人工智能导论论文范例6篇

前言:中文期刊网精心挑选了人工智能导论论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

人工智能导论论文

人工智能导论论文范文1

关键词:人工智能;深度学习;教学建议

0 引言

传统的人工智能课程主要包括人工智能导论、模式分析、机器学习、数据挖掘等。这些课程由各个院校根据专业情况不同而选择,课程的内容也有较大差别,但是,基本上都涉及人工神经网络的内容。然而在人工神经网络的教学内容上,一般只讲解经典的多层感知器和反向传播算法,或再加入一些反馈网络的内容,这种教学内容设计的一个不足是忽视了人工智能领域的最新发展——深度学习,它是近几年人工智能领域最具影响力的研究主题,并在大规模语音识别、大规模图像检索等领域取得突破。

北京邮电大学计算机学院开设人工智能科学与技术的本科专业,笔者从事深度学习的研究工作,同时承担了本科生和研究生人工智能类课程的教学工作,因此产生了将深度学习内容引人人工智能类课程的想法。本文先介绍深度学习的背景,说明深度学习在人工智能发展中的地位,之后分析了将深度学习基本内容引入人工智能类课程的必要性和可行性,最后给出了一些实施建议供探讨。

1 深度学习背景

2006年,加拿大多伦多大学的GeoffreyHinton教授与Salakhutdinov博士在美国《科学》杂志发表了题为“Reducing the Dimensionality ofDatawith Neural Networks”的论文,该文提出一种学习多层神经网络的方法,并将这种具有多层结构的学习方法命名为深度学习(Deep Learning),而这成为深度学习研究的一个导火索,从此深度学习的研究与应用蓬勃发展起来。

深度学习在语音识别与生成、计算机视觉等应用领域取得了突出进展。近几年的国际机器学会(International Conference on MachineLearning,ICML)、神经信息处理大会(AnnualConference On Neural Information Processing Systems,NIPS)、计算机视觉大会(InternationalConference on Computer Vision,ICCV)、

声学语音与信号处理大会(International ConferenceOn Acoustics,Speech,and Signal Processing,ICASSP)、计算语言学大会(Annual Meeting of the Association for Computational Linguistics.ACL)、计算机视觉与模式识别(InternationalConference on Computer Vision and P atternRecognition,CVPR)等都有不少相关的研究论文、会议教程和小组研讨会(Workshop)。美国国防高级研究计划(DARPA)也提出了关于深层学习的研究项目。此外,2013年6月《程序员杂志》的封面故事,采访了周志华、李航、朱军3位国内的机器学习专家对于深度学习的看法,他们一致肯定了深度学习在机器学习领域的贡献。

工业界对深度学习也寄予了很高期望。2012年6月,《纽约时报》报道了斯坦福大学计算机科学家AndrewNg和谷歌公司的系统专家JeffDean共同研究深度神经网络的机器学习模型在语音识别和图像识别等领域获得的巨大成功。2012年11月,微软公司在天津公开演示了一个全自动的同声传译系统,其关键技术也是深度学习。2013年1月,百度公司首席执行官李彦宏先生宣布建立深度学习研究院(Institute of Deep Learning)。2013年3月,谷歌公司收购了由深度学习创始人Geoffrey Hinton创立的公司。

从学术界与工业界的研究态势看,深度学习已经成为机器学习与模式识别,乃至人工智能领域的研究热点。正是在这样一个背景下,人工神经网络重新回到人们的视野。此前人工神经网络的发展大致可以分为两个时期,1943年,McCulloch和Pitts提出了最早的人工神经元,这种神经元具有学习能力,这是人工神经网络的发端,也可以被认为是人工智能的发端(当时还没有人工智能这个术语)。1949年,Hebb提出了Hebbian学习算法。1957年,Rosenblatt提出了感知器的神经网络模型。1969年,Minsky和Papert分析了这种感知器神经网络模型的局限性。然而,很多研究者认为,感知器的这种局限性对于所有的神经网络模型都适用,这使人工神经网络的研究很快暗淡下来。1980年代中期,诺贝尔奖得主John Hopfield提出了Hopfield神经网络模型,这种Recurrent神经网络具有的动态性有可能用于解决复杂的问题。同时,多层前向神经网络的后传算法也被重新发现,这两个工作使人工神经网络得到重生。这时,人工神经网络已经成为人工智能的一个重要组成部分。但是,在随后的研究中,人们发现,当学习多层神经网络包含更多的隐藏层时,后传算法并不能学到有效的网络权值,这使得神经网络的研究再次陷入低潮。此次以深层神经网络为代表的深度学习重新回到研究的舞台,其中一个重要因素是Hinton提出的逐层预训练神经网络方法治愈了多层神经网络的一个致命伤。

2 必要性与可行性

深度学习的发展使得从事教学一线的教师也无法忽视这个颇具影响力的研究主题。为此,我们提出将深度学习这个主题引入到人工智能类课程中,将它作为课题教学的一部分。

2.1 必要性

将深度学习这个主题引入到人工智能类课程中的必要性主要包括如下4点。

1)深度学习是人工智能的前沿。

2006年以来,深度学习的研究席卷了整个人工智能,从机器学习、机器视觉、语音识别到语言处理,都不断涌现出新的研究工作和突破性进展。深度学习不仅在机器学习领域成为研究热点,同时在多个应用领域也成为有力工具,而且,在工业界的系统应用中,深度学习成为其中的关键解决技术。

2)深度学习是人工智能的突破。

深度学习的发端是神经网络。关于神经网络的论述,在人工智能类常见教科书中还停留在多层神经网络,即神经网络的第二阶段,它们大部分描述多层结构无法训练的现象。但是,从深度学习的角度看,深层神经网络不仅可学习,而且有必要,这与第二代神经网络的观点是完全不同的。深度学习突破了原有人工神经网络的认识,超越了人工智能神经网络教科书中的原有内容,因此,有必要将多层神经网络结构的可学习性告知学生,从新的视角纠正原有的观点。

3)深度学习是人工智能的延伸。

深度学习不仅提供了一种可以在深层神经结构下训练网络的方法,也包含了不少新的内容,是人工智能的新发展,为人工智能补充了新的内容。到目前为止,深度学习至少包括:从生物神经网络与人类认知的角度认识深层神经网络的必要性;如何构建和学习深层学习网络;如何将深层结构用于解决视觉、语音、语言的应用问题;如何看待深度学习与原有的机器学习方法,如流形学习、概率图模型、能量模型的直接关系;深度学习与其他学科的关系等。

4)深度学习是学生的潜在兴趣点。

大学生对知识有着强烈的好奇心,加之当前信息技术的发达,部分对智能感兴趣的学生可以从其他途径了解到这个学科发展的前沿。因此,顺势而为,将深度学习这个主题做具体讲解,满足学生的好奇心,培养他们对学科前沿与发展的认识,是十分必要的。对高年级的学生而言,了解深度学习的基本知识,是他们全面认识人工智能与发展前沿的一个途径,而对于研究生,较多地了解和掌握深度学习的基本知识有助于他们研究工作的开展。

基于以上几点,笔者认为,将深度学习这个主题引入到人工智能类课程中非常有必要。深度学习作为人工智能的前沿,既是对人工智能原有理论和技术的一个突破和补充。

2.2 可行性

将深度学习引入到人工智能类课程中的可行性主要包括如下3点。

1)深度学习与现有人工智能联系密切。

深度学习并不像突兀的山峰拔地而起。而是深深植根于原有的人工智能理论与技术。深度学习是以神经网络为出发点,这正是深度学习教与学的切入点。比如,可以通过对多层感知器隐藏层的增加和后传算法的失效来讲解深度学习是如何解决这个问题的。再者,深度学习的一个核心构建“受限波尔兹曼机(Restricted Boltzmann Machine)”,可以被认为是一种能量模型,而这种模型与Hopfield网络都可以从物理学的能量模型角度分析,RBM可以认为是Hopfield网络的随机扩展。总之,深度学习与现有人工智能的联系,使学习深度学习变得容易。

2)深度学习的基本内容并不深。

深度学习有个很好的名字,这个名字恰当地描述了特定的学习结构。比如,深度学习的核心部件受限于波尔兹曼机RBM,其结构非常简单。从神经网络的角度,受限波尔兹曼机是一种随机的双向连接神经网络,信号可以从可见层传递到隐藏层,也可以从隐藏层传递到可见层。网络中每个节点是具有特定结构的神经元,其中的神经元具有典型的包含自身偏置的Logistic函数的随机单元,能够依Logistic函数计算得到的概率输出0状态或1状态。概括地说,深度学习的基本内容在高年级阶段较易掌握。

3)深度学习的资料容易获得。

当前的信息资讯非常发达,有相当多的资料可以通过互联网等多种途径获得,这使学习深度学习成为可能。近期,中国计算机学会主办了多个技术讲座均涉及深度学习的部分;深度学习的创始人Hinton教授的主页也有很多资料;Coursera网站有免费的Hinton教授的神经网络课程;斯坦福大学的Ng教授提供了很多的在线教程;蒙特利尔大学Bengio教授发表的题为“Learning Deep Architectures for AI”的论文也是这领域的优质资料。

3 实施建议

在具体的教学过程中,笔者建议适当安排深度学习的最基本内容,内容不宜过多,也不宜占用过多的学时,可以根据教学对象的不同进行调整。比如,本科生的高年级专业课可以安排1学时的教学量,介绍层次训练的基本算法;也可以在高年级前沿讲座中安排2学时,内容覆盖面尽可能广泛。在研究生的教学中,可以根据教学的课程主题安排内容与学时。比如,神经网络主题的课程可以安排4-6学时的教学内容,包括波尔兹曼机及学习算法、深层信念网络与学习算法、深层波尔兹曼机与学习算法卷、积神经网络、自动编码器等。结合应用,课程还可以包含MNIST数字识别的应用、人脸识别的应用、图像检索的应用、语音识别中的应用等。另外,深度学习是一个实践性很强的研究,随机性:大规模(意味着数据不宜可视化,程序运行时间长)等多种因素混合,使深度学习在学习中不容易理解。为此,可以在条件允许的前提下,增加小规模的实验,辅助理解。最后,课件可以通过对优质资料做修改得到。

