过护士站利用自动控制系统远程控制风机的起停。(2)联锁保护。这种保护分布的地方较多,如:洁净手术室、洁净走廊、污物走廊、重症监护室等,都属于机械定风量排风系统。室内排风机中添加了相应的延迟设备,能发挥出瞬间开门、快速调控的效果。 (3)过滤器堵塞报警。通常报警系统动作都是在中效空气过滤网两端压差偏大时,以告知医院人员尽快清理。
3、空调自动控制系统组成
根据现有的空调系统技术看,自动控制系统主要包括集散式控制、分布式现场总线控制等两大方式,集散式控制系统则是运用最广泛的。其主要包括:中央管理站、DDC控制器、传感器、阀门等部分构成,从而实现了多个方面的控制管理效果。
中央控制系统主机分布在手术部的监控室里,DDC控制器则涉及在技术夹层,护士站设置了监控分站。与常规基本配置的空调机组相比,手术部的净化空调机组工艺系统具有自己的特殊性,其在管理方面相对独立写,协调主要服务于手术部内医护人员。因而必须在手术部单独建立一个置监控室,这样才能更好地服务于医务人员对手术部的净化空调自动控制系统,保证更加全面、可靠的净化效果,在遇到异常情况时可对相关参数进行调整。
移动接收技术范文5
近期,由北京市建筑装饰协会建筑装饰设计专业委员会主办,北京弘高建筑装饰工程设计有限公司(简称弘高)承办,卡萨帝热水器赞助的主题沙龙活动在弘高公司办公楼一层大厅精彩开幕。此次设计沙龙围绕着“空间与艺术的对话”这一主题,共设专题分享与论坛研讨两个环节,探讨空间和艺术两者不可分割的关系。
本次设计主题沙龙邀请到北京建筑装饰协会副会长高建先生,KDSZ设计工作室创始人、设计总监纪晓恩先生,北京民艺美术馆馆长、泰达当代艺术博物馆执行馆长、廿一雅集艺术空间艺术总监艾海先生,北京弘高建筑装饰工程设计有限公司第三设计院院长胡亮先生,卡萨帝热水器企划部长盛保敬先生等嘉宾为现场近百位设计师进行空间与设计结合的精彩解读和主题分享,并由新家《世界家苑》全程报道。设计师们在近3个小时的活动时间里,聆听了嘉宾精彩的分享,并在论坛环节与嘉宾积极互动。
活动开始,弘高装饰设计研发中心总经理韩力炜先生首先介绍了弘高装饰的“4+2”空间文化。随后KDSZ设计工作室创始人、设计总监纪晓恩先生作为首位嘉宾登场,以“空间艺术与现代美学”为题,结合自身的设计经验进行了精彩的演讲。之后,身兼数职的策展人艾海先生介绍了公共空间与进入空间的人的关系,以及展现在空间之上的广泛参与、交流与互动。然后,由北京弘高建筑装饰工程设计有限公司第三设计院院长胡亮先生给大家带来主题分享“APEC酒店设计与现代艺术”,给大家详细分享了今年弘高装饰的最精品项目――雁西湖国际会都精品酒店,也是今年11月将举行APEC会议的地方。最后卡萨帝热水器企划部长盛保敬先生围绕“传奇与空间的融合”做了两方面的分享,其一是卡萨帝“创艺家电,格调生活”的品牌理念,卡萨帝在“汲取精致生活的灵感,缔造永恒的艺术品质”的核心品牌设计语言下,每一件产品都诠释着家电生活艺术化的趋势,致力于为都市精英人群打造优雅精致的格调生活。其二是从电器品牌与室内设计的关系的角度来剖析空间与艺术的深层关系;以卡萨帝传奇热水器作为切入点,盛保敬先生认为卡萨帝的产品与设计师的空间设计和艺术构思是息息相关的,不同的产品被利用在不同的空间当中,起到它们应发挥的实际作用。卡萨帝一直致力于将自己的产品打造成高端的艺术家居产品。
移动接收技术范文6
关键字:
DVB-H、H.264
使用便携式通讯工具比如手机,随时随地的收看电视以前是一个梦想,随着信源编码技术、信道传输和新一代基础通讯网络的建立,使便携式移动接收子系统也从单一的文字、图片形式的接收转向更丰富多彩的视音频形式接收。电视行业为了适应这种趋势,也对相关技术进行了标准的制定和技术研发。现在就相关技术做以下的论述。
要在手机上看电视,技术上需要处理好三个环节:信号源、传播途径和接收终端。信号源方面,需要有高压缩比的信源压缩编码标准;传播途径方面,有无线微波和网络传输。为了实现移动接收,需要抗干扰能力强的数字调制和信道处理技术。接收终端方面,必须开发高集成度、体积小、重量轻、耗电小的芯片,以及体积小、高容量的充电电池。
目前,该服务的实现主要有三条途径:
1. 利用移动网络实现的方式
目前美国和我国移动运营商推出的手机电视业务主要是依靠现有的移动网络来实现的。中国移动的手机电视业务是基于其GPRS网络,中国联通则是依靠其CDMA网络。不管是GPRS手机还是CDMA手机,都需要在装有操作系统的手机终端(一般是PDA手机等高档产品)上安装相应的播放软件,而相应的电视节目源则由移动通信公司或者通过相应的服务提供商来组织和提供。
2. 利用卫星网络实现的方式
