前言:中文期刊网精心挑选了计算机体系结构范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
计算机体系结构范文1
关键词:计算机体系 软件模拟 精度
当前社会早已进入了计算机时代,人们的日常生活和工作都离不开计算机辅助,计算机技术也不断更新,变得更为复杂,处理器技术也越来越复杂。现在单片处理器的晶体管数量已超过10亿。这样就给计算机系统的制造带来了资金成本和时间成本上的大幅度增加。为了解决这个问题,计算机体系结构软件模拟技术就成为研发人员的首选。这种技术可以精确到时钟级别,从根本上解决了计算机体系结构研发的长时间和高成本问题。
1 计算机体系结构软件模拟技术的发展历程
1.1 萌芽阶段 计算机体系结构软件模拟技术的发展经历了一个漫长的过程。计算机软件模拟技术的结构虽然已经建立,但是处理器技术并不完善,对系统运行也不能进行合理控制,由于处理器的工作效率低下,所以控制软件的设计也非常缓慢,计算机体系结构的软件模拟技术在不断的探索中缓慢前行。上世纪八十年代,我国的计算机技术有了长足发展,经过长期不懈的研究,我国计算机系统在独立操作数据驱动和处理器高效利用技术两方面有了新的突破。至此,软件系统可以在计算机上进行更好地运行,计算机系统的控制也更为便捷。计算机的运行是以收集和处理技术为基础的。所以,在计算机应用软件技术的研发过程中要收集大量的数据,并结合计算机基础知识在计算机处理器平台上对软件系统进行构建和设计。这是计算机体系结构软件模拟技术发展的重要前提,技术人员由此掌握了计算机软件系统建设的大量数据经验。
1.2 技术研发阶段 研发人员运用性能分析模拟技术改良了计算机系统,这样,团建模拟技术就可以在处理器中进行合理运用。计算机系统的质量得到了大幅度的提高,软件模拟技术也开始被广泛运用在计算机系统结构软件的研发中。计算机体系结构软件的模拟技术可以对系统运行进行更加顺利和有效的控制,再结合性能分析模拟技术,计算机系统的研发成本急剧下降。这样就降低了技术研发阶段的风险,从根本上节省了大量的时间成本和资金成本,保障了研发单位的经济利益。在技术研发时,还要考虑到计算机系统升级、实际应用,使计算机技术的实用性大幅度提高,计算机系统的工作能力成倍增加。
2 开发计算机体系结构软件模拟技术面临的问题
2.1 设备的研发难度非常之高 计算机是一套非常复杂的系统,如果笼统地将计算机的各种特点都运用软件系统模拟是几乎不可能实现的。面对这个问题,研究人员采用了计算机系统的层次划分技术,使原本复杂的计算机系统变得相对简单化。计算机体系结构就是将计算机系统根据组成机构进行层次划分。简化后的计算机系统的复杂性依然很高,给模拟设备的开发造成了很大困难,目前计算机体系结构软件模拟设备的开发主要利用C语言来进行,这种串行结构编程语言给模拟器的实际开发造成了长时间、高成本的问题。
2.2 模拟设备精度低,运作效果差 模拟设备的精度低,效率差也是计算机体系结构软件模拟设备开发中遇到的问题,在开发过程中,对模拟器的具体要求未能进行准确的分析研究;未能透彻理解计算机体系结构的真正目的等都大大增加了错误率。另外,一般的研究开发人员将整体的运行效果用检测流程中的部分程序指令代替,造成了模拟设备精度低的问题。
3 计算机体系结构软件模拟技术开发中问题的应对策略
3.1 将检测流程中的执行指令进行合理减少 性能检测流程中标准化指令是不能改变的,但是可以在此基础上对系统性能检测流程中的执行指令进行科学而合理的减少和更正,使模拟器的运行结构能表现整体运行效果。这样就可以使模拟器的运作时间大幅度减少,缩短运行周期。
3.2 对模拟程序的指令数量进行适当减少 选择准确的模拟程序指令代替原系统整体运作结果,对模拟程序的指令数量进行适当减少,可以提高模拟系统的精确度。在选择模拟程序指令的时候,可以采取抽样选择程序指令或者是直接结构连续性指令的方式。一般来说都是采用抽样统计的方式选取程序指令,因为其精准度更高。
4 结语
当前社会已进入数字化和信息化时代,计算机技术在人们的日常生活和工作中运用程度越来越高,人们对计算机的性能也不断提出更高的要求。因此,计算机体系结构软件的模拟技术的运用也越来越广泛,成为软件开发必不可少的条件。计算机应用功能的完善需要开发人员不断探索和研究。在开发过程中,技术人员要采用正确而有效的方式应对开发过程中出现的各种问题。这样才能有效降低软件开发的周期,节省开发成本,并开发出实用性高的计算机应用软件。
参考文献:
[1]许建卫,陈明宇,杨伟,潘晓雷,郑规,赵健博,孙凝晖.计算机体系结构模拟器技术和发展[J].系统仿真学报,2009(20).
[2]包云岗,许建卫,陈明宇,樊建平.一种新型计算机体系结构模拟器的研究与实现[J].系统仿真学报,2007(07).
计算机体系结构范文2
关键词:综合电子系统;嵌入式计算机体系;结构
中图分类号:TD672文献标识码:A文章编号:1007-9599 (2010) 06-0000-01
Integrated Electronic System Embedded Computer Architecture
Feng Lipei
(The State Administration of Radio Film and Television 723 Radio,Shijiazhuang050086,China)
Abstract:As the modern electronic information technology development and innovation and electronic information technology application of the areas of diversification of integrated electronic computer system,and embedded in the military,a smart appliance,the digital machine tools,
refrigerators and other areas of electronic devices are widely used. this article by a brief analysis and study electronics and computer system to embedded systems architecture to meet the new generation of integrated electronic computer systems for performance of the embedded application requirements.