人工智能导论论文范文2

 

1 智能系·信科院

 

智能科技系是2002年9月初正式成立的,它完全根植于北人信息科学中心,末作增扩。后者的简称——“信息中心”——虽然易与“计算中心”或“情报资料中心”混淆,却是上世纪八十年代中期北大一些有识之士倡议建立的第一个多学科交叉研究中心。它以数学系、无线电f电子学)系和计算机系为主,联合心理学、中文、遥感等共十个系所而组成,宗旨是开展多学科交叉研究,充分发挥北大的综合优势。即使放在二十余年后的今天来看,这样的举措也是颇有前瞻性和魄力的。在此基础上,北大很快于1986年建立了第一个国家重点实验室。就是这样人数不多的一个机构,先后出过三名院士和一名北大常务副校长。以指纹识别为代表的研究成果进入国际先进行列,在国内得到广泛应用。

 

2003年9月10日,北京大学最大的学院——信息科学技术学院——成立。它包括计算机、电子学、微电子学和智能科学四个系,有十二个(研究)所和中心,两个国家重点实验室和若干部门实验室。系是教学单位,所和中心是研究实体。从此,智能科学系(暨信息中心、国家实验室三位一体)翻开了新的一页。

 

2 专业增列·学会指导

 

成立智能科学系除了要顺应北大“系并院”的潮流,也是完善作为学校基本建制单位所必备的。何新贵院士为系取了名称,如今许多学校也大都采用这样的称谓。查红彬教授担任系主任,笔者是主管学科建设和教学的副主任,具体参与负责各项相关工作。创办国内第一个智能科学与技术本科专业也是我们这一班人继承传统的首要任务。事实上,早在一年多前,大家就进行了酝酿,特别是中国人工智能学会教育工作委员会多次组织的相关研讨,成为重要的准备基础。

 

北大是一级学科下自主增设、增列学科专业的学校。系领导上任伊始第一件事就是要在当年申办智能本科专业,而且志在必得。为此,我们在前期制定了详细的步骤计划,进行了深入调研和各项准备工作。我们起草完成了所需的各项材料(人才需求论证、专业建设规划和适应培养目标的教学计划与课程设置方案、教师教辅队伍和基本办学条件说明以及国内外背景对比材料等),中国人工智能学会涂序彦等学者对此进行了专家论证,协助完成了论证报告。这些工作就绪后,我们在2003年10月下旬向学校主管副校长、教务部负责领导和学院领导做了汇报说明,并于10月30日正式提交申请材料。经学校的学部讨论通过,校教务部审核和校教学科研工作委员会论证(由于是国家公布专业目录外者),再经校学术委员会审议,报校长办公会批准,最后于12月15日前顺利完成了全部程序,报教育部备案。2004年初,教育部正式批复并公布了北京大学“智能科学与技术”新的本科招生专业。这个专业名称是查红彬教授建议的,日后成为教育部批复新申办学校的统一提法。

 

由于“智能科学与技术”未在国家公布的专业目录中,因此是增列而非设置,北京大学将其置于计算机科学与技术一级学科之下。由于北大历来严格控制招生规模,我们的30名招生计划是由信息学院其他三个系从原有计划分配名额中挤出来的。新专业的计划发展规模最终为50名。

 

3 教学计划·四校会议

 

智能科学系虽然成功地创建了国内第一个“智能科学技术本科”专业,但也面临着许多挑战。首先是缺乏本科教学的经验。尽管信息中心前身具有北大最早的硕士点、博士点和博士后流动站,研究生培养己历十余年,但一直实施科研主导体制,未曾从事过本科教学。师资队伍扩充快,新进年轻博士比例大,而真正有过本科教学经历者寥寥无几。此外,信息学院成立后开始调整教学计划,制定了一年级统一课程内容,新生是按学院统一招进来,第一年共同学习,后三年才分专业培养。我们虽然为申办专业制定了一套课程计划,但因不兼容学院的统一规划而未能第一次通过学院教学指导委员会的审核。为此,我们组织学院经验丰富的老教授,为本系青年教师进行教学培训,听取学院主管负责领导和几位多年从事本科教学管理的老系主任对教学计划的修订意见。

 

通过几个月的努力,我们完善了智能科学系的课程体系,并最终通过学院教学指导委员会的审核。这个教学计划具有几个特点:一个大基础——以学院的数、理和信息类为主,强调宽厚扎实;三个核心课程群作为专业理论基础,包括智能基础课程群(智能科学技术导论、人工智能、脑与认知科学、信息论、信号与系统)、机器感知课程群(生物信息处理、图像处理、数字信号处理、模式识别)和计算智能与知识发现课程群(智能信息处理、机器学习、数据挖掘、计算智能等),以及两门实验(机器感知和机器智能)和其他各种选修课。四年学分150分,其中必修88学分(包括全校公选26学分、大类平台20学分、学院要求的13学分、专业必修29学分),专业选修56学分(含专业课44学分、通选课12学分),毕业设计6学分。

 

为了更好地交流经验,扩大本专业的影响力,2005年5月,我们发起并与第二批获准的学校(南开、北邮、西电)在北大召开了四校研讨会,围绕各个学校在智能科学与技术本科专业的建设、招生、教学计划制定和未来发展设想等方面进行交流研讨,并建立了联系机制和网站。全国一些兄弟院校也纷纷来北大了解情况,开展座谈,我们则尽可能贡献自己的经验,给予支持。

 

4 招生·分流

 

从2004年开始,信息科学技术学院按学院大类招生,每年接收330~340名本科生,占全校的1/9左右。学生高考排名在全校属中上,但成绩分布差异较大。与学校的其他学院(多从一个系成长为一个学院,如数、理、化、生等)相比,信息学院是由四个不同的系合并而来的,专业跨度大,因此采用一年分流的模式(上述学院为二年分流),笔者被指定负责这项工作。我们提出自愿为主、计划为辅的方针,尽量满足同学们的兴趣志向。制定的分配计划是:电子学系120人、计算机系110人、微电子系70人、智能科学系30人,允许有10%的调整。分流工作在大一下学期(每年4月份)进行,包括全院动员、四个系专题介绍宣传、开放日参观咨询等几个步骤,可谓热闹非凡,同学们可以充分了解了四个系的专业特色。

 

为了克服盲目性引发的偏差,我们建立了一个网上分流系统,在正式填报专业前,增加了摸底预填报的环节,及时反馈群体意向的分布信息,指导学生们的选择,也便于学院掌握动向,调整措施。这种大类招生、进来一段时间后再分专业的举措体现了北大的人文关怀。智能专业初办,基础条件差,缺乏毕业生记录的宣传说明,与学院其他三个老牌系(电子学系50年历史、计算机和微电子系30年历史)相比较并无优势可言,但是我们通过扎扎实实的工作和细致有效的改进,使这个新方向日益显现出魅力。随着智能专业的成熟,特别是有了第一届毕业生后,就愈加受到更多学生的喜爱。

 

选择智能专业的人数逐年上升,2004级34人、2005级36人、2006级39人、2007级43人,目前正在进行的2008级分流达到45人。除了在信息学院内部的影响力不断扩大,北京大学其他学院的转系情况也开始有了可喜的变化。北大最好的元培计划实验班今年第一次有4名学生选择智能专业,医学部和光华管理学院也有申请者(本文成稿时这项工作还在进行),2008级学生肯定突破50名,我们在第五年就达到了创办智能科学专业的规划目标。

 

5 首届生·班主任

 

在新办专业中,有一项由教授担任智能本科专业班主任的举措。这是利用教授的学识、经验和责任心来更好地管理呵护自己的学生,避免了年轻教师因职称晋升等压力可能出现的疏漏。这一做法取得明显效果,不仅受到同学们的普遍欢迎,信息学院也开始考虑推行。笔者担任了智能专业的第一任班主任。首届学生(2004级)有34名,他们进入北大后毅然选择全新的智能专业是很有勇气的,全班有11名来自北京的学生,5名女同学,这个比例迥异于整个信息学院的总体分布。

 

该班学生的年龄恰与我自己的孩子相同,我天然地熟悉他们的一般特点,也理解家长们的想法。北大信息学院的淘汰率平均是7%,每年都有20多人退学。这班学生在大一时的成绩并不占优,其中有几人处在边缘位置,因此,我立下的最低目标就是确保所有同学不掉队。我首先通过全班民主选举任命了一个5人组成的班委会,这个5人机构在随后的几年中发挥了重要作用:其次走访宿舍,了解每个人的情况,为了消除代沟,我努力融入同学当中,学习熟悉他们的语境和思维想法。我同多数同学家长有过接触,从中更深入地掌握学生的性格特点,也包括寻求家长的必要配合。我与所有同学做过不止一次的个人交谈,经常是在晚间,很多时候是他们主动找我,谈遇到的各种困惑、自己的想法、志向等,我利用这些机会及时解决了具体问题。在学习上,我组织全班同学开展互帮互学,尤其对几门有难度的专业课程进行“联合攻关”。全班的“数据结构与算法”课程成绩甚至超过了计算机系。

 

几年来,全班团结互助,像一个大家庭,班委会也一再连任,得到全体拥护。到毕业时全部合格,实现了我的愿望。不仅如此,全班的学习成绩在学校的综合评估中优良率达93‰毕业设计都在良以上,有14人获优秀,更有三名同学的毕业论文被评为学院“十佳”论文。学院的第一、三名也都出自我班。34名同学中有22名继续保送本校读研(其中20人仍在本系),4名同学去了大的国企和知名外企工作,8名同学出国深造,在欧、美一些名校攻读博士,其中有一名学生同时拿到了包括哈佛、MIT、CMU、UCLA在内的著名大学的全额奖学金(最后选择MIT)。第一届智能专业学生的良好成绩极大鼓舞了我们,增强了我们办智能专业的信心,也为以后的几届同学做出榜样。

