转换层施工技术论文范例6篇

前言:中文期刊网精心挑选了转换层施工技术论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

转换层施工技术论文

转换层施工技术论文范文1

【关键词】房屋建筑;结构转换层;施工技术

随着我国经济迅速的发展,城市化进程也不断的加剧,高层建筑也越来越多,在高层建筑的施工中,厚板转换层的应用也逐渐增多,其施工技术与高层建筑的质量有着密切的关系,在厚板转换层的施工中,现代预应力技术逐渐得到了广泛的应用。现代预应力技术是建筑行业的新技术,适宜在厚板转换层这种受力结构复杂、跨度大、挠度控制等问题突出的结构中应用,因此,探讨现代预应力技术在厚板转换层中的应用是当前高层建筑施工中需要密切关注的问题。

1、高层建筑转换层结构的形式

现代化的高层建筑呈现出一种多功能、多元化的发展趋势,对于下部大空间、上部小开间的商用高层建筑就一定要设置好转换层,只有设置好转换层才能够承受上部框架的重量,转换层的结构较为复杂,包括空腹析架式结构、梁式结构、板式结构、空腹析架式结构等等。目前我国高层建筑的转换层,主要以使用梁式结构居多,据统计,使用梁式结构的转换层占到了整个建筑比例中的80%以上,在这种结构中,一般使用预应力混凝土、钢筋混凝土、劲性钢筋混凝土等组合结构的形式进行施工,其中,钢筋混凝土的使用比例最高,转换梁的结构主要以钢和混凝土组合施工的形式进行,这种组合形式也将会成为未来高层建筑业的施工模式之一。

2、高层建筑结构转换层的施工方式

2.1高层建筑结构厚板转换层施工流程

高层建筑厚板转换层的施工流程一般按照测量放线、转换层模板安装、板底以及暗梁钢筋的绑扎、首次混凝土施工、施工缝隙的养护、版面钢筋的绑扎、二次混凝土施工、养护的流程来进行。

2.2转换层模板支撑的施工方式

在高层建筑的施工中,常常使用一次性模板、荷载传递法支模、叠合浇筑法支模、埋设型钢法支模施工方式,下面就对这几种方式进行简要介绍:

2.2.1一次性支模施工方式

使用一次性支模进行施工,需要从转换层的底部上底层地面或者地下室的地板衍生,在施工过程中需要施工模板支撑材料,一般情况下,一次性支模施工方式适宜施工现场可用支撑性材料多,转换层位置相对较低的施工情况。

2.2.2荷载传递支模施工方式

荷载传递支模施工方式主要将施工荷载以及转换梁自重通过支撑系统传递到高层建筑的层板之中,支撑楼板的设置数量应该根据图纸的要求来进行,此外,还可以将转换层支撑柱传力利用起来,通过梁下排列体系将作用力传递到高层建筑的楼板中。

2.2.3叠合浇筑法支模施工方式

叠合浇筑法支模施工方式主要使用叠合梁的施工原理将高层建筑的转化量分成两次到三次进行浇筑施工,一般支撑系统只能够承受第一层施工载荷和混凝土的自重,在使用叠合浇筑法支模施工方式进行施工时,要做好叠面层的处理工作。

2.2.4埋设型钢法支模施工方式

埋设型钢法支模施工方式需要在高层建筑的转换梁之中埋设好钢析架,并将埋设好的钢析架与模板连接成为一个整体,以便承受施工的荷载以及整个大梁的自重,对于大梁使用一次性浇筑成型的施工方式,对于转换梁的施工一般使用钢骨混凝土的施工方式,在施工过程中,要保证上层和下层的在同一个施工位置,对于转换结构的下层可以使用埋设型钢法支模的方式进行施工,施工完成之后,做好承载力的验算工作。

2.3高层建筑结构转换层混凝土施工方式

2.3.1做好混凝土配比的控制工作

在高层建筑施工中,转换层厚板的厚度较大,因此,在具体的施工中一般使用分层浇筑的施工模式,在进行大体积混凝土的施工时,要控制好第二层和第三层的施工方式,在实际的施工中,由于大体积混凝土施工的二层和三层的水化热程度较高,就要根据实际情况来更改原材料的配比,一般可以在原材料中添加粉煤灰、矿渣以及高效减水剂,以便最大限度的减小水化热程度。