Keywords:Integrated electronic systems;Embedded computer system;Structure
一、综合电子系统嵌入式计算机的特点
综合电子系统嵌入式计算机是嵌入到对象体系中的专用计算机,其物理结构和功能都嵌入到应用系统中,不能脱离系统操控程序而独立运行。进入21世纪以后,综合电子系统嵌入式计算机在军事上得到了广泛的推广与应用,同时在智能家电、数字机床、车载电子设备等生活领域也得到不少的应用,为人类的发展注入了全新的科技动力。综合电子系统嵌入式计算机的特点,主要表现在以下几方面:
(一)实时性
综合电子系统嵌入式计算机直接从前端传感器获取信息和资料,进行实时或近实时的操控处理和技术分析,因此,综合电子系统嵌入式计算机对信息的处理、分发和管理的实时性要求极高。
(二)与宿主系统相匹的性能与功能
综合电子系统嵌入式计算机是宿主系统的主要组成部分,其体积、重量、形状、性能等诸多数据参数必须满足各种宿主系统的不同技术性要求,其功能性与技术性必须与宿主系统的水平相适应,符合技术应用的科学发展方向。[1]
(三)环境的可靠性和适应性
综合电子系统嵌入式计算机被大量应用于工业、军事、野外等恶劣环境中,要经受振动、辐射、盐雾、高低温、电磁干扰等经验,对可靠性要求极高。传统综合电子系统嵌入式计算机的体系结构设计主要根据嵌入式系统的应用特点进行剪裁。[2]综合电子系统嵌入式计算机采用模板化结构,但是总线带宽和扩展能力有限,不具备动态重构、数据信号综合处理等功能。
二、综合电子系统嵌入式计算机的体系结构
嵌入式系统是现代电子信息技术、计算机技术和半导体技术,以及各个行业具体应用相结合的产物。因此,嵌入式系统是一个资金密集、技术密集、高度创新、不断创新的知识集成系统。综合电子系统嵌入式计算机体系结构的核心部件是处理器,系统结构较为复杂。
图1 综合电子系统嵌入式计算机的体系结构
(一)嵌入式微控制器
嵌入式微控制器将整个计算机系统集成到一块芯片中,芯片内部集成RAM、ROM/EPROM、总线逻辑、总线、定时/定时器,WatchDog、串行口、D/A、A/D、Flash RAM、EEPROM等各种基础功能和外设。为了适用综合电子系统嵌入式计算机不同的体系结构和功能需求,一般一个系列的单片机具有多种衍生产品,每种衍生产品的处理内核体系结构都是相近的,不同的存储器和外设的配置及封装。[3]这种体系机构可以使单片机最大限度地和应用需求相匹配,功能不多不少,从而减少功耗和成本。目前,世界通用的嵌入式控制器型号主要有:P51XA、8051、C166/167、MCS-96/196/296、MC68HC05/11/12/16等。
图2 嵌入式微控制器结构图
(二)嵌入式微处理器
嵌入式微处理器是综合电子系统嵌入式计算机的CPU,在实际应用中,微处理器被装配在专门设计的电路板上,只是保留和嵌入式应用的相关母版功能,这种体系结构可以最大幅度减少系统的体积和能源消耗。[4]嵌入式微处理器具有重量轻、体积小、可靠性高、成本低等优点,其体系结构的电路板上必须包括:总线路接口、各种外线器件、RAM、ROM等,技术保密性相对较强。目前,世界主要应用的嵌入式微处理器主要有:386EX、Power PC、SC-400、MIPS、68000、ARM等系列。
图3嵌入式微处理器结构图
(三)嵌入式片上系统
近年来,随着EDI的推广和VLSI设计的普及化,综合电子系统嵌入式计算机体系结构中一个硅片上实现一个更为复杂的全新计算机系统,也可以称之为SOC。嵌入式片上系统一般可以分为通用和专用两类,通用系列包括Infineon的TirCore,Motorola的M-Core;专用系列包括Philips的Smart XA等。
图4嵌入式片上系统
计算机体系结构范文3
关键词:瘦客户计算;远程显示协议;体系结构
以大型机为主的计算中心时代,通过终端设备使用计算中心的各种应用和计算资源是当时的典型应用模式。因PC机成本的降低及用户对使用中心计算模式所受各种限制的反感,致使大多数用户采用PC机来完成计算任务。但网络技术的飞速发展和应用软件种类的增多及复杂程度不断提高,让用户维护自己的计算环境成为具有挑战性的工作,特别是针对安全性要求较高的企业应用环境。而以网络通信技术为基础,以服务器计算为中心,采用瘦客户/服务器计算模式的瘦客户计算,恰好能够解决这一问题。
瘦客户计算这一网络计算模式的特点是:应用程序和数据都运行并存储在服务器端,客户端只剩下显示和输入设备,不进行复杂计算,因而对瘦客户机的硬件要求很低。它可以是简单的计算设备,如PDA(个人数字助手),也可以是低端计算机或一些特殊设计的终端。
1瘦客户计算体系结构
如图1所示,瘦客户计算体系结构模型由三部分构成:①瘦客户机,客户端的计算设备,主要负责显示用户界面和客户端输入;②远程显示协议(瘦客户协议),用于在瘦客户机与应用服务器之间传送应用程序输入/输出信息的应用层协议,③应用服务器,高性能的计算机,应用程序的安装、运行、维护、升级都在其上进行,用户的个人配置文件也保存在应用服务器上。瘦客户计算体系结构中的关键技术是远程显示协议,它是瘦客户机和服务器上的应用系统之间进行交互的机制,它使得通过网络为客户设备提供图形显示等服务成为可能。
1.1瘦客户计算的具体实现
1.1.1虚拟网络计算
虚拟网络计算(VirtualNetworkComputing,VNC)的计算体系结构由三部分组成,即VNC服务器、RFB协议和VNC浏览器。在用户使用VNC客户端连接到运行VNC服务器上时,通过键盘和鼠标动作来执行存放在服务器上的应用程序。服务器桌面的快照被压缩且通过RFB协议发送到客户端。客户端与服务器之间的通信是通过架构在TCP/IP上的RFB协议来实现的。
远程帧缓冲协议(RemoteFrameBuffers,RFB)是一个远程存取图形用户界面的简单协议。它工作在帧缓存级,能被用于所有的有关窗口操作的系统和应用程序中,具有优秀的平立性。协议的显示部分基于一个单独的绘图源语:存放矩形像素块数据在已给坐标位置上。一系列的块操作组成一次相应的帧更新。虽然这种像素块的贴操作效率较低,但可以通过多种像素编码压缩方式来实现网络带宽、客户端显示速度及服务器处理速度之间的效率折中,以实现高效率的图形显示。