 

几年班主任的经历让我深深地体会到,进入二十一世纪的大学,教书、育人同等重要。要适应新时代年轻人的特点,保持我们民族的优良传统,把人格培养放在首位。能够进入北大的学生都是各地的尖子,当他们聚集在这所著名学府时,首先要调整原来俯视周围的习惯,学会平视甚至仰视其他同学,平和自己的心态,开阔胸怀,树立人生抱负和刻苦努力的决心,这样才能正确对待困难和挫折,才有所作为。班主任的工作往往细致入微,其实是把70%的精力用到30%的人上面。一些学生掉队是否可以避免,关键看班主任的工作是否到位。

 

6 培养体系·本研贯通

 

北大是(文)理科性质的学校,“智能科学与技术”专业也是按理学设置,尽管它更强调学科交叉。从智能科学的内涵来看,我们设立的培养方向更多地是继承自身传统和学校的综合优势,突出“以人为本”的脑认知和与心理生理结合,开展机器感知(视、听、触)和数据转换信息,进而发现知识的机器智能两个方面的研究。同时,我们配合学院的教学指导规划设置课程计划,除了全校的公共必修课程(外语、政治和体育),还有学院的公共平台课。第一年主要是夯实数学、物理和信息类的基础,后三年的专业课程安排是以必修的专业基础和机器感知与机器智能两个方向的专业核心课程为架构。为了强调学生的动手能力,还重点建设了两门实验课程。此外,还利用学校的各种本科科研基金项目(包括大学生创新基金、著政基金、泰兆基金、校长基金)和各个实验室承担的项目来吸引学生,培养他们思考问题的能力,提高他们的研究兴趣,为日后进一步深造打基础。由于绝大多数学生都将读研,这样的安排无疑起到了积极作用,并成为撰写毕业论文的基础。我们还打通了本科高年级与研究生一年级的课程,利用各种机会举办研究讲座,如龙星计划、专题报告、国际人工智能远程教学等活动,开阔学生的视野,引导研究方向,调动学生的潜质。从专业特点来看,我们的智能学科更偏向于“软”的一侧,因此也充分利用信息学院,特别是计算机系的各类教学资源来帮助扶持新办专业的成长。

 

我们原有的博士、硕士点是计算机应用技术和信号与信息处理两个方向,为了让我们的培养体系更加系统,我们进行了两年的精心准备。2007年底,我们正式向北大研究生院申请增列“智能科学与技术”硕士和博士点。经过必要的论证,最终获得批准,及时衔接第一届本科毕业生升研。至此,本、硕、博一以贯通,作为计算机科学与技术下的二级学科,一个完整的智能科学技术专业培养体系建立起来,从培养体制上保证了新兴智能专业的顺利发展。

 

7 特色专业·教学团队

 

五年来,北京大学智能科学技术本科专业从酝酿到创办,可谓初见成效,走过了颇具挑战的历程。除了确定具有特色的培养目标和方向外,还需要扎扎实实落实每一个环节,并在实践中检验。本科教学迥异于研究生培养,它的计划性、按部就班执行的严格性以及每堂课程的内容安排和效果评估必须一丝不苟。

 

信息学院秉承了北大的优良传统,对这个新办的专业给予了巨大支持和关怀,使我们能迅速成长起来。我们从一开始就有一套严格的课程设置审核程序、教案检查制度和新教师上岗准入的试讲考核手续。学院有一支由经验丰富的退休教师组成的督导组,随堂听课评估每一位教师的讲课内容、方式和教学效果,及时纠正问题。作业批改和试卷出题也都有严格规定。在课程体系的建设方面,信息学院打通了一年级的公共部分,深化和夯实了数理基础。

 

在专业课程上,智能科学系提炼了三个课程群,并组织教师进行重点建设。此外还加强对学生动手能力和独立思考解决问题能力的培养。

 

除了在专业上实施分流培养外,我们还针对北大学生的特点,在基础课采用实验班的A、B分级组合方式,满足不同专业对各自基础培养的要求。在专业课程群中,也允许不同兴趣的组合选择,充分发挥和提升学生的能力。为了更好地关怀学生顺利成长,我们除规定教授担任班主任外,还设立了本科生学术导师制,加强对学生的各种指导。智能科学系也注重师资队伍建设,引进了一大批(半数以上)优秀的年轻教师,其中信息学院中从国外回来的教师比例是最高的,为这一新兴学科注入了最具活力和新思想的力量。在招聘教师时,教学需求和能力成为评价的重要指标。

 

2007年,我们接受了教育部的学科评估,新办专业得到好评。学校开始关注我们的进步,在随后的一年中,我们一再从学校的竞争中脱颖而出,陆续获得了国家一类特色专业、北京市一类特色专业和北京市优秀教学团队等称号,2008年又获得国家级教学团队称号。我们的培养体系和人工智能双语教学也分获北京大学的教学一、二等奖。

 

8 结语·致谢

 

尽管北大年轻的“智能科学与技术”本科专业建设初见成效,但征程是漫长的,我们还会面临更多的挑战和问题。然而,智能科学这个本科专业方向是很有希望的,它不仅吸引了大学的新生,也在高考人群中产生着愈加重要的影响,它的健康发展需要大家共同的努力和精心培植。每所大学都有不同的特点,我们应该从学校、师资、方向、生源以及学科培养性质和目标等条件出发来建设新兴专业。以上是笔者对北京大学第一个“智能科学与技术”本科专业创建历程的回顾,希望与同行共享。

 

在专业建设过程中,许多人给予了热情帮助和支持。这里要特别感谢北大信息学院陈徐宗教授,感谢中国人工智能学会涂序彦和王万森教授。

 

最后引龚定庵一句名言:“但开风气不为师”。

 

9 总结与展望

 

本文介绍了厦门大学智能科学与技术系在学科发展、科学研究和人才培养方面的基本建设情况。我们希望这些初步的工作总结能对目前正积极筹办本专业的兄弟院校起到一定的借鉴作用。

 

“智能科学与技术”专业在我国的发展尚属初级阶段。尽管近几年得到了国内部分高校的重视,但其发展并不是很快,且进一步发展也存在一些障碍。比如,从专业配置来看,目前智能科学与技术并非一级学科,多数学校的“智能科学与技术”专业博士培养都是依附于其他相关专业。从长远来看,这并不利于整个学科的发展。希望通过各相关高校的广泛交流和积极配合,“智能科学与技术”专业在国内的发展能更上一层楼。

人工智能导论论文范文3

关键词:专家系统;课程建设;教学改革;实验教学;CLIPS

“专家系统”课程是本科专业“智能科学与技术”的特色课程之一,该专业是由北京大学在2004年率先自主建立的[1]。此后,国内很多大学也都陆续基于各自的特色建设开设了该专业,如北京邮电大学、南开大学、首都师范大学、西安邮电大学、北京科技大学、厦门大学、中南大学等。基于一个新兴本科专业设立的专业基础特色课程,应该如何建设,实施教学与改革,突出专业特色?各类学校都在摸索中。中南大学的“专家系统”课程是国家级“智能科学基础系列课程教学团队”主干课程之一,它由国家级教学名师领衔,以双语建设为教学基本手段,以精品意识为指导[2],培养学生自主创新意识,发掘学生兴趣潜能,非常具有专业特色。

1课程建设情况

专家系统使用人类专家推理的计算机模型处理现实世界中需要专家做出解释的复杂问题,并得出与专家相同的结论[3]。其最大特点是不仅可以帮助人们处理信息,还能说明处理的方式和理由[4]。我们结合专家系统课程特色与学习认知过程特点,采取认知教学作为专家系统教学的理论基础[5-6],根据智能科学与技术系列课程教研经验,融合双语教学方式,初步提出课程定位和建设目标,给出了教学基本要求。

1.1课程定位与建设目标

在学习本课程之前,学生最好已经选修过离散数学、人工智能和面向对象的程序设计课程,本课程32个学时,2个学分,其中实验课6学时。此外,“专家系统”还可作为自动化、计算机科学与技术等相关专业有兴趣的学生的选修课程。可为学生提供一种新的手段和方法求解传统方法难解问题,也为学生们了解智能科学与技术领域知识提供良好的窗口。

专家系统成为智能科学与技术本科专业的专业基础课程,目的在于培养学生理解和掌握专家系统技术的基本观念、基本理论和智能科学方法;并灵活设计和构建不同领域的专家系统,解决实际问题,为学习后续课程奠定方法基础。通过教学过程,培养学生善于分析继承已有的科学进步成果、激励学生善于发现问题、分析问题和解决问题的自主科学创新精神。

1.2课程教材设计

本校专家系统课程选用了蔡自兴编写的《高级专家系统:原理、设计及应用》[3]一书,该教材包括专家系统的基本理论、技术方法和实际应用的诸多内容,知识点介绍全面详尽,同时列举了诸多实例,便于课堂分析与课后理解。

根据双语教学的要求,外文参考教材[7]选用了Expert Systems Principles and Programming (Third Edition)一书,该书对CLIPS语言分析透彻,有大量的课后习题与资料,适合学生作为主要参考书目进行课后学习。实验教材选用了电子工业出版社出版的《决策支持与专家系统实验教程》一书,主要利用了同时,根据双语教学的要求,外文参考教材选用了China Machine Press出版的Expert Systems Principles and Programming (Third Edition)一书,该书对CLIPS语言分析透彻,有大量的课后习题与资料,有利于学生作为主要参考书目进行课后学习。我校实验教材选用了电子工业出版社出版的《决策支持与专家系统实验教程》一书。主要利用了该书后半部分内容。目前,国内基于CLIPS的“专家系统”实验教学教材在国内几乎没有容,专家系统课程实验及其教材建设还需进一步改革与探索。

