化学成分论文范例6篇

前言:中文期刊网精心挑选了化学成分论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

化学成分论文

化学成分论文范文1

1.1关于绿色化学的反应技术

所谓的绿化化学主要指的就是能够对环境不会造成污染,同时也能够十分有利于保护环境的化学工程。简单的一点来说主要是采用化学的技术以及方法来有效的减少或者是消除一些对于人类有害以及防治社会安全发展的不利的因素。绿色化学主要就是将污染从源头进行有效的消除,其中也包括了含有原子经济性以及高选择性的一些反应,同时绿化化学能够生产出来对于环境有利的一些材料,并且也能够经过回收废物进行循环利用的科学。

1.2关于新的分离技术

从广义的角度来看,所谓的分离强化首先就是要对设备进行不断的强化,然而在对生产的工艺进行强化,进而从整体上来说就是只要能够将设备变小以及能量转化效率提高的技术变为化学的分离技术强化的结果。这样做不仅仅能够更好的有利于可持续发展的理念,同时也是化学分离技术的发展趋势之一。但是,传统的化工分离技术主要是根据沸点的不同,把一些不同组成成分的物质进行分析,然而随着科学技术的不断发展以及对于该项工作的不断研究,进而得出该项技术具有着十分广阔的发展前景,但是在应用的过程中还是存在着很多的问题,主要是这项技术的研究对分子蒸馏的基础理论研究相对来说还是比较少,并且在理论方面也没有能够得到充分的说明。但是随着科学技术的不断发展,分解技术也得到了不断深入的研究,并且也取得了不错的效果,并且也渐渐的把信息技术引入到了分离技术的研究以及开发当中,进而在对热力学以及传递的性质进行的研究,对于分子模拟大大的提高了预测热力学的平衡等,因此在进行研究以及开发的过程中对于分离技术具有着十分深远的意义。

2在热传导过程中的研究进展以及方向

2.1关于微细尺度传热的研究

所谓的微细尺度主要是从空间尺度以及时间尺度微细的研究以及对传热学规律的研究,目前在传热学当中已经是成立了一个分支,并且其发展的前景也是十分的广阔。在物体的特征尺寸要大于载体离子的平均尺寸的时候,就是连续的介质便依然是成立的,然而因为尺度是微细的,并且以前的假设影响因素也将会随着发生着改变,进而将会导致流动以及传热的规律出现一定程度的改变。当前随着纳米以及微米的技术得到了不断的发展,并且已经是受到了人们十分广泛的关注,在很多的领域当中也都在是围绕着微细尺度传热学进行不断的研究,并且已经是在不少的领域当中取得了不错的成果,比如在微型热管以及高集成的电子设备当中。

2.2关于强化传热过程中的研究

对于这项研究主要是从改进换热器的设备方面进行入手的,其研究开始的目的主要是为了能够更好的提高传热的效率,同时也是为了能够改进设备的持续对外放热,对于这项研究的改进主要是包括了传热材料以及生产工艺的改进,同时将传统的设计进度优化等内容。

2.3关于传热的理论研究

在最近的几年来,该项工作的研究人员主要是在滴状冷凝在生产中的应用进行研究,但是一直到目前也没有能够得到实现。其主要的问题便是怎样的获得实现的滴状冷凝,以及如何的是冷凝的表面寿命得到延长。目前其主要的问题就是如何改变冷凝界面的性质,以及怎样才能够将冷凝应用到工业当中进行传染改造。在沸腾传热的过程中,其传热的方式不仅仅在机械以及石油化工行业当中得到了十分广泛的应用,同时也在航天行业当中得到了十分广泛的应用。长期以来人们也一直对于液体出现核态沸腾的主要原因进行着不断的研究。

3结语

化学成分论文范文2

【关键词】绞股蓝;化学成分;皂苷;多糖

Abstract:WithmoreexploitationandutilizationofGynostemmapentaphyllum,peoplehavelearnedmoreaboutchemicalingredientsinit.Inthispaper,somenewachievementsinchemicalingredientresearchwereintroduced,whichisfavorabletofurtherresearchofchemicalingredientsofGynostemmapentaphyllu.

Keywords:Gynostemmapentaphyllu;Chemicalingredients;Saponin;Polysaccharide

绞股蓝Gnostemmapentaphyllum(Thunb.)Makino又名七叶胆,为葫芦科绞股蓝属植物。主要分布在东南亚及我国长江以南的广大地区,资源丰富。绞股蓝中含有皂苷、多糖、黄酮类化合物、有机酸和微量元素等多种化学成分。绞股蓝能够有效地保护心、脑、血管和肝脏,降低血脂、降胆固醇、降转氨酶、调节免疫和抗诱变,而且在抗衰老、抗疲劳、抗辐射和消除自由基的同时,还能改善神经系统功能、抗溃疡、抑制胆结石形成和调节内分泌活动[1~3]。因此,研究绞股蓝中的化学成分,有利于进一步开发和利用绞股蓝,明确绞股蓝中的药理活性成分。本文主要介绍了绞股蓝皂苷和多糖等成分的研究进展,为绞股蓝的开发提供参考。

1绞股蓝皂苷成分的研究现状

1976年日本人永井正博等在绞股蓝中分离得到了人参二醇和2α-羟基人参二醇,首次揭示了绞股蓝中含有达玛烷(dammarane)型皂苷类成分。随后,人们对绞股蓝的化学成分进行了大量的研究,迄今发现的绞股蓝皂苷(Gyp)总共达136种,其中有绞股蓝皂苷(Gyp)Ⅲ、Ⅳ、Ⅷ、Ⅻ与人参皂苷(Gin)-Rb1,-Rb3,-Rd和-F2完全相同,此外还分离得到了人参皂苷Rd3,K,其余为人参皂苷的类似物。由于绞股蓝的产地不同,其中的皂苷成分和含量也有很大的不同。覃章铮[4]等曾经对1990年以前发现的84种皂苷成分进行过综述性报道,但由于绞股蓝皂苷具有较好的药理疗效,因此,对绞股蓝皂苷成分的研究一直是热点。1990年后,又有52种绞股蓝皂苷被相继报道。根据苷元结构相近的程度,本文将这52种皂苷分为11类。