利用手机来接收卫星播发的电视节目信号是一个非常新的想法。目前只有韩国在力推手机电视广播(DMB)。这种DMB接收机能提供高质量的图像,使用该接收机模块能使用户同时接收地面无线电视广播和卫星电视广播的信号。
3. 手机中安装数字电视接收模块的方式
目前最被看好的手机电视技术方式是通过整合数字电视和移动电话的方式。这种方式需要在手机终端上安装微波数字电视接收模块,可以不通过移动通信网络的链路,直接获得数字电视信号。目前,手机数字电视标准只有欧洲的DVB-H和日本的单频段转播标准。
在国内,只有中央电视台和少数的几家移动公司相继推出了手机电视业务。以中央电视台为例,由于目前国内还没有DVB-H的数字广播网络,他们是通过2.5G或2.75G网络传输技术来播放“手机电视”节目的,即利用中国移动GPRS/EDGE网络或中国联通CDMA网络,通过WAP门户网站为用户提供在线直播或点播的流媒体音视频节目的服务。
以下讨论关于手机电视的传输标准和编码标准:
一、手机电视的传输标准——DVB-H
DVB-H(早期为DVB-X)标准全称为Digital Video Broadcasting Handheld,它是DVB组织为通过地面数字广播网络向便携/手持终端提供多媒体业务所制定的传输标准。DVB-H植基于DVB-T,是一种以IP封包(datagrams)来传送资料(主要为数字多媒体资料)的系统。该标准被认为是DVB-T标准的扩展应用,但是和DVB-T相比,DVB-H终端具有更低的功耗,移动接收和抗干扰性能更为优越,因此该标准适用于移动电话、手持计算机等小型便携设备通过地面数字电视广播网络接收信号。事实上,由于DVB-H是一种支持多媒体业务的标准,除了电视业务外它还可以开展电子报纸、电子拍卖、旅游向导、游戏、视频点播和交互等多种综合性业务。总之,DVB-H标准就是依托目前DVB-T传输系统,通过增加一定的附加功能和改进技术使手机等便携设备能够稳定的接收广播电视信号。
为了减低小型手持式设备的功耗,DVB-H采用了一种叫做“时间切片”(time-slicing)的技术,把IP封包在切割成很短的时段(time slots)内以数据突发Data Burst方式传送。接受器的前端电路(front end)只有在所选定服务Data Burst的时段才会开启,在这个极短暂的时段之中,资料被高速地接收下来,并可以储存在设备具有的缓冲区内,此缓冲区可以储存下载的内容,也可以直接播放现场直播的资料文件。
1、DVB-H系统结构
DVB-H支持的是手机等小型移动终端设备,是手机数字电视传输的标准。DVB-H是建立在DVB数据广播和DVB-T传输之上的标准,更注重于协议的实现。系统前端由DVB-H封装机和DVB-H调制器构成,DVB-H封装机负责将IP数据封装成MPEG-2系统传输流,DVB-H调制器负责信道编码和调制;系统终端由DVB-H解调器和DVB-H终端构成,DVB-H解调器负责信道解调、解码,DVB-H终端负责相关业务显示、处理。
DVB-H传输系统还具有以下特殊要求:
(1)为延长电池的使用时间,终端周期地关掉一部分接收电路以节省功耗;
(2)能漫游,漫游时仍能非常顺利地接收DVB-H业务;
(3)传输系统能保证在各种移动速率下顺利接收DVB-H业务;
(4)系统具有很强的抗干扰能力;
(5)系统具有相当的灵活性,以适应不同传输带宽和信道带宽应用。
2、协议层次划分
DVB-H标准将实现数据链路层和物理层。
(1)数据链路层——采用时间分片技术,用于降低平均功耗,便于进行平稳、无缝的业务交换;采用MPE(多协议封装)前向纠错技术,提高移动使用中的C/N门限和多普勒性能,增强抗脉冲干扰能力。
(2)物理层——与DVB-T相比,增加了4k传输模式和深度符号交织等内容。
其它技术特点包括:在传输参数信令(Transmission Parameter Signaling,TPS)比特中增加DVB-H信令,用于提高业务发展速度;蜂窝标识(在TPS中)用于支持移动接收时快速信号扫描和频率交换;增加4k模式以适应移动接收和单频蜂窝网,提高网络设计、
规划的灵活性;2k和4k模式进行深度符号交织,进一步提高移动环境和冲击噪声环境下的鲁棒性。 3、关键新技术
(1)功耗:DVB-H要求射频接收和信道解调、解码部分的功耗小于100mW。
(2)网络设计
由于DVB-H终端在网络内移动时接收天线小巧且单一,必须优化设计单频网。为此,DVB-H增加了新的技术模块,主要包括:
①时间分片——基于时分复用的技术,节省接收终端功耗和便于网络交换;
②MPE-FEC——基于RS纠错编码技术,增加额外的前向纠错编码,提高系统的移动和抗脉冲干扰能力;