1.3教学要求与知识框架

通过学习,使学生了解和掌握专家系统的相关原理和方法,。要求学生掌握知识表示方法、搜索推理技术的相关内容,熟悉和了解常见的专家系统解释机制、开发工具和评估方法,学会基于规则专家系统、基于框架的专家系统、基于模型的专家系统和基于Web专家系统的结构建立和应用,掌握专家系统的常用编程语言――CLIPS,了解专家系统的发展趋势和研究课题。经过对专家系统课程知识内容进行分类,可分为以下6个模块,如表1所示。。

经过对专家系统课程知识内容进行分类,可分为以下6个模块,如表1所示。

模块一专家系统的定义、发展历史、研究内容、类型、结构和特点以及构建步骤;。

模块二熟悉专家系统时可能采用的人工智能的知识表示方法和搜索推理技术,结合传统人工智能方法和计算智能的一些方法;。

模块三了解专家系统的解释机制、开发工具和评估方法;。

模块四熟悉基于规则专家系统、基于框架的专家系统、基于模型的专家系统和基于Web专家系统的结构、推理技术、设计方法及应用示例;。

模块五掌握人工智能和专家系统的编程语言――CLIPS,了解其他LISP,PROLOG和关系数据操作语言等;。

模块六展望专家系统的发展趋势和研究课题,并了解新型专家系统的特征与示例。

从教学要求角度出发,模块一、模块三和模块六的教学要求相对一般,但却是学生涉及专家系统技术的必备知识模块。相对而言,模块五是基本教学条件要求中最高的一个模块,因为模块二与模块四的深刻理解与系统设计需通过模块五而实现的。

从教学内容的重难点角度出发,模块二是重点部分之一,但因有人工智能课程的基础,相对而言,教学实施过程中较为顺畅。模块四与模块五是专家系统课程重点阐述部分,其中模块五也是难点部分,在实验教学环节中,由于大部分学生初次接触推理性的编程语言,所以需要一定的入门时间和练习次数。

2专家系统课程教学改革实施

2.1基于多媒体的专家系统课程教学

教学应以学习者为中心,以先进教育技术为手段,相辅相成,促进教学效果。人类的感官功能中视觉与听觉器官起到了94%作用[78],而视听觉的协同作业能大大提高学习效率,而。多媒体教学就是一种集声、文、图、色于一体的教学手段之一,其实施。多媒体教学的关键实施内容就是教学设计,而教学设计的难点就是在不增加学生信息加工系统中工作记忆负荷的前提下,用促进生成的方式呈现学习材料,包括教材、课件、讲义、课堂讲解、课后习题等。

结合专家系统课程教学情况,教学设计分为以下3个方面进行详尽阐述:。

1) 把握好课堂教学知识量。

专家系统课程相对智能科学与技术专业第六期的学生而言是非常新颖的一门非常新颖的课程,学生们相对的学习热情比较高,但这里还需仍然需要对学生的先前知识结构和能力有个简单的估计。教师需考虑学生的工作记忆容量,并对学生的长期记忆有个估计,把握学习材料内在负荷。学习材料并非越多越好,关键在于精华,给学生留下深刻印象。“专家系统”课堂教授部分以原理性与推理性知识为主,应增加实践技术实例,这样让学生紧密联系实际应用进行学习,。多媒体视频就是一个很好的表现手段。将制作好的实例视频,向学生们展示,不但让课程氛围活跃,还激发学生对实践教学的兴趣;不但没有增加课堂的知识负荷,还可以留给学生课后对比学习。

2) 多元化课件制作呈现形式。

专家系统是一门推理性知识要求很强的课程,同时也需要掌握一门有利的开发工具方能使学生做到灵活应用。经过教学实践与课后调查发现,学生们对知识表述与相关画面共同呈现的形式比单一媒体呈现形式学习效果好,知识和画面也必须是关联的,呈现位置和各部分的比例也需考虑充分。为此,课件制作是一个“改无止境”的工程,因为每一届的学生具有自己的特点,且专家系统课程知识点的不断更新,每一年都要对课件进行大量的补充与改进。

3) 基于认知教学的课堂讲解过程。

认知教学模式中,是以学生为主体,教学教师起主导作用。课堂讲解是面对面教学活动中的重要环节,,它是多媒体中联系言语与画面的桥梁,是减少学生工作记忆负荷的有效手段。

专家系统课程知识可分为表示性知识与推理技术性知识,根据相关认知心理学理论,可将知识分为两类:陈述性知识和程序性知识[5]。其中在教育心理学中“陈述性知识”是指个人具有有意识的提取线索,能够直接加以回忆和陈述。其实就是关于“是什么”的知识,包括对事实,规则,事件等信息的表达。教育心理学中“程序性知识”是指个人没有有意识的提取线索,其存在只能借助某种作业形式简介推测的知识称为程序性知识,而现代认知心理学为程序性知识以产生式及产生式系统来表征的。所以可将陈述性知识采用“专家系统”中的语义网络形式为基础地表征,而程序性知识的表征形式可用“专家系统”中的产生式系统,以“ifthen”形式表示条件这一关系。众多形式的产生式规则相互联系就组成了复杂的产生式系统。基于认知理论的“专家系统”知识教学实施过程中,首先应选定系统设计内容,掌握开发系统时所需的知识与工具,;其次分析问题,并根据系统的具体特征转化知识。而后;接着对问题模型进行求解,建立和构造知识库,;最后,利用实现工具编写代码,系统联调。

2.2专家系统课程双语教学的实施

专家系统课程是信息学科新兴发展的一门课程,有许多关键性进展相关研究进展和成果的资料均源于英文文献,因而提高学生双语水平是一种大势所需,。同时,双语教学提高了对教师整体素质的要求,在双语教学过程中,有意识的增强教学互动,以问题启发式教学与课堂辩论形式教学,学生通过查阅主题文献进行针对性的演讲或讨论,教师对学生的表现加以评述,并进行补充。这种形式可扩大教师的知识面,使得任课老师了解前沿的研究成果。也可培养学生主动学习的积极性和创新能力,使得课程具有鲜活的生命力。双语教学对教师,特别是教师的其外语水平及其口语表达能力,,。促进了师资整体水平的提高。专家系统的双语教材已在1.2中介绍,但实验教材的设计与编写工作现仍处于空缺,这也是双语教学的需完善的内容工作之一。由于双语教学增加了授课难道难度,进而影响了授课的进度,应充分发挥多媒体先进教学手段对专业术语和难以理解的内容,进行注解,帮助于学生理解。在贯彻双语教学的过程中,除了指定适当英文参考短文或参考书,开发双语课件外,还应使学生接触国内外文献资料,开阔眼界,拓宽知识面,强化双语的意识,激发学生主观能动性,使学生找到课程学习的归属感。

2.3改革“专家系统”课程实时交互活动

专家系统课程是一门理论与实践关系密切的课程之一,课堂留下的作业大多需要计算机编程或计算机辅助教学方能较好的地完成。根据此特点,改革传统的作业形式与批审方法可节约反馈时间,同时可实现“低碳无纸化”办公。利用网络进行作业上交,教师批阅后通过网络及时返回给学生,不但能提高老师的办公效率,也使学生得到快速与准确的反馈。

针对多校区的现状,我们利用网络教学资源,采用了多种交互式策略,通过Email和群讨论组等方式进行在线交流,也可传递参考资料,交流课外成果,实现只要老师在实验室,学生在任何有网络终端PC机处,就能进行了实时交流或批改作业。避免了学生为了课后的困惑问题积压至下一堂课的矛盾,同时也节约了学生往返路程上耗费的时间。

为了进一步体现教学效果,我们下一步拟进行考试方式的变革,应综合考虑课堂出勤情况、平时正式作业成绩、课堂讨论情况和期末课程考试进行综合评分。还应考虑以双语形式进行笔试,当面交卷后进行双语发问。若有课程论文或创新作品表现突出者,可免参加最后的课程考试。使考试不再是学生的负担,而成为衡量与培养创新能力。和口试。

3基于CLIPS的专家系统实验教学

3.1专家系统与CLIPS语言

CLIPS(C Language Integrated Production system)是由美国航空航天局约翰逊空间中心(NASA’’s Johnson Space Center)开发的一种专家系统工具,由C语言编写而成。早期的专家系统工具大都用LISP、Prolog等编程语言开发,共同问题是运行速度慢,可移植性差,解决复杂问题的能力差。CLIPS是基于Rete算法的前向推理语言,其优点包括:①逻辑推理方面的强大功能强。②、可移植性好。③、可扩展性好。④、有利于和其他语言联合使用等。

3.1专家系统与CLIPS语言

专家系统与传统的计算机程序系统有着完全不同的体系结构,通常它由知识库、推理机、综合数据库、知识获取机制、解释机制和人机接口等几个基本的、独立的部分所组成,其中尤以知识库与推理机相互分离而别具特色。用clips语言能够更好地熟悉专家系统的整个组成。CLIPS可为基于规则、面向对象以及过程的编程提供支持(rule-based, object-oriented, and procedural programming)。

以基于规则的专家系统利用CLIPS工具编程作为实例阐述。在CLIPS中找到专家系统基础的组成部分――Fact List、Knowledge Base、Inference Engine。Fact List中存放用于推理的事实,而Knowledge Base包含所有的规则,Inference Engine控制所有的进程。图1所示为专家系统框架示意图。专家系统中最核心的就是知识库,知识库中包含了大量某个领域专家的知识。,为了使计算机能运用专家的领域知识,必须要采用一定的方式表示知识 。目前常用的知识表示方式有产生式规则、语义网络、框架、状态空间、逻辑模式、脚本、过程、面向对象等。基于规则的产生式系统是目前实现知识运用最基本的方法。