第1类绞股蓝皂苷结构通式及特点:

序号分子式C-位3β201[5]C47H76O172-ara-glc-rha(S)2[5]C47H76O17

2-ara-glc-rha(R)3[6]C49H78O18MeCO

-glc-rha3|6|2xyl-H(S)4[6]C49H78O18MeCO

-glc-rha3|6|2xyl-H(R)5[6]C47H76O17-glc-rha3|2xyl-H

(S)6[6]C47H76O17-glc-rha3|2xyl-H(R)7[6]C48H78O18-glc-rha3|2glc-H(S)8[6]C51H80O19MeCO

-glc-rha6||43|2xylMeCO-H(R)

第2类绞股蓝皂苷结构通式及特点:

序号分子式C-位2α3β20(S)9[7]C54H90O23-OH2-glc-glc6-glc-rha10[7]C53H88O23-OH2-glc-glc6-glc-xyl11[8]C54H90O20-Hrha

-glc-rha3|2|6rha-H

第3类绞股蓝皂苷结构通式及特点:

序号分子式C-位3β1920(S)2112[7]C48H80O192-glc-glc-CH2OH-glc-H13[9]C55H92O22CH3CO-glc-rha|36|2xy1-CH3-H-O-glc14[9]C54H92O22-glc-rha3|2rha-CH3-H-O-glc15[9]C53H90O21-glc-rha3|2xyl-CH3-H-O-glc16[9]C52H88O21-ara-rha3|2xyl-CH2OH-H-O-glc17[9]C53H90O22-glc-rha3|2xyl-CH2OH-H-O-glc18[10]C54H92O222-glc-glc-CH2OH6-glc-rha-H19[10]C54H90O222-glc-glc-CHO6-glc-rha-H20[10]C47H78O172-ara-glc-CHO-glc-H

第4类绞股蓝皂苷结构通式及特点:

序号分子式C-位3β232421[11]C41H70O132-xyl-glcH(S)22[11,12]C42H72O142-glc-glcH(S)23[11,12]C41H70O132-xyl-glcH(R)24[11,12]C41H70O142-xyl-glcOH(R)(S)25[13]C41H70O142-glc-xyl-OH(S)(S)

第5类绞股蓝皂苷结构通式及特点:

序号分子式C-位3β23(S)26[9]C46H78O18-glc-xyl6|2xyl-OH27[9]C47H78O19-glc-glc6|2xyl-OH28[9]C41H70O142-xyl-glc-OH29[9]C41H70O142-glc-xyl-OH30[9]C42H70O142-xyl-xyl-OAc31[9]2-glc-xyl-OAc32[9]C48H80O19-glc-xyl6|2xyl-OAc

第6类绞股蓝皂苷结构通式及特点:

序号分子式C-位3β1933[14]C49H82O18MeCO-glc-xyl2|6|3rha-CH334[14]C46H76O17-ara-xyl2|3rha-CHO

第7类绞股蓝皂苷结构通式及特点:

序号分子式C-位3β192135[14]C46H74O17-ara-xyl2|3rha-CHO-OH36[14]C47H78O17-glc-xyl2|3rha-CH3-OH37[14]C49H80O18OAc-glc-xyl2|6|3rha-CH3-OH38[14]C48H78O17-ara-xyl2|3rha-CHO-OEt39[14]C49H82O17-glc-xyl2|3rha-CH3-OEt40[15]C47H78O16-lyx-glc3|2rha-CH3-OH

第8类绞股蓝皂苷结构通式及特点:

序号分子式C-位3β121920(S)21252641[5]C53H90O222-ara-glc-H-CH3-rha-H-OH-glc42[9]C52H86O23-ara-xyl2|3rha-H-CHO-H-O-glc-OOH-H43[13]C46H76O18-ara-xyl2|3rha-H-CHO-H-OH-OOH-H44[9]C53H90O242-glc-glc-OH-CH3-xyl-glc-H-OOH-H45[13]C53H90O21-glc-xyl2|3rha-H-CH3-H-O-xyl-OCH3-H

第9类绞股蓝皂苷结构通式及特点:

序号分子式C-位2α3β121920(S)212446[5]C52H88O22-H2-ara-glc-H-CH3-H-O-glc-rha47[9]C52H86O22-H-ara-xyl2|3rha-H-CHO-H-O-glc-H48[16]C36H62O10-OH-H-OH-CH3-glc-H-H

第10类绞股蓝皂苷结构通式及特点:

序号分子式C-位3β1949[14]C49H80O18OAc-glc-xyl2|6|3rha-CH350[14]C46H74O17-ara-xyl2|3rha-CHO

第11类绞股蓝皂苷结构通式及特点:

第12类绞股蓝皂苷结构通式及特点:

glc=β-D-吡喃葡萄搪基,xyl=β-D-吡喃木糖基,rha=α-L-吡喃鼠李糖基,ara=α-L-吡喃阿拉伯糖基,lyx=β-D-来苏糖基,Ac代表乙酰基,Me代表甲基,键上的数字代表键合的位置

随着人们对绞股蓝皂苷成分研究的不断深入,新的绞股蓝皂苷的不断发现,且在结构上有很大的差别。第1类、第4类、第5类、第6类、第7类、第10类和第11类在二十位碳上成环,但是在其成环的类型上又存在着很大的差别。第11类所成的环为含氧的双环。第1类、第4类、第6类、第7类和第10类所成的环为五元环,而其中的第1类、第4类和第7类为含氧的五元环,第6类和第10类为不含氧的五元环,而且即使在含氧的五元环中氧所在的位置也有所不同。第5类为含氧的六元环。此外,碳碳双键的有无和位置也有很大的区别,第4类、第5类、第6类和第11类不含碳碳双键,其他的几类都含有碳碳双键,第1类、第2类、第3类、第7类和第12类的碳碳双键在24和25位碳上,第8类的碳碳双键在23和24位碳上,第9类和第10类的碳碳双键在25和26位碳上。