2.3.2控制好混凝土的浇筑工作

在实施混凝土的浇筑工作时,要意识到混凝土的浇筑必须要满足高层建筑的整体性施工要求,在浇筑过程中,要从转换板的中心位置逐渐向两侧的浇筑线路进行,在浇筑过程中,要保证两侧浇筑速度的一致性,保证脚手架可以受力均匀,防止侧移情况的发生。在浇筑中要慎重的使用振捣器,防止由于选择和使用不当导致混凝土后期出现裂缝,在混凝土的初凝前的一到两个小时用长刮尺将混凝土的表面刮平,在施工滚筒进行碾压,减少裂缝的产生。

2.3.3做好混凝土的养护工作

混凝土的养护是保证高层建筑质量的重要方法,在目前,对混凝土施工后期的养护方式主要是蓄热保温法内降外保法两种,在使用蓄热保温法对混凝土进行养护时,要在混凝土内部温度升高之前做好保湿工作,在内部温度降低前做好保温工作。内降外保法就是在大体积混凝土的内部埋设循环管,利用循环管的冷却作用降低内部的温度,减少混凝土内部与外部的温度差,一般在使用内降外保法进行养护前,要对混凝土的表面洒水,在进行后期的蓄水养护工作。

2.4做好钢筋施工的控制工作

2.4.1控制好钢筋的安装顺序

在进行钢筋施工时,要确定好钢筋的尺寸和钢筋绑扎的顺序,与图纸进行详细的核对,方可进行后续的安装,一般情况下,钢筋的安装顺序从建筑物分层暗梁下部、板底、钢管支架、纵向钢筋、套箍筋、穿腰筋、固定、暗梁控制、板面双层钢筋铺设的顺序来进行。

2.4.2做好钢筋的连接控制工作

在高层建筑的施工中,主要使用钢筋闪光对焊、套筒冷挤压、锥螺纹连接以及电渣压力焊的连接方式进行钢筋连接,连接方式的选择主要由钢筋的尺寸、直径和型号来决定,对于直径在28mm以上的钢筋可以使用锥螺纹连接和套筒冷挤压的连接方式进行,对于直径在25mm以下的钢筋,可以使用闪光对焊、电渣压力焊的方式进行连接。

2.4.3做好钢筋的绑扎工作

钢筋的绑扎包括钢筋支撑架和钢筋连接的绑扎两个内容,在钢筋成型后的绑扎过程中,由于钢筋的长度较长,在绑扎时要搭设好相关的支撑架,使用闪光对焊的施工方式进行施工。对于钢筋连接的绑扎,要按照钢筋的顺序来进行,在钢筋的下部,要放置好分隔筋,按照顺序一一进行绑扎,直到左右的钢筋绑扎完成,对于钢筋的上部位置,也要按照同样的顺序来进行,直至所有的钢筋绑扎完成。

3、结语

综上所述,近年来.我国的经济得到了迅速的发展,城市建设同时得到了快速的发展,城市中高层建筑也越来越多,在高层建筑的施工中,厚板转换层的应用也逐渐增多,其施工技术与高层建筑的质量有着密切的关系,转换层是高层建筑上部结构的施工基础,是下部结构的封顶,在高层建筑物的结构建设中起着承上启下的作用。

参考文献:

[l]李坚新.浅析房屋建筑工程结构转换层施工技术[期刊论文],科技创新与应用,2012(03)28

[2]周青松房屋建筑工程结构转换层施工技术[期刊论文],民营科技,2011(07)20

转换层施工技术论文范文2

【关键词】质量监测性能指标质量控制施工监管完善体制

中图分类号: O213.1 文献标识码: A 文章编号:

一.引言。

在建筑工程暖通安装施工中,必须严格按照国家规定进行施工,现场监控的专业技术人员必须严格保障暖通工程的施工质量。在进行支架制作安装中,所用吊杆、型钢规格必须达标,所承受的管道及设备的最大荷载和防腐措施也必须满足要求;如需采用风管组成通风系统,风管安装必须平直,通过变形缝或与设备连接处时必须做软连接。只有从施工的质量管理与原材料的质量管理两方面入手,才能共同保障暖通工程施工的质量。

二.建筑工程中暖通施工的主要问题。

在暖通施工中较为普遍的问题是施工材料的质量问题。这是由于在材料的采购过程中没有对其质量进行把关,没有进行抽检等引起的,或者是为了节省成本,而在施工过程中采用价格低廉质量差的暖通材料,从而导致了施工质量问题,而在施工过程中,也容易出现较多的施工质量问题。具体表现为:

(1).很多施工人员在对散热器支管管道的下料量进行计算的时候不准确,导致施工后散热器的支管坡度跟标准规范中的坡度不符;

(2). 施工过程中由于供暖的管道没有实现进行调直,并且在堵管道空墙洞的时候对管道的坡度设置把握不准, 或者是由于设置管道的支架位置时,支架之间的距离以及标高出现了较大的偏差,导致了管道局部拱起或者下陷,使得供暖干管的坡度变小或者形成了局部的反坡现象,这样子使得管道中很容易积聚一些水汽,严重影响了系统的正常运行;