1.1.2微软终端服务
微软Windows终端计算体系结构由三部分组成,即服务器多用户操作系统内核、远程桌面协议(RemoteDesktopProtocol,RDP)和基于窗口的痩客户端软件。服务器多用户操作系统内核提供了在服务器上同时运行多个客户会话的能力,且所有基于窗口的管理机制和技术都可用来管理终端桌面,它完全独立于终端服务协议,使它既能运行于RDP协议上,也可以运行在第三方协议,如Citrix的ICA协议上。
RDP是微软根据ITU(国际电信联盟)的T.120协议族制定的终端服务器与客户端之间的数据通信协议。作为一个多虚拟通道协议,RDP可以在不同的虚拟通道中传输Windows应用系统界面输出数据、键盘和鼠标操作输入数据等。RDP支持多点数据传输。数据从一个应用程序实时地传输到多个目的地,而无须为每个会话单独地发送同样的数据。
1.1.3Citrix的MetaFrame
Citrix的MetaFrame主要运行在Windows平台上。它的计算体系结构有三个基本组成部分:应用服务器软件(MetaFrame)、ICA网络协议、ICA客户端软件。MetaFrame中使用的MultiWin技术允许多个用户在不同的客户端平台上,同时访问和运行服务器上的某个应用软件。客户端设备上的ICA软件用于接收显示图像,同时向服务器发送鼠标移动和键盘击键动作的信息。
独立计算体系结构(IndependentComputingArchitecture,ICA)是Citrix公司的窗口显示协议。它能在服务器上模拟本地应用程序处理的多用户层。多用户层上的ICA显示服务可将应用程序的执行和显示逻辑分离开来,使得应用程序可以100%地在服务器上执行,并通过标准的网络传输协议TCP/IP和IPX等把用户界面传送到客户端。
1.1.4TarantellaEnterprise
Tarantella通过三层体系结构将传统的非Web化的应用转变为Web应用。第二层Tarantella服务器,是整个系统的核心。通过Tarantella服务器,各种不同平台类型的应用服务器能够同时为瘦客户端提供服务,以实现企业应用的集中式管理。
适应性因特网协议(AdaptiveInternetProtocol,AIP)运行于Tarantella服务器上的协议引擎和客户端设备上的显示引擎之间,是Tarantella客户端与服务器之间的通信协议。AIP采用智能启发式机制不断地监控、测量和适应应用程序与客户端设备、数据传输的线路情况,以优化网络响应。Tarantella的监视器经常发送关于客户端设备性能、网络响应时间和带宽等的反馈信息。该反馈信息将限定协议引擎运行和客户端设备执行操作的数量。协议引擎将各种需求按级别进行分类并自动进行优化调整。例如AIP可以区别交互式和流式的应用,以对它们采用不同的优化机制。AIP、协议引擎与显示引擎、智能缓存等特性为远程用户提供良好的性能。1.2瘦客户计算平台性能
在瘦客户平台的基本框架内,瘦客户计算的具体实现有很多种设计选择,不同的选择会使平台的性能具有明显差异。评价瘦客户平台性能的主要指标是客户端请求的平均等待时间和客户端显示图像的质量等。要分析影响瘦客户平台性能的主要因素,需要测试不同设置下平台在不同网络环境下的网络和视频性能。在网络性能方面,主要测试网页从服务器端到客户端的平均等待时间和数据传输量;在视频性能方面,它主要测试视频质量(即客户端显示质量)和传送的数据量。为定量的描述视频质量,采用慢速播放技术并使用式(1)来计算。
2影响平台性能的主要因素
测试结果表明,影响瘦客户平台性能的主要因素是显示编码源语、屏幕更新机制和缓存与压缩。以下就不同平台所使用不同设计选择分析对平台性能的影响。
2.1显示编码源语
显示编码源语分为基于像素和基于图形的绘图源语。使用基于像素的显示编码的瘦客户平台,显示更新在服务器端处理,送到客户端的仅是需要显示的像素数据。其平立性好、客户端计算简单。基于图形的显示编码,与操作系统的窗口操作和显示命令联系紧密,负责处理更新的显示命令和需要显示的屏幕数据一同从服务器传送到客户机,在客户端处理显示更新。其平立性较差、客户端计算复杂。像素源语能使系统显示像素区域的所有更新。它不需要任何有关显示内容的语义信息。图形源语,如字形,用于系统从图像中分离要显示的字形。
VNC采用基于像素的显示编码。其协议RFB支持2D绘图源语,如对文本窗口的屏幕区域,采用单色或双色的位图填充。RFB也可设置为仅使用Raw像素编码,但在默认情况下不采用该编码。Citrix的MetaFrame、微软的终端服务和Tarantella采用基于图形的显示编码。其协议ICA、RDP和AIP支持字形、图标、图像和绘图命令等绘图源语。
在单独测试协议编码源语对系统的性能影响时(AIP无法关掉高速缓存的选项;RFB无法关掉显示压缩),在100Mbps带宽网络环境,网络性能测试中,传输内容相同的情况下,AIP响应时间最短,其次是采用2D绘图原语的RFB,而ICA和RDP则具有相同的延迟时间且响应时间最长。在传送数据量方面,如果传输相同内容的文本图像混合网页,RFB传输的数据量最少;AIP、ICA和RDP传输的数据量相同且大于RFB。如果是传输相同内容的纯文本网页,则RDP和ICA传输的数据量最小,AIP次之,RFB最大。由此可见,采用基于图形的显示编码在传送纯文本时比RFB的带宽效率高。
2.2显示更新机制
显示更新机制包括更新时机(TimingofDisplayUpdates)及刷新模式。更新时机有客户端拉动(Client-pull)和服务器端推动(Server-push)两种;每种技术又可采用两种刷新模式,即懒惰更新(LazyUpdate)和急切更新(EagerUpdate)中的一种。客户端拉动是一种由客户端驱动的显示更新技术,由客户端决定屏幕更新的时机。服务器并不将每次更新都发送给客户,只有收到来自客户机的请求时,才将最近的显示更新发送出去。服务器端推动是由服务器驱动的显示更新技术,由服务器决定屏幕更新的时机。它需要根据刷新模式来确定何时发送屏幕更新给客户。急切模式是当服务器上的应用程序产生绘图命令时,瘦客户系统立即将命令转换为基本的显示编码源语并把显示刷新数据发送到客户端,它使服务器能跟上应用程序的翻译命令。懒惰刷新模式是将若干翻译命令首先缓冲,然后再需要时懒惰地发送合并的显示刷新到客户端。对于实时视频显示,懒惰显示刷新模式导致许多视频帧在服务器端被合并和覆盖,使发送刷新的频率降低。它虽然能减少数据量的传输,但影响了系统的视频性能。