2绞股蓝多糖的研究现状

多糖也是绞股蓝中含量比较多的化学成分,在研究皂苷的同时,对多糖的研究也逐渐地引起了人们的关注。王昭晶等[18]对碱提绞股蓝水溶性多糖进行了研究,并得到一种粗多糖AGM。经葡聚糖凝胶(G-100)柱层析检测其糖分布情况,表明AGM可能由两种多糖组成,其中一种含有结合蛋白质。而且经高效液相色谱确定了AGM的单糖组成为:鼠李糖∶木糖/岩藻糖(其中至少含有木糖或者岩藻糖中的一种)∶阿拉伯糖∶葡萄糖∶半乳=2.43∶1.00∶3.02∶2.59∶3.46。宋淑亮(《绞股蓝多糖的分离纯化及其药理活性研究》,2006山东中医药大学硕士论文)对绞股蓝多糖进行了较为系统的研究,共分离出了3种绞股蓝多糖GPS-2,GPS-3和GPS-4,并对其中的两种GPS-2,GPS-3进行了深入的研究,确定了GPS-2的分子量为10700Dal,GPS-3的分子量为9100Dal。GPS-2成分中含有鼠李糖和木糖,GPS-3成分中含有鼠李糖、木糖、阿拉伯糖、半乳糖、果糖和葡萄糖。

3其它化学成分的研究现状

绞股蓝中除了含有皂苷和多糖外,还含有黄酮类化合物、萜类、有机酸、生物碱、多糖、蛋白质等以及锌、铜、铁、锰、硒等微量元素,但是,在最近几年里对这几方面的研究都比较少,对黄酮化合物的研究也只是对其含量的测定和精制上[19,20],目前,除了20世纪80年代报道过的商陆素、芦丁、商陆苷及丙二酸等十多种黄酮类物质外,未见有新的化学成分的报道。

4结束语

研究绞股蓝中的化学成分,将有利于进一步明确绞股蓝的药理活性。目前,国内外学者对绞股蓝中的化学成分进行了大量的研究,且取得了一定的进展,特别是在绞股蓝皂苷的成分研究中,发现了多种新绞股蓝皂苷,这些发现将有助于进一步对绞股蓝的开发和利用。此外,对绞股蓝中多糖的研究也引起了国内一些学者重视,而且也取得了一定的进展,但是近几年对绞股蓝中黄酮化合物成分的研究未见报道。由此可见,对绞股蓝多糖和黄酮类化合物成分的研究还有待进一步深入。

【参考文献】

[1]张瑞哲,张常胜,于慧敏.绞股蓝药理及临床作用研究进展[J].黑龙江医药,2000,13(5):295.

[2]任颖,王秋玉,吴泽民,等.绞股蓝皂甙的药理研究进展[J].中华实用中西医杂志,2001,14(5):988.

[3]侯慧丽,傅童生.绞股蓝的化学成分与药理作用研究进展[J].动物医学进展,2006,27(Z1):59.

[4]覃章铮,赵蕾,毕世荣,等.绞股蓝的皂苷成分及资源[J].天然产物研究与开发,1992,4(1):83.

[5]SoniaP,CosimoP.Newdammarane-typeglycosidesfromgynostemmapentaphyllum[J].JournalofNaturalProducts,1995,58(4):512.

[6]YinF,HuLH.SixNewTriterpeneSaponinswitha21,23-LactoneSkeletonfromGynostemmapentaphyllum[J].HelveticaChimicaActa,2005,88(5):1126.

[7]HuLH,ChenZL,XieYY.Newtriterpenoidsaponinsfromgynostemmapentaphyllum[J].JournalofNaturalProducts,1996,59(12):1143.

[8]FangZP,ZengXY.StructureofgypentonosideafromgynostemmapentaphyllumMAKINO[J].ActaPharmaceuticaSinica,1996,31(9):680.

[9]YinF,HuLH,LouFC,etal.Dammarane-TypeGlycosidesfromgynostemmapentaphyllum[J].JournalofNaturalProducts,2004,67(6):942.

[10]HuLH,ChenZL,XieYY.Dammarane-TypeGlycosidesfromgynostemmapentaphyllum[J].Phytocheraistry,1997,44(4):667.

[11]LiuX,YeWC,MoZY,etal.FiveNewOcotillone-TypeSaponinsfromgynostemmapentaphyllum[J].JournalofNaturalProducts,2004,67(7):1147.

[12]LiuX,YURM,HsiaoWL,etal.ThreeNewDammaraneGlycosidesfromgynostemmapentaphyllum[J]ChineseChemicalLetters.2004,15(1):46.

[13]YinF,HuLH,PanRX.Noveldammarane-typeglycosidesfromgynostemmapentaphyllum[J].Chem.Pharm.Bull,2004,52(12):1440.

[14]YinF,ZhangYN,YangZY,etal.Ninenewdammaranesaponinsfromgynostemmapentaphyllum[J].Chemistry&Biodiversity.2006,3(7):771.

[15]AkeN,NguyenKH,EdvardsL,etal.ANovelinsulin-releasingsubstance,Phanoside,fromtheplantgynostemmapentaphyllum[J].TheJournalofBiologicalChemistry,2004,279(40):41361.

[16]TomH-WH,ValentinaR-N,NoerisKS,etal.AnovelLXR-aactivatoridentifiedfromthenaturalproductgynostemmapentaphyllum[J].BiochemicalPharmacology,2005,70(9):129.

[17]刘欣,叶文才,萧文鸾,等.绞股蓝的化学成分研究[J].中国药科大学学报,2003,34(1):21.

[18]王昭晶,罗巅辉.碱提绞股蓝水溶性多糖的研究[J].食品研究与开发,2006.27(5):92.