3.2专家系统实验教学内容

通过CLIPS软件环境提供了的验证性、设计性和开发性实验,帮助学生更好地熟悉和掌握专家系统的基本原理和方法;,通过实验提高学生总结实验结果的能力,使之对专家系统的相关理论有更深刻的认识。实验内容如表2所示:。

其中,实验1为实验2的基础,这两个实验应与讲授课程穿插,使得学生利用课堂学到的理论联系实际实验操作,通过这两个实验的学习能够掌握专家系统的开发过程、掌握用产生式规则绘制推理树的方法、掌握、编写CLIPS应用程序的方法以及程序运行环境的应用等。实验3是一个有难度的实验,需要大量的课余准备时间,所以在完成实验3的时候,必须预留3周的时间,提前布置给学生,让学生做好实验前的准备,这样方能取得较好的实验教学效果。这些被挑选出来的CLIPS专家系统的代码应是经典的学习内容,通过该实验培养学生独立分析与开发完整的专家系统的能力。

3.3实验教学实例分析

1) 实验目的:学习和理解CLIPS编程语言,通过分析用CLIPS编写的“野人过河”的程序,深入理解专家系统的编程技巧,加深对专家系统的认识和理解。

2) 实验说明:野人过河问题属于智能学科中的一个经典问题,问题描述如下:,有三3个牧师传教士和三3个野人过河,只有一条能装下两个人的船,在河的任何一方或者船上,如果野人的人数大于牧师的人数,那么牧师就会有危险。

假设问题的初始状态和目标状态,假设和分为1岸和2岸: 。

初始状态:1岸,3野人,3牧师;2岸,0野人,0牧师;船停在1岸,船上有0个人;。

目标状态:1岸,0野人,0牧师;2岸,3野人,3牧师;船停在2岸,船上有0个人;。

整个问题就抽象成了如何从初始状态经中间的一系列状态达到目标状态。问题状态的改变是通过划船渡河来引发的,所以合理的渡河操作就成了通常所说的(算符)就是问题求解的关键。,根据题目要求,可以得出以下5个算符:渡1野人、渡1牧师、渡1野人1牧师、渡2野人、渡2牧师,。根据渡船方向的不同,也可以理解为10个往还算符。定义算符知道以后,剩下的核心问题就是搜索方法了,。本程序采用深度优先搜索,通过不断扩展后继结点节点,逐步找出下一步可以进行的渡河操作,;如果没有找到则返回其父节点,看看是否有其它其他兄弟节点可以扩展。

搜索中采用的一些规则如下:

(1.) 渡船优先规则:1岸一次运走的人越多越好(即1岸运多人优先),同时野人优先运走;2岸一次运走的人越少越好(即2岸运少人优先),同时传教士优先运走;。

(2.) 不能重复上次渡船操作,避免进入死循环。;

(3.)任何时候 河两边两岸的野人和牧师数在任何时候均分别大于等于0且小于等于3;

(4.) 由于只是找出最优解,所以当找到某一算符(当前最优先的)满足操作条件后,不再搜索其兄弟节点,而是直接载入链表。

(5.) 若扩展某节点a的时候,没有找到合适子节点,则从链表中返回节点a的父节点b,从上次已经选择了的算符之后的算符中找最优先的算符继续扩展b。

通过实验教学过程中的专家系统开发实例分析,总结了出应用于在许多专家系统项目中的线性生命周期模型,如图32所示。这个模型包括从计划到系统评估的许多阶段,对系统开发的描述一直到功能评估这种程度上。之后,生命周期不断重复:从计划到系统评估,直到系统交付正常使用。

4结语

专家系统课程的发展开发过程是教学研究和教学改革实践相结合的过程,需要不断加强学习、总结经验。本文从总结了专家系统课程定位与、建设目标、教材的选用设计和课程知识框架等方面的总结了“专家系统”课程建设情况。在,并就教学改革过程中注重多媒体教学的效果、双语的实施和课程互动活动的改革等问题进行比较深入的介绍与探讨。通过CLIPS语言与专家系统实验的结合,阐述了实验教学的目的、CLIPS实验特色及和实验方法,体现了基于CLIPS实验教学的优势与特色。在未来的教育领域,专家系统技术将成为信息时代教育发展的新生力军,专家系统也将成为新世纪人类智能管理与决策的得力助手。

致谢注 :本文受国家级智能科学基础系列课程教学团队项目(2008)支持,感谢本文得到中南大学信息科学与工程学院智能所的大力支持,特别感谢蔡自兴教授的鼓励与帮助。

参考文献:

[1] 李蕾,王婵,王小捷,等..“机器智能”课程建设初探[J]. 计算机教育,2009(1):86-92.

[2] 陈爱斌.“人工智能”课程教学的实践与探索[J]. 株洲工学院学报,2006,20(6):137-139.

[3] 蔡自兴,Durkin,龚涛. 高级专家系统:原理设计及应用[M]. 北京:科学出版社,2005:1-2.

[4] 蔡自兴. 智能控制导论[M]. 北京:中国水利水电出版社,2007,:28-29.

[5] 杜海琼,张剑平..“专家系统”教学的认知教学理论基础及其教学实施[J]. 现代教育技术,2008,18(8):18-21.

[6] 杜海琼,张剑平. 认知学徒制在“推理与专家系统”教学中的应用[J]. 现代教育技术,2009,19(4):120-123.

[7] Joseph Giarratano, Gary Riley. Expert Systems Principles and Programming[M]. 3th ed. Boston:PWS Publishing Company,1998.

[78]肖桂清,李渺. 正确运用多媒体,促进认知学习的最优化[J]. 思茅师范高等专科学校学报,2002,18(4):55-57.

[8] 杜晖. 决策支持与专家系统[M]. 北京:电子工业出版社,2007:22-23.

Exploration in Course Construction and Teaching Reform of Expert System

YU Ling-li, WEI Shi-yong

(Institute of Information Science & and Engineering, Central South University, Changsha 410083, China)

人工智能导论论文范文4

论文摘要:计算科学主要讲述了一种科学的思想方法,计算科学的基本概念、基本知识它的发展主线、学科分支、还有计算科学的特点、发展规律和趋势。

引言:随着存储程序式通用电子计算机在上世纪40年代的诞生,和计算科学的快速发展以及取得的大量成果。计算科学这一学科也也应运而生。《计算科学导论》正如此书的名字,此书很好的诠释了计算科学这一学科,并且指导了我们应如何去学好这一学科。使得我们收获颇多。并且让我深深的反思了我的大学生活。正如赵老师书中所讲的:“计算科学是年轻人的科学,一旦你选择了计算科学作为你为之奋斗的专业类领域,就等于你选择了一条布满荆棘的道路。一个有志于从事计算科学研究与开发的学生,必须在大学几年的学习中,打下坚实的基础,才有可能在将来学科的高速发展中,或在计算机产品的开发和快速更新换代中有所作为。

一什么是计算科学和它的来历

计算科学主要是对描述和变换信息的算法过程,包括其理论、分析、设计、效率分析、实现和应用的系统研究。全部计算科学的基本问题是,什么能(有效的)自动运行,什么不能(有效的)自动运行。本科学来源于对数理逻辑、计算模型、算法理论、自动计算机器的研究,形成于20世纪30年代的后期。

随着存储程序式通用电子计算机在上世纪40年代的诞生,人类使用自动计算装置代替人的人工计算和手工劳动的梦想成为现实。计算科学的快速发展以也取得大量成果,计算科学这一学科也也应运而生。

二计算科学的发展

a、首先先介绍图灵机

图灵机的发明打开了现代计算机的大门和发展之路。图灵机通过一条两端可无限延长的袋子,一个读写头和一组控制读写头的(控制器)组成它有一个状态集和符号集,而此符号集一般只使用0和1两个符号。而就是这个简洁的结构和运行原理隐含了存储程序的原始思想,深刻的揭示了现代通用电子数字计算机的核心内容。现在通用的计算机是电子数字计算机,而电子数字计算机的发展是建立在图灵机的基础之上。他的二进制思想使计算机的制作的简化成只需两个稳定态的元器件。这在今后的计算机制作上无论是二极管或集成电路上都显示了明显的优越性。

b、计算机带动的计算学科

1946年随着现代意义上的电子数字计算机ENIAC的诞生。掀起了社会快速发展的崭新一页。计算机工作和运行就摆在了人们的面前。

1、计算机语言

我们要用计算机求解一个问题,必须事先编好程序。因此就出现了最早的机器指令和汇编语言。20世纪50年代后,计算机的发展步入了实用化的阶段。然而,在最初的应用中,人们普遍感到使用机器指令编制程序不仅效率低下,而且十分别扭,也不利于交流和软件维护,复杂程序查找错误尤其困难,因此,软件开发急需一种高级的类似于自然语言那样的程序设计语言。1952年,第一个程序设计语言ShortCode出现。两年后,Fortran问世。作为一种面向科学计算的高级程序设计语言,Fortran的最大功绩在于牢固地树立了高级语言的地位,并使之成为世界通用的程序设计语言。Algol60的诞生是计算机语言的研究成为一门科学的标志。该语言的文本中提出了一整套的新概念,如变量的类型说明和作用域规则、过程的递归性及参数传递机制等。而且,它是第一个用严格的语法规则——巴科斯范式(BNF)定义语言文法的高级语言。还有用于支持结构化程序设计的PASCAL语言,适合于军队各方面应用的大型通用程序设计语言ADA,支持并发程序设计的MODULA-2,支持逻辑程序设计的PROLOG语言,支持人工智能程序设计的LISP语言,支持面积对象程序变换的SMALLTALK、C等。