在RFB中采用客户端拉动的懒惰更新模式。当客户端请求时,更新被懒惰地发送。但常常由于客户运行的VNC已被大量地加载,客户端变成申请显示刷新的瓶颈,导致在客户机端产生下一个更新请求前,服务器端已将那些被合并和覆盖的视频丢失了,所以其视频播放的性能较差。Citrix的MetaFrame和微软的终端服务依赖于服务器推动的懒惰更新模式。它比RFB的视频性能要好一些,不会在客户端产生显示刷新的瓶颈,但仍然会放弃或者融合服务器端的显示。AIP使用服务器推动技术,刷新模式则能根据带宽情况在急切和懒惰中进行智能选择。它在100Mbps的视频性能测试中表现很好,尤其对于多媒体视频应用程序。AIP使用懒惰模式来适应较低的带宽。
在100Mbps网络环境中。RDP、ICA和RFB传送低质量视频,相比之下ICA、RDP要比RFB好一些,而AIP能传送超过90%的视频质量(可由式(1)计算),但在10Mbps降到仅有大约50%的视频质量。传送的数据量从大到小依次为AIP、RDP、ICA和RFB。
2.3压缩编码和缓存
压缩编码不仅影响服务器将屏幕更新传送到客户端时的数据量,还决定了将屏幕更新数据呈递给客户端的显示引擎设计的简繁程度。好的压缩编码压缩比高,网络带宽要求低,且客户端能用简单的显示引擎快速高效地显示出来,响应时间短。客户端缓存用来保存经常使用的显示元素,如字体和位图等,使得假如当前所需显示的元素在缓存中,客户端就可从缓存中获得,而不必重复向服务器端发送请求获得。在高带宽下,网络不是瓶颈,此时使用缓存会造成一些附加的计算,影响平台性能。在较低带宽下,性能与数据传输量有直接关系,缓存和好的压缩算法有利于提高性能。
RFB主要采用二维运动步长编码(2DRLE)的变种,如CopyRectangle、RRE(Rise-and-Run-Length)、CoRRE(CompactRRE)和Hextile等,缺省时使用Hextile编码。虽然RFB中压缩编码算法压缩比不是很高,但由于算法简单,故对客户端的图形显示引擎设计要求较低,客户端程序很简单,这使得VNC成为真正的瘦客户系统。RFB采用本地帧缓冲,如果需要显示的某一部分数据在当前缓冲中,客户端只需将其拷贝到屏幕上所需的区域,而无须发送请求给服务器。但由于RFB仅保留当前显示的数据,没有提供足够的历史记录,对减少数据量的传输效果不大。如果仅在屏幕中移动窗口或滚动窗口内的内容时,RFB具有一定的优势。ICA和RDP都使用运行步长(RLE)编码压缩;字体和小的位图保存在客户端缓存中,大的位图保存到客户端磁盘中。AIP使用了RLE和LZW编码压缩,并且使用一种自适应机制来应付网络带宽的变化,在高带宽时关闭压缩,在低带宽时打开。AIP在客户端使用显示对象缓存。RFB在压缩纯文本数据时,可以压缩到原数据量的3%;而在压缩图像数据和视频数据时,这个比例分别为6%和30%。ICA在压缩纯文本数据时,可压缩到原数据的30%;而在压缩图像和视频数据时,压缩比分别可以达到45%和68%。RDP在压缩纯文本数据和图像数据时,可将数据量压缩到原来的40%;在压缩视频数据时,压缩比可达58%。对于视频数据而言,ICA压缩后的视频质量会降低近一半,而RDP压缩后的视频质量几乎不变。对于AIP,压缩时视频质量从高于90%降到不足30%。AIP不能单独设置压缩,当压缩被打开时,缓存也同时被打开。在100Mbps带宽下,其等待时间增加了13%,这主要是由缓存的额外开销所影响的。
在100Mbps带宽下,RFB和RDP使用缓存在等待时间、数据传输量和视频性能上几乎没有什么影响。ICA的高速缓存使平均网页等待时间增长了40%。这说明在高带宽网络环境中ICA缓存的额外开销超过它的好处。但ICA的缓存机制却减少了数据量的传输。ICA传输文本数据、图像数据和视频数据时,数据量分别减少为原来的55%、34%和62%。但此时由于传输速度减慢、传输数据量减少,严重降低了视频质量,致使视频质量从大约50%降到不足5%。这说明ICA高速缓存的额外开销在高带宽环境下超过其对性能的贡献。
3结束语
由以上对影响瘦客户平台性能的几方面因素的分析可得出以下结论:
(1)在带宽足够高的情况下,显示编码计算的复杂程度是决定性能的主要因素,而并非其生成数据量的大小。基于像素的显示编码计算简单;图形编码方式带宽利用率一般较高,但若屏幕内容为图文混合时,像素编码方式却比图形编码方式的带宽效率高。像素编码与图形编码相比具有更好的平立性。
(2)显示更新机制是视频质量的重要决定因素。带宽较宽时使用服务器驱动的急切更新模式,能获得较好的视频性能;较低带宽下为减少响应时间,节省网络带宽,使用懒惰更新机制,它通过放弃或者融合显示更新牺牲了视频质量。客户端驱动容易造成客户请求的瓶颈。
(3)压缩和缓存都能降低数据量的传输,但在不同网络带宽下,压缩与缓存在计算开销和带宽保留之间存在着平衡的问题。简言之,当有足够的网络带宽时,减少处理时间是可取的,而在较低的网速下减少传输的数据总和是有益的。
借鉴上述平台的优点,使瘦客户平台在不同的网络环境下都具有较高的性能,并对各种应用传送的屏幕内容都能很好地适应。要求其具有智能选取显示编码(或开发出具有更好适应性的显示编码)和更新机制的能力;智能地控制压缩和缓冲的打开及关闭。通过智能启发式的机制,在用户不干预的情况下,通过测量自动判断目前的状况并动态适应,从而使瘦客户平台具有对客户机计算能力和带宽的适应性,即在各种网络带宽和客户机的情况下,都能获得较高的性能。以上分析为今后开发具有自我知识产权的高性能瘦客户系统提供了基础。
参考文献:
[1]RICHARDSONT,STAFFORDFQ,WOODKR,etal.Virtualnetworkcomputing[J].IEEEInternetComputing,1998,2(1):32-38.