化学成分论文范文3

1976年日本人永井正博等在绞股蓝中分离得到了人参二醇和2α-羟基人参二醇,首次揭示了绞股蓝中含有达玛烷(dammarane)型皂苷类成分。随后,人们对绞股蓝的化学成分进行了大量的研究,迄今发现的绞股蓝皂苷(Gyp)总共达136种,其中有绞股蓝皂苷(Gyp)Ⅲ、Ⅳ、Ⅷ、Ⅻ与人参皂苷(Gin)-Rb1,-Rb3,-Rd和-F2完全相同,此外还分离得到了人参皂苷Rd3,K,其余为人参皂苷的类似物。由于绞股蓝的产地不同,其中的皂苷成分和含量也有很大的不同。覃章铮[4]等曾经对1990年以前发现的84种皂苷成分进行过综述性报道,但由于绞股蓝皂苷具有较好的药理疗效,因此,对绞股蓝皂苷成分的研究一直是热点。1990年后,又有52种绞股蓝皂苷被相继报道。根据苷元结构相近的程度,本文将这52种皂苷分为11类。

第1类绞股蓝皂苷结构通式及特点:

序号分子式C-位3β201[5]C47H76O172-ara-glc-rha(S)2[5]C47H76O17

2-ara-glc-rha(R)3[6]C49H78O18MeCO

-glc-rha3|6|2xyl-H(S)4[6]C49H78O18MeCO

-glc-rha3|6|2xyl-H(R)5[6]C47H76O17-glc-rha3|2xyl-H

(S)6[6]C47H76O17-glc-rha3|2xyl-H(R)7[6]C48H78O18-glc-rha3|2glc-H(S)8[6]C51H80O19MeCO

-glc-rha6||43|2xylMeCO-H(R)

第2类绞股蓝皂苷结构通式及特点:

序号分子式C-位2α3β20(S)9[7]C54H90O23-OH2-glc-glc6-glc-rha10[7]C53H88O23-OH2-glc-glc6-glc-xyl11[8]C54H90O20-Hrha

-glc-rha3|2|6rha-H

第3类绞股蓝皂苷结构通式及特点:

序号分子式C-位3β1920(S)2112[7]C48H80O192-glc-glc-CH2OH-glc-H13[9]C55H92O22CH3CO-glc-rha|36|2xy1-CH3-H-O-glc14[9]C54H92O22-glc-rha3|2rha-CH3-H-O-glc15[9]C53H90O21-glc-rha3|2xyl-CH3-H-O-glc16[9]C52H88O21-ara-rha3|2xyl-CH2OH-H-O-glc17[9]C53H90O22-glc-rha3|2xyl-CH2OH-H-O-glc18[10]C54H92O222-glc-glc-CH2OH6-glc-rha-H19[10]C54H90O222-glc-glc-CHO6-glc-rha-H20[10]C47H78O172-ara-glc-CHO-glc-H

第4类绞股蓝皂苷结构通式及特点:

序号分子式C-位3β232421[11]C41H70O132-xyl-glcH(S)22[11,12]C42H72O142-glc-glcH(S)23[11,12]C41H70O132-xyl-glcH(R)24[11,12]C41H70O142-xyl-glcOH(R)(S)25[13]C41H70O142-glc-xyl-OH(S)(S)

第5类绞股蓝皂苷结构通式及特点:

序号分子式C-位3β23(S)26[9]C46H78O18-glc-xyl6|2xyl-OH27[9]C47H78O19-glc-glc6|2xyl-OH28[9]C41H70O142-xyl-glc-OH29[9]C41H70O142-glc-xyl-OH30[9]C42H70O142-xyl-xyl-OAc31[9]2-glc-xyl-OAc32[9]C48H80O19-glc-xyl6|2xyl-OAc

第6类绞股蓝皂苷结构通式及特点:

序号分子式C-位3β1933[14]C49H82O18MeCO-glc-xyl2|6|3rha-CH334[14]C46H76O17-ara-xyl2|3rha-CHO

第7类绞股蓝皂苷结构通式及特点:

序号分子式C-位3β192135[14]C46H74O17-ara-xyl2|3rha-CHO-OH36[14]C47H78O17-glc-xyl2|3rha-CH3-OH37[14]C49H80O18OAc-glc-xyl2|6|3rha-CH3-OH38[14]C48H78O17-ara-xyl2|3rha-CHO-OEt39[14]C49H82O17-glc-xyl2|3rha-CH3-OEt40[15]C47H78O16-lyx-glc3|2rha-CH3-OH

第8类绞股蓝皂苷结构通式及特点:

序号分子式C-位3β121920(S)21252641[5]C53H90O222-ara-glc-H-CH3-rha-H-OH-glc42[9]C52H86O23-ara-xyl2|3rha-H-CHO-H-O-glc-OOH-H43[13]C46H76O18-ara-xyl2|3rha-H-CHO-H-OH-OOH-H44[9]C53H90O242-glc-glc-OH-CH3-xyl-glc-H-OOH-H45[13]C53H90O21-glc-xyl2|3rha-H-CH3-H-O-xyl-OCH3-H

第9类绞股蓝皂苷结构通式及特点:

序号分子式C-位2α3β121920(S)212446[5]C52H88O22-H2-ara-glc-H-CH3-H-O-glc-rha47[9]C52H86O22-H-ara-xyl2|3rha-H-CHO-H-O-glc-H48[16]C36H62O10-OH-H-OH-CH3-glc-H-H

第10类绞股蓝皂苷结构通式及特点:

序号分子式C-位3β1949[14]C49H80O18OAc-glc-xyl2|6|3rha-CH350[14]C46H74O17-ara-xyl2|3rha-CHO

第11类绞股蓝皂苷结构通式及特点:

第12类绞股蓝皂苷结构通式及特点:

glc=β-D-吡喃葡萄搪基,xyl=β-D-吡喃木糖基,rha=α-L-吡喃鼠李糖基,ara=α-L-吡喃阿拉伯糖基,lyx=β-D-来苏糖基,Ac代表乙酰基,Me代表甲基,键上的数字代表键合的位置

随着人们对绞股蓝皂苷成分研究的不断深入,新的绞股蓝皂苷的不断发现,且在结构上有很大的差别。第1类、第4类、第5类、第6类、第7类、第10类和第11类在二十位碳上成环,但是在其成环的类型上又存在着很大的差别。第11类所成的环为含氧的双环。第1类、第4类、第6类、第7类和第10类所成的环为五元环,而其中的第1类、第4类和第7类为含氧的五元环,第6类和第10类为不含氧的五元环,而且即使在含氧的五元环中氧所在的位置也有所不同。第5类为含氧的六元环。此外,碳碳双键的有无和位置也有很大的区别,第4类、第5类、第6类和第11类不含碳碳双键,其他的几类都含有碳碳双键,第1类、第2类、第3类、第7类和第12类的碳碳双键在24和25位碳上,第8类的碳碳双键在23和24位碳上,第9类和第10类的碳碳双键在25和26位碳上。