2、计算机系统和软件开发方法

现代意义上的计算机绝不是一个简单的计算机了而也包括了软件(系统软件、应用软件)。各种各样的软件使得计算机的用途大大增强。而软件开发也成为了一个重要课题和发展方向。软件开发的理论基础即是计算模型。随着计算机网络、分布式处理和多媒体的发展。在各种高级程序设计语言中增加并发机构以支持分布式程序设计,在语言中通过扩展绘图子程序以支持计算机图形学程序设计在程序设计语言中已非常的流行。之后,在模数/数模转换等接口技术和数据库技术的支持下,通过扩展高级语言的程序库又实现了多媒体程序设计的构想。进入20世纪90年代之后,并行计算机和分布式大规模异质计算机网络的发展又将并行程序设计语言、并行编译程序、并行操作系统、并行与分布式数据库系统等试行软件的开发的关键技术依然与高级语言和计算模型密切相关,如各种并行、并发程序设计语言,进程代数,PETRI网等,它们正是软件开发方法和技术的研究中支持不同阶段软件开发的程序设计语言和支持这些软件开发方法和技术的理论基础----计算模型

3、计算机图形学

在计算机的硬件的迅速发展中。随着它的存储容量的增大,也掀起了计算机的巨大改革。计算机图形学、图像处理技术的发展,促使图形化界面的出现。计算机图形学是使用计算机辅助产生图形并对图形进行处理的科学。并由此推动了计算机辅助设计(CAD)、计算机辅助教学(CAI)、计算机辅助信息处理、计算机辅助测试(CAT)等方向的发展。图形化界面的出现,彻底改变了在一个黑色的DOS窗口前敲代码输入控制命令的时代。同时也成就了一个伟大的公司Microsoft。

4、计算机网络

随着用户迫切需要实现不同计算机上的软硬件和信息资源共享。网络就在我们的需求中诞生了。网络的发展和信息资源的交换使每台计算都变成了网络计算机。这也促进计算机的发展和广泛应用。

三计算机学科的主线及发展方向

围绕着学科基本问题而展开的大量具体研究,形成学科发展的主流方向与学科发展主线和学科自身的知识组织结构。计算学科内容按照基础理论、基本开发技术、应用以及他们与硬件设备联系的紧密程度分成三个层面:

1、计算科学应用层

它包括人工智能应用与系统,信息、管理与决策系统,移动计算,计划可视化,科学计算机等计算机应用的各个方向。

2、计算科学的专业基础层

它是为应用层提供技术和环境的一个层面,包括软件开发方法学,计算机网络与通信技术,程序设计科学,计算机体系结构、电子计算机系统基础。

3、计算科学的基础层

它包括计算科学的数学理论,高等逻辑等内容。其中计算的数学理论涵盖可计算性与计算复杂性理论形式语言与计算机理论等。

四计算机的网络的发展及网络安全

(1)计算机网络与病毒

一个现代计算机被定义为包含存储器、处理器、功能部件、互联网络、汇编程序、编译程序、操作系统、外部设备、通信通道等内容的系统。

通过上面定义,我们发现互联网络也被加入到计算机当中。说明了网络的重要以及普及性。21世纪是信息时代。信息已成为一种重要的战略资。信息科学成为最活跃的领域之一,信息技术改变着人们的生活方式。现在互联网络已经广泛应用于科研、教育、企业生产、与经营管理、信息服务等各个方面。全世界的互联网Internet正在爆炸性的扩大,已经成为覆盖全球的信息基础设施之一。

因为互联网的快速发展与应用,我们各行各业都在使用计算机。信息安全也显得格外重要。而随着计算机网络的发展,计算机网络系统的安全受到严重的挑战,来自计算机病毒和黑客的攻击及其他方面的威胁也越来越大。其中计算机病毒更是很难根治的主要威胁之一。计算机病毒给我们带来的负面影响和损失是刻骨铭心的,譬如1999年爆发的CIH病毒以及2003年元月的蠕虫王病毒等都给广大用户带来巨大的损失。

我们想更好的让计算机为我们服务,我们就必须很好的利用它,利用网络。同时我们也应该建立起自己的防护措施,以抵抗外来信息的侵入,保护我们的信息不受攻击和破坏。

(2)计算机病毒及它的防范措施:

计算机病毒是一组通过复制自身来感染其它软件的程序。当程序运行时,嵌入的病毒也随之运行并感染其它程序。一些病毒不带有恶意攻击性编码,但更多的病毒携带毒码,一旦被事先设定好的环境激发,即可感染和破坏。

<一>、病毒的入侵方式

1.无线电方式。主要是通过无线电把病毒码发射到对方电子系统中。此方式是计算机病毒注入的最佳方式,同时技术难度也最大。可能的途径有:①直接向对方电子系统的无线电接收器或设备发射,使接收器对其进行处理并把病毒传染到目标机上。②冒充合法无线传输数据。根据得到的或使用标准的无线电传输协议和数据格式,发射病毒码,使之能够混在合法传输信号中,进入接收器,进而进人信息网络。③寻找对方信息系统保护最差的地方进行病毒注放。通过对方未保护的数据链路,将病毒传染到被保护的链路或目标中。

2.“固化”式方法。即把病毒事先存放在硬件(如芯片)和软件中,然后把此硬件和软件直接或间接交付给对方,使病毒直接传染给对方电子系统,在需要时将其激活,达到攻击目的。这种攻击方法十分隐蔽,即使芯片或组件被彻底检查,也很难保证其没有其他特殊功能。目前,我国很多计算机组件依赖进口,困此,很容易受到芯片的攻击。

3.后门攻击方式。后门,是计算机安全系统中的一个小洞,由软件设计师或维护人发明,允许知道其存在的人绕过正常安全防护措施进入系统。攻击后门的形式有许多种,如控制电磁脉冲可将病毒注入目标系统。计算机入侵者就常通过后门进行攻击,如目前普遍使用的WINDOWS98,就存在这样的后门。

4.数据控制链侵入方式。随着因特网技术的广泛应用,使计算机病毒通过计算机系统的数据控制链侵入成为可能。使用远程修改技术,可以很容易地改变数据控制链的正常路径。

<二>病毒攻击的防范的对策

1.建立有效的计算机病毒防护体系。有效的计算机病毒防护体系应包括多个防护层。一是访问控制层;二是病毒检测层;三是病毒遏制层;四是病毒清除层;五是系统恢复层;六是应急计划层。上述六层计算机防护体系,须有有效的硬件和软件技术的支持,如安全设计及规范操作。超级秘书网

2.严把收硬件安全关。国家的机密信息系统所用设备和系列产品,应建立自己的生产企业,实现计算机的国产化、系列化;对引进的计算机系统要在进行安全性检查后才能启用,以预防和限制计算机病毒伺机入侵。

3.防止电磁辐射和电磁泄露。采取电磁屏蔽的方法,阻断电磁波辐射,这样,不仅可以达到防止计算机信息泄露的目的,而且可以防止“电磁辐射式”病毒的攻击。

4.加强计算机应急反应分队建设。应成立自动化系统安全支援分队,以解决计算机防御性的有关问题。

很多公司都有因为电脑被入侵而遭受严重经济损失的惨痛经历,不少普通用户也未能避免电脑被破坏的厄运,造成如此大损失的并不一定都是技术高超的入侵者所为,小小的字符串带给我们的损失已经太多。因此,如果你是数据库程序开发人员、如果你是系统级应用程序开发人员、如果你是高级计算机用户、如果你是论坛管理人员......请密切注意有关字符漏洞以及其他各类漏洞的最新消息及其补丁,及时在你的程序中写入防范最新字符漏洞攻击的安全检查代码并为你的系统安装最新的补丁会让你远离字符带来的危险。经常杀毒,注意外来设备在计算机上的使用和计算机对外网的链接。也可以大大有效的避免计算机被攻击。

五总结

在学了计算科学导论之后,让我更深入的了解了我将来要从事的学科。计算科学导论指导着我们该怎么学习计算机。让我更清楚的知道我们信息安全专业的方向。正如计算科学这座大楼一样,在不断的成长。信息安全也必将随着网络的进一步发展而更多的被人们重视。总之学习了这门课之后让我受益匪浅,也知道自己应该好好努力,争取在自己的专业领域上有所成就。

参考文献:

1、《计算科学导论》(第三版),赵志琢著,科学出版社2004版

2、《计算机病毒分析与对抗》傅建明彭国军张焕国编著武汉大学出版社2004版

人工智能导论论文范文5

关键词 神经网络;空调;应用

中图分类号 TP387 文献标识码 A 文章编号 1673-9671-(2012)071-0184-02

中央空调系统是一个庞大复杂的系统,主要包括:空调冷热源系统、水或空气系统、控制系统等,空调系统能耗与影响因素之间是一种多变量、强耦合、严重非线性的关系,具有很强的动态性。而人工神经网络可以实现从输入到输出的任意非线性映射,能够模拟高度非线性系统,具有较强的学习能力、自适应能力、容错能力和联想能力,已成为复杂的非线性系统建模、仿真、预测的新型工具,人工神经网络自20世纪40年代初被首度提出来以后,经过几十年的发展,广泛运用于模式识别和图像处理、控制与优化、人工智能等方面。随着我国空调事业的快速发展及节能减排新形下,人工神经网络在空调系统中的运用越来越受到广大暖通空调研究者的关注。

1 神经网络

神经网络是对人脑或生物神经网络的抽象和建模,具有从环境学习的能力,以类似生物的交互方式适应环境。人工神经网络是一个由大量简单的神经元广泛联接组成的复合系统,当系统被训练达到平衡后,由各个神经元的权值组成的整个网络的分布状态,就是所求的结果。网络学习的过程也就是各神经元权值的调整过程。人工神经网络根据连接方式不同可以分为两大类:无反馈的前向神经网络和相互连接型网络(包括反馈网络),图1为BP神经网络系统结构简图,BP网络就是一种误差反向传播的前向网络,神经网络的学习算法总体来讲可分为有监督学习和无监督学习。人工神经网络的具有强容错性、冗余性、鲁棒性和信息分布式并行处理及快速进行大量计算能力特点, 能适应复杂环境和进行多目标控制。