[2]RICHARDSONT.TheRFBprotocol[S].[S.l.]:RealVNCLtd,2003.
[3]MicrosoftCorporation.MicrosoftWindowsNTserver4.0,terminalserveredition:anarchitecturaloverview[R].[S.l.]:Redmond,1998.
[4]Bocaresearch.citrixICAtechnologybrief[R].[S.l.]:BocaRaton,1999.
[5]TarantellaCorporation.Atechnicaloverview,Atarantellawhitepaper[R].[S.l.]:[s.n.],2001.
[6]NIEHJ,YANGSJ,workcomputinglaboratory[R].[S.l.]:ColumbiaUniversity,ComparisonofThin-clientComputingArchitectures,2000.
[7]YANGSJ,NIEHJ,NOVIKN.Measuringthin-clientperformanceusingslow-motionbenchmarking[J].ACMTransationsonComputerSystem,2003,21(1):87-115.
计算机体系结构范文4
关键词:云计算 体系架构 关键技术
中图分类号:TP309 文献标识码:A 文章编号:1007-9416(2014)05-0083-02
1 引言
云计算借鉴了传统分布式计算和网格计算的思想,使用服务器集群构成数据中心来存储软硬件资源,以服务的形式交付给用户。用户可以通过“按使用付费”的模式使用这些服务,同时云计算可以根据所需服务动态分配资源,根据变化做出响应,通过资源池的持续分享,来提高资源的利用效率。
云计算是一种新兴的、最初由企业提出的商业模型,而与之相关的网格计算产生于科研机构,是为了完成某一个特定的任务需要,其目的是为了各科研机构能够进行数据资源共享,提高资源使用率。网格计算没能产生一种成功的商业模式,仅仅停留在理论的研究上,而云计算备受关注是因为技术创新为用户提供的服务。从某些方面讲,云计算不再一味追求高性能,而更加综合地考虑商业模式中的经济成本、可靠性和可用性。
2 云计算的体系架构及其特点
2.1 云计算的体系架构
从云的部署模式看,云计算可分为:公有云、私有云和混合云。公有云是由第三方公司提供的,通过互联网将服务器、存储数据等软硬件资源提供给用户使用的云计算环境;私有云是一些企业在内部网络中搭建和使用的云计算平台;混合云是公有云和私有云的混合,这种模式将成为企业的典型模式。
从服务类型上看,目前云计算服务主要可以分为IaaS(构架即服务)、PaaS(平台即服务)、SaaS(软件即服务)。IaaS是向用户提供包括计算和存储在内的IT基础设施;PaaS是向用户提供包括数据处理模型和海量数据存储在内的平台环境开发;SaaS是向用户提供无需本地安装的软件(如图1所示)。不同用户群体可以使用不同云计算产品来满足自身的需要。
2.2 云计算的特点
云计算作为信息产业的一项创新,有着其自身突出的特点,主要表现在。
(1)动态服务模式,提供商可以根据需要动态的扩展和配置云,对闲置不用的资源进行管理,规避了风险,而用户是以自助计费的模式从云中(共享资源池)获取服务,这样大大提高了资源的整体利用率,为云服务商和用户都节省了开支。(2)资源虚拟化共享,通过引入虚拟化技术,云服务商在平台的部署、数据实时迁移、兼容性等方面具有较好表现,而在用户使用资源尤其是软硬件资源时可以根据虚拟机内部资源使用情况灵活变更调整。(3)接入广泛,云服务支持各种终端的接入,用户可以使用除电脑外的其它异构终端(如智能手机)接入云,大大丰富了用户体验。
3 云计算的关键技术
3.1 数据中心网络技术
云计算往往需要部署大规模的数据中心以完成计算存储功能,传统的树型网络拓扑往往存在缺陷,一是若核心层的网络设备发生异常,网络性能将会大幅下降;二是网络设备端口有限,难以支持大规模网络的扩展;三是网络中节点之间的连通性和容错能力有待提高。为了弥补传统网络拓扑的缺陷,目前云计算中已研究出PortLand、
Dcell等新型的网络拓扑结构(如图2所示),这些结构更利于网络性能的提高和节点的扩展,降低成本。
PortLand结构由核心层、汇聚层和边缘层构成,汇聚层和边缘层可分解为若干个Pod,Pod中的交换机两两连接,若每个Pod中含有k台交换机,则可连接k2/4台核心交换机、k3/4个节点,这种结构可以保证计算机节点之间两两通信无阻塞,从而大大提高了网络的可靠性。
3.2 虚拟化技术
虚拟化技术在20世纪60年代就已经开始使用,目前硬件方面包括Intel和AMD等公司在硬件辅助虚拟化技术的研究,软件方面包括VMware、KVM等虚拟机技术的研究都有了成熟的发展。在云计算中使用虚拟化技术不仅可以降低IT成本,还可以增强系统的可靠性和安全性。这种技术的目标是为了对包括基础设施、系统软件、应用软件等资源的管理、使用进行简化,为这些资源提供标准的接口,从而隐藏了计算资源的物理特性。
从被虚拟化的资源看,虚拟化技术分成软件虚拟化、系统虚拟化和基础设施虚拟化,云计算中主要使用虚拟机技术和服务器虚拟化技术。
服务器虚拟化需要实现对服务器中CPU、内存、I/O等硬件设备虚拟化,其中CPU的虚拟化一般采用二进制代码翻译技术或者对虚拟化层进行超级调用来完成指令的运行[1];内存虚拟化是将服务器的物理内存统一管理,为各个虚拟机提供互相间隔的、连续的虚拟内存空间,同时需要在虚拟机监视器中建立一个内存管理单元,用于存储和维护物理机器内存和虚拟机逻辑内存的映射关系。
3.3 编程模式