2绞股蓝多糖的研究现状

多糖也是绞股蓝中含量比较多的化学成分,在研究皂苷的同时,对多糖的研究也逐渐地引起了人们的关注。王昭晶等[18]对碱提绞股蓝水溶性多糖进行了研究,并得到一种粗多糖AGM。经葡聚糖凝胶(G-100)柱层析检测其糖分布情况,表明AGM可能由两种多糖组成,其中一种含有结合蛋白质。而且经高效液相色谱确定了AGM的单糖组成为:鼠李糖∶木糖/岩藻糖(其中至少含有木糖或者岩藻糖中的一种)∶阿拉伯糖∶葡萄糖∶半乳=2.43∶1.00∶3.02∶2.59∶3.46。宋淑亮(《绞股蓝多糖的分离纯化及其药理活性研究》,2006山东中医药大学硕士论文)对绞股蓝多糖进行了较为系统的研究,共分离出了3种绞股蓝多糖GPS-2,GPS-3和GPS-4,并对其中的两种GPS-2,GPS-3进行了深入的研究,确定了GPS-2的分子量为10700Dal,GPS-3的分子量为9100Dal。GPS-2成分中含有鼠李糖和木糖,GPS-3成分中含有鼠李糖、木糖、阿拉伯糖、半乳糖、果糖和葡萄糖。

3其它化学成分的研究现状

绞股蓝中除了含有皂苷和多糖外,还含有黄酮类化合物、萜类、有机酸、生物碱、多糖、蛋白质等以及锌、铜、铁、锰、硒等微量元素,但是,在最近几年里对这几方面的研究都比较少,对黄酮化合物的研究也只是对其含量的测定和精制上[19,20],目前,除了20世纪80年代报道过的商陆素、芦丁、商陆苷及丙二酸等十多种黄酮类物质外,未见有新的化学成分的报道。

4结束语

研究绞股蓝中的化学成分,将有利于进一步明确绞股蓝的药理活性。目前,国内外学者对绞股蓝中的化学成分进行了大量的研究,且取得了一定的进展,特别是在绞股蓝皂苷的成分研究中,发现了多种新绞股蓝皂苷,这些发现将有助于进一步对绞股蓝的开发和利用。此外,对绞股蓝中多糖的研究也引起了国内一些学者重视,而且也取得了一定的进展,但是近几年对绞股蓝中黄酮化合物成分的研究未见报道。由此可见,对绞股蓝多糖和黄酮类化合物成分的研究还有待进一步深入。

【参考文献】

[1]张瑞哲,张常胜,于慧敏.绞股蓝药理及临床作用研究进展[J].黑龙江医药,2000,13(5):295.

[2]任颖,王秋玉,吴泽民,等.绞股蓝皂甙的药理研究进展[J].中华实用中西医杂志,2001,14(5):988.

[3]侯慧丽,傅童生.绞股蓝的化学成分与药理作用研究进展[J].动物医学进展,2006,27(Z1):59.

[4]覃章铮,赵蕾,毕世荣,等.绞股蓝的皂苷成分及资源[J].天然产物研究与开发,1992,4(1):83.

[5]SoniaP,CosimoP.Newdammarane-typeglycosidesfromgynostemmapentaphyllum[J].JournalofNaturalProducts,1995,58(4):512.

化学成分论文范文4

【关键词】一枝黄花化学成分药理活性临床应用

一枝黄花Solidagodecurrens系菊科一枝黄花属植物中的一个品种,主要生长于我国的华东、中南、西南及陕西、台湾等地。其生长地不同有不同的异名,如野黄菊(《南宁市药物志》),山边半枝香、洒金花(《江西民间草药》),黄花细辛、黄花一枝香(《广西中药志》),黄花一条香(《福州中草药》)……[1]。一枝黄花作为一种药材,在我国民间应用十分广泛,具有疏风清热、解毒消肿的功能。主要用于治疗风热感冒、头痛、咽喉肿痛、肺热咳嗽、黄疸、泄泻、热淋、痈肿疮疖、毒蛇咬伤以及跌打损伤、鹅掌风等[1,2]。现代药理学表明,一枝黄花具有抗菌、利尿、祛痰平喘等作用,近年的研究还发现一枝黄花有降压、对胃黏膜的保护及促进肠平滑肌运动的作用。笔者对一枝黄花Solidagodecurrens的化学成分和药理活性的研究做一概述。

1化学成分

一枝黄花属植物品种多,有120多个种类,主要生长在北美洲,其中中国有4个品种:毛果一枝黄花Solidagovirgaurea,一枝黄花Solidagodecurrens,钝苞一枝黄花SolidagoPacifica和加拿大一枝黄花Solidagocanadensis[3]。对一枝黄花属植物化学成分的研究在西欧国家比较多,不同品种的化学成分也有差异,一枝黄花(Solidagodecurrens)主要含黄酮、皂苷、苯甲酸苄酯、当归酸桂皮酯、炔属化合物、苯丙酸等。

1.1黄酮类芦丁(Rutin)、山柰酚-3-芦丁糖苷、异槲皮苷、山萘酚-葡萄糖苷[2]。

1.2皂苷类一枝黄花酚苷(leiocarposide)[4,5]。

1.3苯甲酸苄酯类2,3,6-三甲氧基苯甲酸-(2-甲氧基苄基)酯、2,6-二甲氧基苯甲酸-(2-甲氧基苄基)酯、2-羟基-6-甲氧基苯甲酸苄酯、2,6-二甲氧基苯甲酸苄酯[5]。

1.4当归酸桂皮酯类当归酸-3,5-二甲氧基-4-乙酰氧基桂皮酯、当归酸-3-甲氧基-4-乙酰氧基桂皮酯[5]。

1.5炔属化合物(2E-8Z)-癸-二烯-4,6-二炔酸甲酯、(2Z-8Z)-癸-二烯-4,6-二炔酸甲酯[5]。

1.6苯丙酸类咖啡酸(Caffeicacid)、绿原酸(Chlorogenicacid)[6]。

1.7其他谷甾醇(sitosterol)[5]、δ-杜松帖烯(δ-cadinene)[7],以及多种微量元素,其中Ca2+,Mg2+含量较多[8]。

2药理活性

对一枝黄花Solidagodecurrens药理活性的研究,国外未见报道,国外对同属的毛果一枝黄花Solidagovirgaurea研究比较深入,报道较多,药理活性有抗炎、抗菌、利尿、抗肿瘤活性等作用[9]。在国内,早期对一枝黄花Solidagodecurrens药理活性的研究报道有如下记载:

2.1抗菌作用煎剂对金黄色葡萄球菌、伤寒杆菌有不同程度抑制作用。对红色癣菌及禽类癣菌有极强的杀菌作用。一枝黄花水煎醇提液有抗白色念珠菌作用,其疗效与制霉菌素相当[1]。

2.2平喘祛痰作用对家兔实验性支气管炎(吸入氨蒸气法),内服煎剂,可解除喘息症状,亦有祛痰作用[1]。

2.3其他作用动物实验证明能促进白细胞吞噬功能。对急性(出血性)肾炎有止血作用,提取物经小鼠皮下注射有利尿作用,但大剂量反可使尿量减少[10]。

近年来研究还发现有以下药理活性:

2.4降压作用一枝黄花煎剂能显著降低麻醉兔血压,抑制蟾蜍心收缩力,降低蟾蜍心率和心输出量,其降压幅度和降压持续时间与异丙肾上腺素相当[11]。

2.5胃黏膜保护作用给消炎痛前2h腹腔注射一枝黄花煎剂,6h后处死动物,发现和对照组比较,溃疡得分显著低于对照组[12]。

2.6能明显增强动物平滑肌的运动一枝黄花煎剂对炭末在小鼠小肠内的推进率有明显增强作用;用不同浓度的一枝黄花煎剂均能提高大鼠回肠平滑肌的活动,且随浓度增加,活动也增加[13]

3临床应用

《中华本草》记载有早期的临床应用报道:

3.1治疗流行性感冒,上呼吸道感染。

3.2治疗急性扁桃体炎。

3.3治疗真菌性阴道炎。

3.4其他应用早期报道还有治疗手足癣、带状疱疹、口腔溃疡等皮肤黏膜真菌感染;近年来对一枝黄花在临床应用的报道也有不少,如黄飞翔等[14]对心衰并发肺部感染患者用一枝黄花煎液预防口腔霉菌感染有效;马国精[15]用一枝黄花汤治疗乳腺小叶增生128例;余志波[16]用一枝黄花治食管癌等。

4结语

一枝黄花资源丰富,临床应用广泛,而对一枝黄花化学成分、药理活性的研究,国内外报道却不多。近年来国内对一枝黄花的药理活性研究开始重视,并有了新的发现,但要利用药理活性开发出新的产品,以用于临床疾病的治疗,还必须不断深入研究和探索,提取有效成分,阐明其与药理活性之间的关系才行,这是我们所期待的。

【参考文献】

[1]国家中医药管理局中华本草编委会.中华本草,第7册[M].上海:上海科学技术出版社,1999:965.

[2]中国医学科学院药用植物资源开发研究所.中药志,第4册[M].北京:人民卫生出版社,1988:145.

[3]江涛,黄保康,秦路平.一枝黄花属植物化学成分和药理活性研究[J].中西医结合学报,2006,4(4):430.

[4]HillerK,Gil-RjongR,FrankeP.AsaponinfromSolidagodecurrens[J].Pharmazie,1979,34(5-6):360.

[5]BohlmannF,ChenZL,SchusterA.AromaticestersfromSolidagodecurrens[J].Phytocheminstry,1981.20(11):2601.

[6]LiuQH,DaiJZ,YangPM,etal.AdiposeinjectionandpreparationmethodofSolidagodecurrnsLour[J].CN:02136369,2003-02-12.

[7]Fijita,Shinichi.FComponentsoftheessentialoilsofSolidagovirgaureaLin.ssp[J].NipponNogeiKagakuKaishi,1990,64(11):1729.

[8]刘临,邓琴,肖道安,等.中药一枝黄花、黄连、天麻、蛇床子中8种微量元素的测定[J].广东微量元素科学,2006,13(6):30.

[9]薛晓霞,姚庆强,仲浩.毛果一枝黄花的化学成分与药理活性研究进展[J].齐鲁药事,2006,25(3):163.

[10]郭晓庄.有毒中药大辞典,第1版[M].天津:天津科技翻译出版公司,1992:3.

[11]裘名宜,李晓岚,刘素鹏,等.一枝黄花对心血管系统部分指标的影响[J].医学信息,2005,18(12):1730.

[12]裘名宜,李晓岚,刘素鹏,等.一枝黄花对消炎痛所致大鼠胃溃疡的影响[J].时珍国医国药,2005,16(12):1267.

[13]刘素鹏,裘名宜,吴正平,等.一枝黄花对动物肠平滑肌运动的影响[J].时珍国医国药,2006,17(11):2151.

[14]黄飞翔,叶盈,周一薇,等.一枝黄花预防心衰患者的口腔霉菌感染[J].现代中西医结合杂志,2002,11(12):1139.

化学成分论文范文5

【关键词】金针菇;挥发性成分;气相质谱-色谱联用

Abstract:ObjectiveToanalyzethechemicalconstituentsofessentialconstituentsextractedbysteamdistillationfromFlammulinavelutipes.MethodsThechemicalconstituentswereseparatedandidentifiedbyGC-MS.Therelativecontentofeachconstituentwasdeterminedbyareanormalization.Results30peakswereseparatedand6constituentswereidentified,whichaccountedfor54.36%ofthetotalcontents.Themainchemicalcomponentsoftheessentialconstituentswerelinolenicacid(32.74%);Palmiticacid(6.41%)andEthylpalmitate(4.96%).ConclusionTheessentialconstituentsofFlammulinavelutipescontainsthelinolenicacidwhichisrich.