(3). 在施工过程中填充绝热材料时,由于填充较疏松,导致了暖通设施的不美观,同时也影响了其保温效果;

(4). 施工过程中由于测量的误差以及放置轴线时出现偏移,使得干管和立管两者的甩口位置出现了较大的偏差,散热器坐标以及标高设计也存在着较大的问题。

在施工中,不同的支架应该区分采用,但是很多时候施工人员都会将固定以及活动的支架混用。有时由于管道灵活度低,不能随着方向的转换实现伸缩作用,容易导致管道和支架受损。如果用立管的卡子来取代横管的支架,也很容易使管道下坠。另外,如果在用料的时候,用料量偏小,则容易使支架损坏或者是变形,当严重变形下弯的时候,系统将不能正常运行;

施工过程中由于散热器和管道跟安装墙壁靠的很近,安装或者使用的时候都有一定的难度,因此在管道靠近墙壁的一侧以及散热器的后面经常会出现油漆涂刷不均匀或者是疏漏的情况;有时候施工中有一些空间没有明确的功能,施工人员还是按照原来的计划进行施工,最后导致暖通设备全部被拆除,浪费了大量的人力和物资;最后,很多暖通施工工程在施工之前的施工图设计中,一般只会表明主要暖通设备定位的尺寸,却没有标明各种水管以及风管的标高或者定位的尺寸,有的虽然标出了,但是由于这些施工图没有经过会审,和别的工种发生了冲突,从而给施工造成了很大的麻烦。

三、民用建筑地暖工程施工要点分析以及应注意的问题。

1. 施工要点分析。

由于低温热水地板供热系统的经济性、环保性及舒适性,目前我国民用建筑多以采用这种供暖方式。对于此种供暖工程的施工控制主要集中在以下几个方面。在进行低温热水地板辐射采暖系统暖通工程施工中为减少地热向下层户和外墙的散(传)热,在地热管之下和外墙根铺垫隔热板和铝箔热反射膜是十分必要的,特别是采用高热阻的挤塑板更为有利。

另外在进行卫生间地热工程时,防水层应作在地热层的上面:因担心防水层被地热所破坏,施工中有将防水层作在地热层之下者,其结果造成了卫生间的污水渗(窜)入地热层内,使防水层失效和污染扩大。因此防水层作在地热层之上为佳。在冬季施工时应特别注意,由于低温热水地板辐射采暖系统试压后,盘管内存的水不能泄掉,很容易因为水结冰而破坏整个加热盘管,因此试压或冲洗后,应将盘管内的水全部吹出,以防冻坏管路。

另外,在加热盘管与分水器连接处,盘管外穿波纹管,以降低加热管密集处的混凝土的膨胀裂缝和减缓加热盘管的氧化。对于地面供暖的沙浆结尾,热水管表面浇灌水泥沙浆是蓄热需要,因此强度很重要,水泥、沙子、水的比率也很重要:水的比率、均匀的沙粒规格对强度有很大影响,沙浆内不能存有气泡:因为给蓄热和强度带来影响,沙浆的结尾抹光次数(表面结尾用泥刀)很重要:因水流出和除去气泡而给表面强度带来很大影响。

2. 施工过程中应注意的问题。

在供暖干管设置中,如果出现坡度设置不合理,应该从以下两个方面进行检查:

(1). 检查施工时管道是否变弯,固定穿墙管道时未控制好坡度;

(2). 管道支架施工时没有注意标高,导致施工出现倒坡,或者支架的间距设置过大,使得管道中间部位出现下凹,形成局部反坡,使得管道内积水或存气,影响到供暖管道的正常工作。散热器支管坡度施工不合理时,应该检查管道安装是否存在测量误差,因此在施工中可以采用先安装散热器,后安装立、支管,这样可以很好的解决这个问题。

四.建议。

1. 实现系统合理的规划。

系统合理的规划,不仅是建筑工程项目建设的基本前提,而且也是优化资源配置、确保工程质量和效益的重要依据。有鉴于此,在我国建筑工程项目建设规划中,就应当重视对暖通安装工程的材料设备、系统优劣以及投资计划等情况进行申报,并经由有关行政主管部门进行严格审批之后,才能投入施工建设,并经有关部门竣工验收合格后方可投入使用。