云计算需要业务公司根据特定服务需求来编写程序,因此它的编程模型必须透明、简单,并且尽可能地屏蔽底层硬件的细节处理,支持大规模扩展。目前云计算中主要使用的编程模式是Google公司提出的MapReduce模型[2],程序员在Map函数中指定对各分块文件的处理过程,在Reduce函数中指定如何对分块数据的中间处理结果进行处理。这种编程模型指定程序分为文件输入、Map阶段、写中间文件、Reduce阶段、文件输出五个阶段(如图3),程序员不需要关心如何将文件分块、调度,系统同时给出了网络中节点通信以及节点失败的处理等,当某一个worker节点发生错误时,系统会将该worker节点屏蔽在系统外进行修复,并将该worker上执行的程序转到其他节点上执行,同时通过Master将迁移信息发送给需要该节点处理结果的节点上。
4 云计算中安全隐患
云计算的安全问题涉及很多,包括数据加密、数据完整、用户管理、应用程序安全、虚拟机安全等诸多方面,当使用云服务的个人或企业把数据交给云计算服务商后,云计算服务商往往比用户具有更高的数据优先访问权限,并且数据的大量长期储存,云服务商是否能长期稳定发展也会影响服务的稳定性;数据一直处于共享环境下,即时采用加密手段,也无法保证数据的机密性和完整性;云计算中有很多实时业务,这些可能隐藏着漏洞攻击的实时业务数据流,需要研究更加有效的主动防御策略加以应对。
5 结语
云计算是一种新兴的技术理念,其体系结构和技术上的优势使得使用云平台承载各种大规模服务已成为了信息产业的一大趋势。它涉及和融合了计算机领域中很多方面的技术研究,包括数据中心网络技术、虚拟机技术、编程模型等,本文仅仅研究了云计算体系结构和主要涉及到的技术,在数据存储、安全防护等方面还需要进一步研究。
参考文献
计算机体系结构范文5
随着计算机/通信网络技术的迅速发展及其在军事领域的广泛应用,计算机网络与作战越来越联系紧密,已成为新的作战空间。计算机网络对抗作为一种新型的作战手段在现代化战争中将发挥越来越大的作用,因此计算机网络对抗体系结构作为计算机网络对抗的基础,显得尤为重要,并越来越受到重视,大量学者开展了相关的研究。李雄伟[1]等研究了网络对抗效能的评估指标体系,并设计了网络对抗体系结构,由信息支援、信息攻击和信息防护3部分组成。陈文斌[2]基于设计了协同网络安全对抗模型,由安全攻击、安全机制和安全服务三者构成。刘海燕[3]等基于高层体系结构(HLA)在HLA标准下构建了网络对抗仿真系统的层次模型,用对象模型模板(OMT)表格的方式对网络对抗仿真系统进行了描述。王付明[4]等认为网络对抗技术体系是一个灰色系统,并针对网络对抗技术能力的抽象性和难以度量性,采用灰色关联分析方法建立了网络对抗技术能力评估模型。卢云生[5]分析了计算机网络战的作用和对象,探讨了信息战背景下计算机网络攻击系统的组成和作用,提出了计算机网络攻击体系结构,由网络侦察技术、网络攻击技术、网络对抗数据库3部分组成。这些研究成果,从网络对抗评估指标、安全对抗模型、网络对抗仿真以及网络对抗技术体系等方面进行了研究,推动了网络对抗技术的发展,于网络对抗技术在网络中心战中发挥重要作用,但是作为一种作战手段,计算机网络对抗需要成体系、成系统地进行全面研究和建设,而不能仅仅依靠某一方面的技术。为此,设计了计算机网络对抗体系结构,包括系统体系结构和技术体系结构,并基于该体系结构设计了典型的计算机网络对抗试验环境。通过该体系结构的研究,可推动计算机网络对抗技术成体系的发展,有力地支撑信息时代的网络中心战。
1计算机网络对抗体系结构
1.1系统体系结构
计算机网络对抗是作战双方针对可利用的计算机网络环境,在计算机网络空间所展开的各类对抗活动的总称,是以该环境中的计算机终端、交换机、路由器以及它们构成的网络为作战对象,以先进的信息技术为基本手段获取制信息权,以赢得局部战争的胜利为最终目的。计算机网络对抗包括瓦解、破坏敌方计算机网络以及保护己方计算机网络所采用的技术、方法和手段等。为此设计计算机网络对抗系统体系结构如图1所示,计算机网络对抗系统由网络攻击、网络防御、对抗评估以及对抗指挥4部分构成。网络攻击在对抗指挥的统一控制和指挥下开展对敌方计算机网络的攻击,以获取敌方计算机网络的相关信息(包括拓扑结构、节点位置、应用协议、传输的信息等)或破坏敌方计算机网络为目的,承担对抗指挥的攻击职能。为了实现网络攻击职能,网络攻击系统应该由网络侦察、情报处理、攻击决策、网络进攻等子系统构成。网络侦察子系统通过一定的技术手段获取敌方计算机网络的相关信息,包括拓扑结构、存在的漏洞、运行模式等,为网络进攻奠定基础。情报处理子系统是对网络侦察子系统获取的信息进行综合加工,提取可用于攻击的漏洞或缺陷等信息。攻击决策是在情报处理基础上,根据敌方计算机网络存在的漏洞或缺陷等信息,选择相应的攻击技术和设备,组织对敌网络进行攻击。网络进攻子系统由各种计算机网络攻击设备组成,根据攻击决策子系统的指令,直接开展对敌计算机网络攻击。网络防御是在对抗指挥的统一控制和指挥下开展对我方计算机网络进行防护,以保障我方计算机网络的正常运行和信息的安全传输,承担对抗指挥的防御职能。为了实现网络防御职能,网络防御系统由脆弱分析、终端防护、网络防护以及协议安全等子系统构成。脆弱分析子系统根据我方计算机网络的拓扑结构、运行协议、运行模式、组织应用等情况,通过综合分析,挖掘我方计算机网络存在的脆弱性和安全需求,为终端防护、网络防护以及协议安全提供支撑。终端防护根据计算机网络中终端的特点,如操作系统类型、存在的漏洞、应用系统、硬件平台等,采取相应的防护手段,确保终端的安全,保障应用系统正常运行。网络防护子系统根据网络拓扑结构、网络协议等,采用多种手段对网络进行综合防护,包括入侵检测、防火墙等。协议安全是针对TCP/IP协议族在设计上存在的缺陷,从协议的角度进行安全增强,弥补TCP/IP等协议的缺陷。