Keywords:Flammulinavelutipes;Essentialconstituents;GC-MS

金针菇Flammulinavelutipes,又名朴菰、构菌、冬菇、毛脚金钱菌,为白蘑科Tricholomataceae金钱菌属Flammulina菌类植物[1],是著名的药食两用菌,具有广阔的开发前景。金针菇含有8种人体必需的氨基酸,其中赖氨酸含量占氨基酸总量的6.3%[2]。医学证明赖氨酸可以增强记忆、开发智力,对幼儿成长十分有益,故金针菇被誉为“增智菇”;金针菇所含的多肽、多糖有显著的抗癌作用[3]。金针菇干品具有独特香气,然而尚未见有关其芳香成分研究的报道,为此作者对其挥发性成分进行了研究。

1器材

1.1仪器岛津GCMS-QP-5000型气质联用仪。

1.2试剂乙醚、无水Na2SO4(均为AR)。

1.3药材金针菇样品由广东省蚕桑研究所提供,经该所所员刘学铭研究鉴定,为白蘑科菌类植物金针菇Flammulinavelutipes。

2方法

2.1供试品溶液的制备药材切成约1.5~2cm的段,取约80g,按照《中国药典》附录XD挥发油测定法——甲法[4]操作,加蒸馏水800ml,加热4h,收取挥发油提取器中油层和部分芳香水层,乙醚萃取,萃取液用无水Na2SO4脱水后备用。

2.2GC-MS分析

2.2.1色谱条件GC:DB-1石英毛细管色谱柱(30m×0.25mm),样口温度250℃;接口温度230℃;载气为氦气;流速1.3ml·min-1;柱压80kPa;分流比10∶1;进样量为1.0μl。升温程序:初始柱温60℃,保持1min,以10℃·min-1的速率升到280℃,保持5min。

2.2.2质谱条件EI源(70ev),350V,双灯丝;质量范围m/z40~450全程扫描,扫描间歇1.0s。检测电子倍增器电压1.4kV。检索谱库名称NIST。

3结果

依法操作,得到挥发性成分的总离子流图。扣除乙醚溶剂本底后分离得到30个组分,对相对含量较高的组分进行质谱分析,通过计算机检索并与标准谱图对照,鉴定出其中的6个组分。以扣除溶剂峰的色谱图的全部峰面积作为100%,用归一化法确定了各组分在挥发油中的相对含量。分析结果见表1,总离子流图见图1。表1金针菇挥发性成分中的化学成分及相对百分含量(略)

4讨论

从GC-MS总离子流图及GC-MS检测结果可以看出,金针菇挥发性成分以亚麻酸为主,其相对含量达到32.74%。亚麻酸具有增长智力、延缓衰老、降低血压和胆固醇、抗菌、抗炎、抗肿瘤等活性[5~7],是降血压、降血脂药物和保健品的重要原料之一,应进一步研究,加以利用。

本研究首次从金针菇挥发性成分中鉴定出亚麻酸(32.74%)、软脂酸(6.41%)、邻苯二甲酸异丁酯(5.23%)、软脂酸乙酯(4.96%)、邻苯二甲酸丁酯(3.07%)、苯乙醛(1.95%)等成分,占其挥发性成分相对含量的54.36%,但还有24个组分尚未能鉴定出其结构,可能是由于金针菇挥发性成分属首次研究,其中一些成分尚未收入NIST检索谱库,有待于今后深入研究。

【参考文献】

[1]国家中医药管理局《中华本草》编委会.中华本草,第1册[M].上海:上海科学技术出版社,1999:570.

[2]魏华,谢俊杰,吴凌伟,等.金针菇营养保健作用[J].天然产物研究与开发,1997,9(2):92.

[3]黄毅.食用菌栽培[M].北京:高等教育出版社,1993:132,258.

[4]国家药典委员会.中国药典,Ⅰ部[S].北京:化学工业出版社,2005:57.

[5]王威,闰嘉英,王永奇.紫苏油药理活性研究进展[J].时珍国医国药,2000,11(3):283.

化学成分论文范文6

【关键词】沿海滩涂甘紫菜化学成分波谱分析

甘紫菜PorhyrateneraKiellm.属红藻门红毛菜科,生于海湾中潮带岩石上,分布于渤海至东海,有大量栽培。主要供食用,入药有软坚散结、化痰利尿和降血脂作用[1]。沿海滩涂甘紫菜化学成分的研究少见报道。为了寻找其活性成分,进一步开发利用沿海滩涂甘紫菜的药用价值,我们对沿海滩涂甘紫菜的化学成分进行了研究。从沿海滩涂甘紫菜的藻体中分离纯化获得3个单体化合物,经IR、1H-NMR、13C-NMR、MS等波谱方法测定,确定了它们的化学结构,分别为为β-谷甾醇、甘露醇、齐墩果酸。其中齐墩果酸为首次从该植物中分离获得。

1材料与仪器

实验品2006-08采自盐城射阳一紫菜种植户,经盐城师范学院生命科学与技术学院于延球教授鉴定为红藻门红毛菜科沿海滩涂甘紫菜PorphyrateneraKjellm.。

熔点用X-4显微熔点测定仪测定,温度计未校正;红外光谱用NICOLETFT-IR50X型红外光谱仪测定;FAB-MS用VGZAB-HS型质谱仪测定;NMR用VarianINOVA500型超导脉冲傅立叶变换核磁共振波谱仪测定;UV用岛津UV-250型紫外可见光谱仪测定。

2方法与结果

2.1提取分离将新鲜藻体10kg日光下晒干,然后用5L乙醇浸提3次,合并浸提液,减压浓缩。分别用石油醚、氯仿、醋酸乙酯、正丁醇萃取浓缩物,得石油醚部、氯仿部、醋酸乙酯部、正丁醇部和水部。醋酸乙酯部过硅胶柱,氯仿-甲醇梯度洗脱,95%乙醇反复重结晶,得化合物I,II和III。

2.2结构鉴定

2.2.1化合物Ⅰ(230mg)无色针晶(CHCl3-MeOH),mp:132~134℃,[α]D+35.2°(CHCl3),MF:C29H50O,MW:414。IRKBrmax(cm-1):3430(OH),1640(C=C)。EI-MS(m/z):414[M]+,396,330,329,273,255,138,120,107,105,95,69,55(基峰)。1H-NMR(CDCl3,500MHz)δ:5.35(1H,brd,J=5.0Hz,H-6),3.53(1H,m,H-3),1.01(3H,s,H-19),0.92(3H,d,J=6.4Hz,H-21),0.86(3H,t,J=7.6Hz,H-29),0.84(3H,d,J=6.8Hz,H-26),0.82(3H,d,J=6.8Hz,H-27),0.68(3H,s,H-18)。13C-NMR(CDCl3,125MHz)δ:140.75(C-5),121.70(C-6),71.80(C-3),56.76(C-14),56.05(C-7),50.13(C-9),45.83(C-24),42.30(C-13),40.47(C-4),39.77(C-12),37.25(C-1),36.50(C-20),36.13(C-10),33.94(C-22),31.89(C-7),31.65(C-2),29.14(C-8),28.90(C-25),28.23(C-16),26.07(C-23),24.29(C-15),23.06(C-28),21.20(C-11),19.81(C-27),19.03(C-19),18.97(C-16),18.77(C-21),11.97(C-18),11.85(C-29)。