图1 BP网络系统结构

2 人工神经网络在空调系统中的应用

2.1 空调风系统方面的应用

变风量系统(VAV系统)的基本思想是:当室内负荷发生变化时,改变送入室内风量,以满足室内人员的舒适性或工艺性要求,实现送风量的自动调节,最大限度地减少风机动力,节约运行能耗。目前对变风量空调控制方法传统方法主要有:定静压控制、变静压控制、总风量控制等,但多数局限于的PID控制理论,对变风量空调这种非线性系统的控制精度难以保证。朱为明等人在VAV系统中采用神经网络预测优化算法对变风量空调进行控制,神经网络预测优化算法控制过程的节能范围为:6%-13.5%,与PID控制方法相比,神经网络预测优化算法的控制量之和减少6%以上,具有较好的节能效果。

2.2 空调水系统方面的应用

中央空调水系统主要包括冷却水和冷冻水系统,对于大型系统,管道长,系统热容量大、惯性大,被控系统水温和流速变化速度较慢,滞后现象严重,是一种典型的大滞后系统,对于过程纯滞后非线性特性,目前过程控制传统算法不具备克服滞后影响的能力,在稳定性和响应速度上都难以达到较好的性能指标。周洪煜等人利用了神经网络的非线性逼近特性、自学习、自组织的能力以及预测控制的滚动优化和反馈校正的特性,建立起的中央空调水系统的动态模型,作为预测控制器的预测模型,不需要对被控对象进行精确的辨识, 提出的多变量神经网络预测控制系统具有优良的控制效果,实现了空调水系统的自适应控制。何厚键等人在中央空调水系统的建模与优化研究中,利用前馈型网络结合BP算法建立了冷却塔和制冷机的神经网络模型,解决的具有高度非线性的中央空调水系统设备的建模问题。

2.3 制冷系统方面的应用

神经网络在空调中的制冷系统应用,主要体现在制冷机组优化控制和制冷系统的故障诊断两方面。在中央空调系统中制冷机组是能耗最大的设备,对制冷机组进行优化控制,提高其运行效率,是空调系统节能的重要途径之一。赵健等人在分析了影响压缩机运行效率的主要因素基础上,建立了以压缩机入口制冷剂温度、压缩机出口制冷剂温度和负荷为输入量,最佳吸气压力输出为输出量的BP神经网络模型。通过在线修正制冷机的吸气压力工作点,解决变负荷下,制冷机优化控制问题,大幅度提高制冷性能参数COP的值,降低了制冷机的运行能耗,与采用额定工况相比,采用神经网络优化控制方法的制冷机节能量约为44.8%。

故障诊断是一种了解和掌握设备在使用过程中的技术,确定其整体或局部是否正常,早期发现故障及其原因并能预报故障发展趋势的技术。在制冷系统的故障诊断方面,神经网络也发挥着重要作用,随着我国空调制冷事的蓬勃发展,制冷系统越来越复杂,故障的潜在发生点也越来越多,制冷设备的故障检测与诊断越来越受到人们的重视。胡正定等人在分析制冷系统常见故障特征的基础上,建立以压缩机进口温度、蒸发器进口温度、冷媒水进口温度、冷媒水出口温度、压缩机排气压力、压缩机吸气压力、压缩机出口温度、冷凝器出口温度等8特征征参数作为输入量,故障模式作为输出量的补偿模糊神经网络模型。仿真结果表明,系统的诊断结果且有较高的准确率。李中领等人在空调系统故障诊断中利用神经网络建立了三层BP网络模型,输入层节点个数为4,对应于4种故障现象,隐含层单元个数为4,输出层节点个数为12,对应于12种故障原因,输出节点值的大小反映了故障出现的可能性。

2.4 负荷预测方面的应用

空调系统逐时负荷的准确预测是实现现代控制的前提之一,准确预测空调负荷对空调高效节能运行具有重大意义,影响空调负荷的因素有空气温度、湿度、太阳辐射强度、人员、设备运行情况等,空调负荷与影响因素之间是严重非线性的关系,具有动态性。

2.5 空调制冷系统的仿真设计方面的应用

制冷空调产品设计中,大量地依赖样机的反复制作与调试,使得产品的设计周期延长,并影响性能优化,用计算机仿真代替样机试验,在计算机上面实现优化设计,使得制冷空调装置仿真技术近年来得到了迅速发展 。

2.6 大型建筑运行能耗的评价方面的应用

大型公共建筑指非住宅的民用建筑,包括办公楼、商场、宾馆、医院、学校等,大型公共建筑用能特点是单位面积耗能非常高,为每年100 kW/m2-300 kW/m2,而且我国大型公共建筑能源系统效率较低,浪费严重,其电耗超过公共建筑节能设计标准规定指标的10倍以上。大型公共建筑中央空调系统运行能耗的科学评价是对大型公共建筑进行用能科学管理的重要基础,赵靖等人基于BP人工神经网络,将冷水机组、冷冻水泵、冷却水泵、冷却塔、其它设备月平均功率、运行时间和气象特征共七个作为预测因子,空调系统总能耗为输出量,建立了大型公共建筑系统运行能耗的预测评价模型,仿真结果表明,网络的平均预测误差输出值约为3.3E-014,可以满足实际应用的要求。

3 发展方向

人工神经网络基于较强的学习能力、自适应能力、容错能力和联想能力,在暖通空调领域中的应用已经取得了突破性的进展。今后的发展方向主要有两个方面,首先,不断改进神经网络性能,提高其预测和控制精确度;另外,逐步使神经网络的实现由软件实现过渡到硬件实现,扩大其在空调领域的应用范围,也是今后的研究方向之一。

参考文献

[1]胡守仁.神经网络导论[M].北京:国防科技大学出版社,1999.

[2]候媛彬,杜京义,汪梅.神经网络[M].西安电子科技大学出版社,2007.

人工智能导论论文范文6

关键词化学计量学发展中国

化学计量学(Chemometrics)在我国发展已有20多年的历史,是一门化学与统计学、数学、计算机科学交叉所产生的新兴的化学学科分支。它运用数学、统计学、计算机科学以及其他相关学科的理论与方法,优化化学量测过程,并从化学量测数据中最大限度地提取有用的化学信息[1]。它与基于量子化学的计算化学(ComputationalChemistry)的不同之点只在于化学计量学是以化学量测量为其基点,实质上是化学量测的基础理论与方法学[2]。

由于“”的影响,使我国在化学计量学的发展方面略迟于欧美,但在化学界前辈的积极倡导和国家自然科学基金委的支持下,80年代以来,我国的化学计量学研究得到了飞速发展,到现在已发展成为一门在国际上有一定影响的独立的化学学科分支,已出版了多本化学计量学方面的专著和相应的教材[3],并在中国科学院的多个研究所和国内多个知名大专院校建立了队伍稳定的化学计量学研究小组,取得了一批具有国际先进水平的成果。8年前,我们曾在第二届斯堪的那维亚国际化学计量学大会上对我国的化学计量学发展主要成果进行过一次综论[4],在此,仅就近10年来化学计量学在我国的发展情况作出简要介绍。

化学计量学为化学量测提供理论和方法,为各类波谱及化学量测数据的解析,为化学化工过程的机理研究和优化提供新途径,它涵盖了化学量测的全过程,包括采样理论与方法、试验设计与化学化工过程优化控制、化学信号处理、分析信号的校正与分辨、化学模式识别、化学过程和化学量测过程的计算机模拟、化学定量构效关系、化学数据库、人工智能与化学专家系统等,是一门内涵相当丰富的化学学科分支。化学计量学的发展为化学各分支学科、其别是分析化学、环境化学、药物化学、有机化学、化学工程等,提供了不少解决问题的新思路、新途径和新方法。

化学计量学发展成为化学与分析化学学科的一个独特分支。两个重要的条件与因素推动了这方面的发展。首先,化学与分析化学中大量涌现的现代化学量测仪器,使化学与分析化学家比以往任何时侯都更容易获得大量化学量测数据。这种情况,在过去是难以想象的。到20世纪80年代,在分析测试或化学量测中,人们第一次发现,取得数据甚至大量数据已不是最困难的一步。最难解决的瓶颈问题是这些数据的解析及如何从中提取所需的有用化学信息。化学家与分析化学家首次遇到类似行为科学家或经济学家所遇到的大量数据如何处理的问题。化学家与分析化学家比较幸运。因为大量现代分析测试仪器出现带来“数据爆炸时代”,也正是计算机普及的时代。这就构成了化学计量学发展的第二个条件。为了对极为复杂的化学量测数据(其中负载着在分子水平上表征物质世界的信息)进行解析,化学家、分析化学家利用可在计算机上实现的许多强有力的数学方法,包括一些相关学科发展的数据与信号处理新方法,从多维化学量测数据中提取有用的相关化学信息。如果说经典分析化学是得首先依赖费时而麻烦的化学或物理的方法来对很多复杂化学体系进行纯组分分离,即采用单变量校正方法进行定性定量分析的话,那么,现代分析化学家面对的则是各种将分析分离技术集于一体的高维仪器所产生的巨量分析信号,藉化学计量学发展的新型分析信号的多元校正与分辨方法[5]来进行复杂多组分体系的定性定量解析,高维数据解析的化学计量学方法现已进入可用来解决分析化学中实际难题的程度,将这些方法用于复杂环境样本、中草药中单位药及复方分析等[6],取得了很多令人振奋的结果。继续进行高维数据、特别是针对可产生三维数据的新型仪器的化学计量学算法的研究现仍是一个研究的热点,我国的化学计量学研究在此方面取得了居于国际先进水平的成果[7]。多元校正与分辨一直就是分析化学计量学研究的主要内容,在此方面,中国科技大学、清华大学、石油化工科学研究院、沈阳药科大学、中国药科大学、同济大学、天津大学、厦门大学、兰州大学、江西大学、西北大学、华中理工大学、湖南大学等单位做了大量的研究工作[8]。将化学计量学方法固化于新设计的分析仪器之中,以构建新型智能分析仪器,是一个值得继续研究的方向。另一方面,由于近年来计算机科学及信息科学的长足发展,它们的发展也为化学计量学注入了新鲜血液,我国在分析信号处理新方法,其别是小波分析(waveletanalysis)的引入,为分析信号的压缩、去噪、分辨及背景消除等带来新思路和新方法,从对近年来在此方面的综述来看,可以说,我国在小波分析用于分析信号处理研究的方面是处于国际先进水平的,中国科技大学、中山大学、香港理工大学等单位的化学计量学研究小组在此方面作出了大量有水平的研究[9]。另外,有关人工神经网络(artificialneuralnetworks,ANN)[10]新技术、基于自然计算的全局最优算法如模拟退火(simulatedannealing,SA)和遗传算法(geneticalgorithm,GA)[11],信息科学中的图象分析(imageanalysis,IA)方法,统计学中研究热烈的稳健方法(robustmethods,RM)[12]等新型化学计量学方法的引入也取得很多可喜的成果。采样理论这一重要的化学计量学研究分支,过去未引起必要的重视,近期有关研究小组如南开大学等单位倡导开展了这方面研究[13]。