对抗评估是对抗指挥的统一管理和控制下,对网络攻击系统以及网络防御系统进行效能和安全性评估,使更有效的发挥其功能。对抗评估系统由效能评估、安全测试、对抗测试、模拟仿真等子系统构成。效能评估子系统是在攻击效能评估指标体系下对网络攻击系统的攻击效能进行评估,以便对网络攻击系统的作战能力进行评价。模拟仿真子系统是通过模拟仿真手段构造敌方或者我方计算机网络,便于评估和测试网络攻击系统以及网络防御系统的作战效能。安全测试子系统是根据相关的安全防护标准以及指标体系对网络防御系统的防御能力进行测试。为了进一步评估网络防御系统的作战效能,对抗测试子系统采用网络对抗的测试方式和环境,测试网络防御系统的防御能力。对抗指挥是整个计算机网络对抗系统体系的核心,承担整个对抗系统的指挥控制职能,保障整个对抗系统的有序正常运行和作战效能的发挥。对抗指挥系统由设备管理、指挥控制、态势处理和应急响应四部分构成。设备管理是对所有的攻击设备、防护设备和评估设备进行统一管理和控制,包括相应策略的下发。指挥控制是通过协调和调动所有相关设备对敌进行协同攻击,对我方网络进行协同防护,充分发挥所有设备的作战效能。态势处理通过收集敌方计算机网络的相关信息和我方计算机网络的相关信息,做到知己知彼,并进行直观的展示,辅助作战人员进行指控控制。应急响应通过感知计算机网络中所发生的紧急事件,并以此作为多种应急预案选择的依据,从而确定相应的处置过程,以保障计算机网络在多种紧急情况下能够正常运行。
1.2技术体系结构
根据计算机网络对抗系统体系结构,设计网络对抗技术体系结构如图2所示,计算机网络对抗技术体系结构由网络攻击、网络防御、网络评估、对抗指控四部分技术构成。网络攻击技术包括物理攻击技术、能量攻击技术、病毒攻击技术、拒绝服务攻击技术、密码分析技术、协议攻击技术等。物理攻击技术主要以硬杀伤为主要手段,攻击敌方计算机网络中的重要部件或接口装备,特别是破坏计算机的中央处理器、硬盘、存储芯片等,具有彻底性和不可逆性。能量攻击技术主要是采用诸如电磁脉冲炸弹等的高功率武器或设备,破坏敌方计算机网络中的通信装备或基础设施,导致敌方计算机网络瘫痪。病毒攻击技术利用对方计算机网络存在的漏洞,通过植入病毒木马等方式,攻击敌方计算机网络。拒绝服务攻击技术就是利用对方计算机网络存在的缺陷,通过发送大量攻击报文或控制对方网络的重要设施,导致对方计算机网络不能提供正常服务。密码分析技术是加密技术的逆过程,是通过对方的密文等信息,获取相应的明文或者加密算法、参数以及密钥等。协议攻击技术就是利用计算机网络通信协议本身的缺陷,攻击对方计算机网络的方法,如ARP协议攻击等。网络防御技术包括访问控制技术、入侵检测技术、安全审计技术、防火墙技术、终端监控技术、防病毒技术以及加密技术等。访问控制技术就是通过一定的技术手段实现主体对客体的有序合法访问,防止非法或越权访问,常见的访问控制技术包括强制访问控制MAC、自主访问控制DAC、基于角色访问控制RBAC以及基于身份访问控制IBAC等。入侵检测技术是通过模式匹配、关联分析等手段,发现网络中可能存在的攻击行为或事件,为联防联动提供支撑。安全审计技术通过收集和分析各种安全日志或者网络中传输的数据或者操作者的行为,以挖掘各种攻击事件或违规行为,实现事后追踪和责任认定。防火墙技术基于五元组(协议类型、源地址、源端口、目的地址、目的端口)对网络中传输的数据进行过滤和控制,防止非法数据在网络边界的流动。终端监控技术基于操作系统提供的各种函数或接口,实现对终端各种外部接口以及资源(如硬盘、光驱、CPU等)的监控。防病毒技术通过特征码匹配以及智能识别等手段检测计算机网络中存在的病毒,并对病毒进行处理,避免病毒的破坏。加密技术基于相应的加密算法将明文转化为密文,防止重要信息的泄露。网络评估技术包括基线扫描技术、对抗测试技术、攻击效能评估技术等。基线扫描技术是在获得授权的情况下对系统进行检测,并将目标设备或网络与相应的安全标准进行对比,以评估目标设备或网络的安全性。对抗测试技术通过专业测试人员模拟入侵者常用的入侵手法,对被评估设备或网络进行一系列的安全检测,从而发现评估对象存在的安全问题。攻击效能评估技术通过模拟仿真或实物的方式对攻击设备进行测试,获取攻击设备的作战效能,评估可能对敌计算机网络造成的破坏。对抗指挥技术包括设备管理技术、应急处置技术、指挥调度技术、态势处理技术等。设备管理技术通过统一的接口规范收集攻防设备的信息,并下发相应的攻防策略,实现对所有的设备的统一管控。应急处置技术通过制定应急响应预案以及相应的资源调度策略等,实现紧急事件处理的方法,保障计算机网络能够应对各种突发事件。指控调度技术通过提供相应的人机界面,提供攻防人员对攻防设备的控制,实现多种攻防设备的协同作战和有序调度。
2计算机网络对抗试验环境
基于计算机网络对抗体系结构,设计网络对抗试验环境如图3所示,主要由网络对抗系统、网络防御系统、对抗评估系统以及对抗指挥系统组成。基本的网络对抗系统由攻击决策设备、情报处理设备、网络侦察设备以及相应的攻击设备构成。基本的网络防御系统由终端监控系统、入侵检测设备、防火墙、安全审计设备等构成。基本的对抗评估系统由安全测试设备、攻击效能评估系统、对抗测试系统以及相应的模拟仿真设备构成。基本的对抗指挥系统由态势处理服务器、指挥控制系统、设备管理服务器以及应急响应服务器构成。(1)网络防御试验流程在进行网络防御试验时,需要综合应用对抗指挥系统、对抗评估系统甚至网络对抗系统的相关设备进行试验,其大体流程如下:①指挥控制系统根据安全防御需求,生成相应的网络防御方案,包括网络防御设备清单以及设备的部署图;②根据网络防御方案,部署相应的网络防御设备;③设备管理服务器为所有网络防御设备配置安全策略,并使所有网络防御设备开始工作;④网络对抗系统的攻击设备发出各种攻击,网络防御设备检测和抵御这些攻击,并将相应信息上报到态势处理服务器;⑤通过态势处理服务器可以直观得到网络防御的性能和强度,必要时可以将这些信息输入到对抗评估系统进行评估。