Liebemann-Burchard反应阳性,提示为不饱和甾醇类化合物,MS为典型的甾醇类裂解方式。其1H-NMR、13C-NMR与文献[2]报道的β-谷甾醇一致。经与标准品(购自Sigma公司)共熔点、共TLC,证明为同一化合物。因此化合物I的结构鉴定为β-谷甾醇。

2.2.2化合物Ⅱ(100mg)无色针状结晶,mp:165~167℃,易溶于水。IRKBrmax(cm-1):3288(-OH),1422,1281,1082,1019。将化合物Ⅱ与甘露醇标准品点于同一硅胶G板上,醋酸乙酯-吡啶-水(7∶2∶1)展开,取出晾干后用KMnO4溶液显色,样品与标准品Rf值完全一致,共TLC为单一斑点。样品与标准品混合物熔点不降低,而且化合物Ⅱ的IR数据与文献[3]数据基本一致,故鉴定为甘露醇。

2.2.3化合物Ⅲ(200mg)白色针晶,mp:309~310℃,[α]D+80°(CH3OH),易溶于氯仿、丙酮以及甲醇。IRKBrmax(cm-1):3427,3074,2942,2869,1687,1640,1452,1382,1377,1320,1274,1237,1190,1132,1107,1045,1040,984,883;1H-NMR(400MHz,CDCl3)δ:5.28(S,1H),3.23(1H,dd,7.2,8.0),2.83(1H,d,11.2),2.97(1H,m,3-H),2.95(1H,m,19-H),2.22(1H,m,13-H),2.13(2H,S,22-H),1.64(3H,S,26-H),0.93(3H,S,25-H),0.86(6H,S,23-H,24-H,),0.76(3H,S,30-H),0.64(3H,S,27-H)。13C-NMR(400MHz,CDCl3)δ:183.06(S,C-28),30.72(S,C-20),32.51(T,C-29),79.11(D,C-3),46.59(S,C-17),55.43(D,C-5),47.82(D,C-9),41.19(D,C-18),46.02(D,C-19),41.74(S,C-14),39.42(S,C-8),38.83(S,C-4),32.79(T,C-22),143.58(D,C-13),38.63(T,C-1),23.14(T,C-16),33.08(T,C-7),33.89(T,C-21),27.34(T,C-2),23.49(Q,C-30),27.77(T,C-15),122.74(T,C-12),23.62(T,C-11),17.18(Q,C-26),18.43(T,C-6),25.88(Q,C-27),15.52(Q,C-24),28.18(Q,C-23),15.33(Q,C-25);EI-MSM/Z456(M+,5.56%),395,316,302,287,273,259,248,234,220,203,189,175,161,147,133,119,107。

13C-NMRδ183.69峰的存在,红外图谱3427cm-1峰的存在都表明分子中有羧基的存在;Liebermann-Burchard反应呈阳性亦证实分子中羧基的存在。1H-NMRδ5.28(1H,s,可氘代)的存在说明分子中有OH的存在,红外图谱3427cm-1,1045cm-1亦支持这一点。EI-MSm/z456(M+)和FAB-MS显示(M+H+)457,表明A的分子量为456,结合13C-NMR中碳信号为30个碳,1H-NMR中氢信号为48个氢,因此可确定其分子式为C30H48O3,不饱和度为7。根据13C-NMR显示分子中有一个双鍵,一个羰基,推断A具有五元环。根据13C-NMR、1H-NMR及IR谱,该分子中有双键(δ:143.57,122.59和1640cm-1吸收带),13C-NMR(DEPT)谱给出30个碳信号,分别为7个甲基,10个亚甲基,5个次甲基(包括一个烯碳122.59),8个季碳(包括羧基碳及一个烯碳143.57)。化合物III属萜类,具有一个不饱和键,分子中有羧基、羟基,为五环三萜烯酸,该化合物是齐墩果酸,有关波谱数据与文献[4]值相符。经文献检索,齐墩果酸为首次从该植物中分离获得。

3讨论

用乙醇浸提沿海滩涂甘紫菜的干燥藻体,减压浓缩提取液。分别用石油醚、氯仿、醋酸乙酯、正丁醇萃取浓缩物,进一步分离纯化,得到3个单体化合物,经波谱方法测定,确定了它们分别为β-谷甾醇、甘露醇、齐墩果酸。齐墩果酸为首次从该藻类中分离获得。有资料表明[5],齐墩果酸能明显地降低小鼠血清总胆固醇、过氧化脂质、动脉壁总胆固醇含量及动脉硬化(AS)斑块发生率,升高高脂血症小鼠PG12/TXA2比值,表明齐墩果酸对AS的形成有显著的抑制作用;它还具有广谱抗菌作用,对金黄色葡萄球菌、溶血性链球菌、大肠杆菌、弗氏痢疾杆菌、伤寒杆菌、猪霍乱沙门菌等都有不同程度的抑制作用,特别是对伤寒杆菌、痢疾杆菌及金黄色葡萄球菌作用比氯霉素强;此外,还有镇静、防肿瘤、利尿等作用;它还是治疗急性黄疸性肝炎和慢性肝炎的有效药物。因此,沿海滩涂甘紫菜值得进一步开发和综合利用。

【参考文献】

[1]郑汉臣.药用植物学[M].北京:人民卫生出版社,1999:120.

[2]徐成坤,王建中.北京石韦的化学成分研究[J].广东药学院学报,1999,15(1):21.

[3]刘韶,秦勇,杜方麓.苦丁茶化学成分研究[J].中国中药杂志,2003,28(9):834.