化学模式识别的研究提供的是对决策和过程优化很有实用价值的信息,为我国石油化工、材料化学等带来了解决研究难题的新思路,人工神经网络的新方法,为化学模式识别提供了研究的新机遇。无论在化学模式识别的方法和应用方面,我国都取得了不少优秀成果,中国科学院上海冶金研究所的化学计量学研究小组先后用化学模式识别的方法成功地解决了50多个石油化工过程优化、材料设计等方面中的实际难题。化学模式识别方法用于分析化学、物理化学、无机化学、药物化学、食品化学、农业化学、医药化学和环境化学等学科的研究在我国也取得了不少成果,浙江大学、中国科技大学、沈阳药科大学、中国药科大学、同济大学、中国科学院长春应用化学研究所、湖南大学等单位在此方面做了大量工作[14]。

化学定量构效关系(QSAR)的研究,是一个涉及到化学学科的一个带根本性的问题,即如何从物质的化学成分与结构来定量预测其化学特性,也可以说是理论化学研究中的一个最重要目标。目前,由于药学发展的需要,将基于量子化学计算的分子模拟与QSAR研究结合起来,为寻求有生物和药理活性的先导化合物提供了一个新途径,我国在这方面也已取得引人注目的成就[15]。将全局最优算法如模拟退火和遗传算法的引入分子力学的寻优,以指导最佳先导化合物的寻找,是化学计量学家的贡献,现已在QSAR的研究中得到了广泛的应用。QSAR通过直接研究可量测化学量及某些量化参数与化合物的某些已知化学特性之间的已知数据,采用统计回归(多元校正)和模式识别的方法来建立一种模式,从而达到预测化合物特性的目的,建立起某些化学结构与性能的关系来指导进一步的实验研究。目前,用ANN来进行QSAR研究颇引人注目,在模式分类与定量构效关系研究中展现了很好的应用前景。在QSAR的研究中,南开大学、北京大学、中国科学院上海药物研究所、中国科学院化工冶金研究所、中国科学院长春应用化学研究所的化学计量学研究小组将分子模拟与QSAR研究相结合,并直接用于指导实际的药物合成,取得了很好的研究成果[16]。在QSAR研究中,化合物结构的拓朴表征是另一个重要的课题,如何采用图论和数值方法来表征各种化合物分子,并将所得数值结果与实际量测的化合物的物理、化学和生物学特性连接起来,也是目前化学计量学研究的一个重要问题。我国的化学计量学研究工作者在此方面也做了不少有意义的工作[17]。

波谱化学是分析化学与有机化学家都十分关注的一个领域,怎样利用现存波谱数据库,如质谱、红外光谱、核磁共振谱、色谱的保留时间库以及吸收与发射光谱等为复杂分析体系进行快速定性定量分析,一直是分析化学家们努力的目标;而如何利用上述各种波谱为新合成的有机化合物定结构,则是有机化学家们手中必不可少的解析手段。计算机技术,其别是智能数据库与化学专家系统技术为此提供了进行上述解析的新途径。我国的化学计量学工作者在此方面也做了大量富有成果的工作。中国科学院上海有机化学研究所、中国科学院大连化学物理研究所、中国科学院长春应用化学研究所、中国科学院化工冶金研究所,南开大学、南京大学、东北师范大学、厦门大学、湖南大学等单位都先后建立了多种波谱的数据库和专家系统[18],如13CNMR谱图数据库和结构解析专家系统(ESESOC)、高效液相色谱专家系统、红外、质谱数据库与专家系统、ICP发射光谱专家系统等,他们用计算机进行各类波谱(包括核磁共振谱、质谱、红外光谱等)模拟,并用联合波谱库和专家系统进行结构自动解析与推导,选择各类仪器(色谱与光谱)的最佳量测和分离条件、进行各类波谱数据库的知识开发,并在各类数据库的网络化上也做了大量工作[19]。

1997年,在国家自然科学基金委的全力支持下,由湖南大学与挪威Bergen大学合作,在张家界举行了我国的第一次国际化学计量学会议,与会代表120多人,其中来自欧美及亚洲各地14个国家的境外代表60多人,会议的议题几乎覆盖了前述化学计量学研究的各个领域,还特别为化学计量学在工业中的应用开辟了一个专门议题。该会议已在国际化学计量学刊物“ChemometricsandIntelligentLaboratorySystems”出版了会议论文专辑[20],收集了44篇会议,其中我国作者占了28篇,第一次较系统地向国际化学计量学界展示了我国的化学计量学研究的实力,说明我国的化学计量学研究已与国际接轨。

化学计量学诞生至今,已有近30年历史,其发展前景亦是一个令人关注的问题。从分析化学与化学计量学的关系可以看出,化学计量学的发展将对分析化学产生深刻影响,已构成分析化学第二层次基础理论和方法学的重要组成部分,特别值得提出的是,化学计量学的发展还将为分析仪器的智能化提供新理论和新方法,为新型高维联用仪器的构建提供新思路和新方法,是21世纪分析仪器软件主体化发展的新突破口。此外,随着微型计算机和网络技术的飞速发展,对于化学波谱库的建立与检索方法以及化学人工智能和专家系统的研究也将取得长足进步。在采用计算机网络技术将多种波谱仪器连接的基础上,将数值化计算技术(近年来化学计量学方法学发展的主体)与传统的基于经验的逻辑推理方法的有机结合,可望解决化合物结构自动解析的难题,并使得长期困扰分析化学家的混合物波谱同时定性定量解析成为可能。在分析化学领域中,化学计量学的发展前景十分诱人。另外,化学计量学与其他化学学科分支,如环境化学、食品化学、农业化学、医药化学、化学工程等学科,将产生更密切的联系,得到更广泛的应用。随着各化学分支学科的发展,可以预期,化学计量学也将继续得到更蓬勃的发展。

参考文献

[1]SWold.Chemometrics:whatdowemeanwithit,andwhatdowewantfromit?PaperofInCINC''''94.

[2]俞汝勤.化学计量学导论.长沙:湖南教育出版社,1991.

[3]罗旭.化学统计学基础.沈阳:辽宁出版社,1985;俞汝勤.现代分析化学的信息理论基础.长沙:湖南大学出版社,1987;陈念贻,许志宏,刘洪霖,徐桦,王乐栅.计算化学及其应用.上海:上海科技出版社,1987;相秉仁.计算药学.北京:中国医药出版社,1990;许禄,郭传杰.计算机化学方法及应用.北京:化学工业出版社,1990;卢佩章,张玉奎,梁鑫淼.高效液相色谱法及其专家系统.沈阳:辽宁科学技术出版社,1994;许禄.化学计量学方法.北京:科学出版社,1995;陆晓华.化学计量学.武汉:华中理工大学出版社,1997;梁逸曾.白灰黑复杂多组分分析体系及其化学计量学算法.长沙:湖南科技出版社,1997;周声劢,梁亮,梁逸曾.合成计量学与化学化工系统优化.长沙:湖南大学出版社,1996;刘洪霖,包宏.化工冶金过程人工智能优化.北京:冶金工业出版社,1999;梁逸曾,俞汝勤.分析化学手册(第十分册)化学计量学.北京:化工出版社,1999.

[4]YuRQ(俞汝勤).Chemometricsinchina.Chemom.andIntell.Lab.Sys.,1992,14:15.

[5]袁洪福,陆婉珍.现代科学仪器,1998,(5):6~8;徐广通,袁洪福,陆婉珍.现代科学仪器,1997,(3):9;ShenHL(沈海林),andLiangYZ(梁逸曾).Chemom.andIntell.Lab.Sys.,1999,45:323~328;Wanghongyan(王洪艳).TheAnalyst,1995,120;梅雨,朱仲良,李通化.计算机与应用化学,2000,17:116;方慧生,吴玉田,黄春明.计算机与应用化学,2000,17:122;方慧生,吴玉田.分析化学,1999,17:14;LiangYZ(梁逸曾),Kvalheim.OMetal.Anal.Chem.,1992,64:946~953;LiangYZ(梁逸曾),KvalheimOM.TheAnalyst,1993,118:779~790;LiangYZ(梁逸曾)etal.Anal.Chim.Acta,1993,276:425~440;XieYL(谢玉珑),LiangYZ(梁逸曾),YuRQ(俞汝勤).Anal.Chim.Acta,1993,272:61~72.XieYL(谢玉珑),LiangYZ(梁逸曾),YuRQ(俞汝勤).Anal.Chim.Acta,1993,281:207~218;XieYL(谢玉珑),LiangYZ(梁逸曾),YuRQ(俞汝勤).Anal.Chim.Acta,1993,276:273~282.龚范,张林,梁逸曾,俞汝勤.化学学报,1998,56:500~506.