(2)网络对抗试验流程在进行网络对抗试验时,需要综合应用对抗指挥系统、对抗评估系统以及网络防御系统的相关设备,大体试验流程如下:①指挥控制系统根据试验目的,生成相应的网络防御图,包括网络防御设备以及对应的安全策略;②根据网络防御图部署相应的网络防御设备,并有指挥控制系统发出攻击测试开始指令;③网络侦察设备开始扫描目标网络,并把获取的信息上报到情报处理设备;④情报处理设备对这些信息进行分析,获取目标网络存在的漏洞或缺陷,并上报给攻击决策设备;⑤攻击决策设备根据发现的漏洞和缺陷,以及网络对抗系统具备的攻击能力,组织相应的攻击设备开始攻击;⑥攻击设备开展攻击操作,并把攻击结果或获取的信息上报给攻击效能评估系统;⑦攻击效能评估系统对攻击效能进行评估,并把评估结果上报给态势处理服务器,进行直观展现。
计算机体系结构范文6
【关键词】计算机软件 模拟技术 应用问题
1 计算机体系结构软件模拟技术概述
1.1 计算机体系结构软件模拟技术探索阶段
计算机体系结构软件模拟技术所针对的是计算机中重要的组成部分――CPU而开发的。在上世纪八十年代,计算机并没有得到普及,当时所使用的技术是数据驱动技术,这种技术可以在执行海量的计算机操作之后,依照所收集到的数据来对CPU进行检测与分析。在随后的时间里,数据驱动技术在一些创新型分析技术的影响下得到了巨大的进步,在计算机行业中被称为性能分析模式技术。这种新型的分析技术,在CPU的研发中得到了广泛的使用,并且在很大程度上降低了开发的时间、成本以及投资的风险。
1.2 计算机体系结构软件模拟技术研发阶段
随着计算机水平的不断提高,技术工作人员通过前面的探索工作,整理出来了一套全新的软件研发技术。这套技术能够通过性能分析模式,有效地实现对计算机系统的改良,改良后的系统可以在CPU中正常地运用软件模拟技术。这样的软件模拟技术能够让计算机体系结构,不仅实现了性能分析技术的应用,同时还可以有效地控制系统的运转,在很大程度上降低了研发的成本。研究成本降低,研究风险也就相应地得到了减小。由于现在的软件研发越来越看重用户体验,在研究阶段将考虑重点放在技术受用人群以及技术的实用性上。
2 计算机体系结构软件模拟技术应用问题分析
2.1 计算机体系结构软件简介
计算机体系结构模拟技术的出现,可以通过其技术的灵活性与兼容性,在不同等级的计算机中进行模拟运行。除此之外,还可以依照用户需求来制定出相应的模拟系数,可以由用户来设置不同难度等级的模拟系统。计算机体系结构模拟技术结合了传统的CPU性能分析预测,通过利用其分析技术所得出的平均值来提高对计算机体系的动态信息收集以及分析,可以有效地实现对计算机体系的规律进行整理与分析,然后由技术人员对所收集整理的动态信息进行区分,把整个过程划分为初始化运行、稳定运行以及运行终值。这项技术在后续得到了高速的发展,很快就成为了分析技术的主流。
2.2 计算机体系结构模拟技术应用问题
现行的计算机体系结构模拟技术是以传统的性能分析技术为基础而发展的。在一定程度上模拟技术传承了之前技术的一些优点,突出了一些技术特有的优势,但是在某些层面上还存在着一些问题。首先,计算机体系结构模拟器的研发,就当前的技术而言,开发时间以及投入资金都存在有一定的难度。其次,模拟技术的投入使用,在一定程度上缩减了模拟时间,但还是不能更好地满足实际要求,还有一定的改进空间,以此来提升处理器的研发效率,在很大程度上可以降低开发的投入成本与开发周期。最后,虽然经过近几年的发展,模拟结果虽然已经达到了一定的精度,与之前传统的分析结果模拟结果进行对比,有了较大程度的提高,但是同样与实际需求有一定的出入,不能单纯地依靠模拟器自身来实现辅助计算机系统体系结构的设计目标,需要结合一些其它方式来配合完成。
2.3 解决计算机体系结构软件模拟技术应用问题的方法
第一,软件模拟技术中模拟时间较长的问题,可以通过删减测试程序的参考输入参数来解决。把一些没有必要的参数以及一些作用不大的指令集进行删除,这样可以在很大程度上降低模拟运行的时间。通过这种删减法,可以把一些必要的以及在测试中标准的程序指令保留下来,利用参数集的输入数可以有效地进行控制,并且能够缩短模拟时间。采用这种模拟技术,所获取到的模拟结果的精准度能够得到保证,还具有了缩短模拟时间的优点。
第二,计算机模拟主要包括了收集数据、整理数据、构造模拟数据、编写数据并对数据进行验证,最后还包括了软件运行和分析结果(如图1所示)。
数据收集主要是对多个原始评价数据进行收集,数据整理是指依据收集到的数据对数据整体分布情况进行判断。判断整体的分布包括了两步,第一步:依据数值对整体可能的分布进行大致了解,第二步:进行分布函数的拟合检验。直方图法是概率密度的近似求法,直方图以及概率分布在识别一个分布的形状时发挥着较大的作用。
随机变量生成公式的构建必须依靠判断出的数据分布概率密度概述,依照公式形成对应分步的随机变量。比如
是正态分布随机变量产生的模拟模型。为了实现在计算机上进行模拟,应当通过计算机程序语言对数学逻辑模型进行调整,使其成为计算机程序模型。通过调试性模拟对数学逻辑模型的正确性进行验证,进而对模型进行修改,对计算机程序进行调整。
3 结束语
人们对于计算机性能的需求越来越高,虽然计算机体系结构软件模拟技术在一定程度上还无法满足于实际的要求,但是,这也算是一种技术的革新与进步的表现。相信经过技术人员的不断研究,计算机软件模拟技术能够发挥出其巨大的作用,有效地降低开发周期以及投放成本。
参考文献
[1]高向玉,黄振.计算机体系结构软件模拟技术探索[J].产业与科技论坛,2014,(24).
作者简介
牛兴霞(1981-),女,河北省唐山市人。研究生学历。现为唐山工业职业技术学院讲师,主要从事计算机应用研究工作。