2. 积极推动新技术、新设备的应用。

在建筑工程项目暖通安装施工中,还应当采用分层次组织培训教育等方式,来着力提高工程建设当中各单位一线人员的专业素质和技术水平,并加强工程建设管理人员的综合素质和管理水平,从而为暖通安装施工的良性发展储备并提供高素质和高水平人才。此外,还须积极推广可操作性强的新技术和价廉物美的新设备,大力支持各项实用且效益好的新技术和新设备的引进及推广工作。

3. 重视工程资料的编制和管理。

在建筑工程项目暖通安装施工中,应当逐步重视工程资料的编制和管理。诸如与工程建设有关的规范标准和法律法规等资料应当整理齐全;施工图等设计文件、施工质量验收记录、施工原材料及试件检测记录、单位工程及竣工验收报告等资料均应按照有关规定归档妥善保存。一旦建筑工程项目建设完成之后,应当根据其等级进行相应的造册管理,并建立一套健全的管理目标责任制,明确各方权责,以此来确保建筑工程的暖通设施投入使用之后的管理质量和安全。

五.结束语

随着我国经济的不断发展与进步,人们不断的追求生活质量的提高,越来越多的群体开始重视建筑工程暖通的施工质量,因此,我国必须优化暖通设施的安装质量,提高施工人员的质量安全意识,确保工程有条不紊的进行,还应该随着建筑工程项目的技术标准及市场的发展与时俱进,不断更新自身的暖通安装施工管理的思路与措施,并时刻加强自身的专业素质和管理水平,从而始终能够适应社会的发展和建筑工程暖通安装的行业需求。

参考文献:

【1】殷莹 探究建筑暖通施工技术中的要点 [期刊论文] 《城市建设理论研究(电子版)》 -2013年16期

【2】付光亚 探究建筑暖通施工技术中的要点 [期刊论文] 《黑龙江科技信息》 -2013年4期

【3】庞龙江 建筑暖通安装施工技术探究 [期刊论文] 《管理学家》 -2012年16期

【4】王萍 外墙外保温施工技术探究 [期刊论文] 《华人时刊(理论研究)》 -2011年1期

【5】孔民 水暖管道穿楼板处堵洞施工技术探究 [期刊论文] 《城市建设理论研究(电子版)》 -2012年12期

【6】张超 探究建筑工程中的采暖通风技术 [期刊论文] 《城市建设理论研究(电子版)》 -2013年9期

转换层施工技术论文范文3

关键词:高层建筑,建筑结构,转换层,施工技术

 

1.高层建筑结构体系的特点

在我国高层建筑发展的早期阶段,所设计建造的高层建筑大都为单一用途,例如高层住宅、高层旅馆、高层办公楼等。近年来高层建筑发展迅速,建筑朝体型复杂、功能多样的综合性方向发展,因而相应的结构形式也复杂多样。后来陆续开始在高层住宅底层设置生活福利设施,并且开始大量兴建集吃、住、办公、购物、停车等为一体的多功能综合性高层建筑,尤其是在城市主干道两侧,并已成为现代高层建筑的一大趋势。

从建筑使用功能而言,在设计中,通常将大柱网的购物商场、餐厅、娱乐设施设于多功能综合性高层建筑的下层部分,而将较小柱网、较小开间的住宅、公寓、旅馆、办公功能的建筑设于中、上层部分。这种建筑使用功能的特点相应决定了多功能综合性高层建筑结构体系的特点。由于不同建筑使用功能要求不同的空间划分布置,相应地要求不同的结构形式,如何将它们之间通过合理地转换过渡,沿竖向组合在一起,就成为多功能综合性高层建筑结构体系的关键技术。这对高层建筑结构设计提出了新的问题,需要设置一种称为“转换层”的结构形式,来完成上下不同柱网、不同开间、不同结构形式的转换,简单地说,就是上下两层的结构不一样,必需设置一个转换层来“承上启下”。免费论文参考网。结构上的转换层概念,主要是指在整个建筑结构体系中,合理解决竖向结构的突变性转化和平面的连续性变化的结构单元体系。它在主要满足结构安全功能要求的同时,多数情况下解决一些特殊技术性建筑功能要求。比如在结构转换层空间内布置管道、设备等等。这种转换层广泛应用于剪力墙结构及框架一剪力墙等结构体系中。免费论文参考网。

2.转换层的常用结构形式及对比分析

2.1 梁式转换层

梁式转换层是指在现浇钢筋混凝土楼板上布置单向托梁(纵向或横向)或双向托梁(纵横向)或斜向托梁,以承托在本层落空的上面各层的承重柱或剪力墙。该种转换形式一般用于底部大空间剪力墙结构,当需要纵横向同时转换时,采用双向梁的布置。对于框筒或筒中筒结构,可以根据需要在相应楼层下做一圈转换大梁,把上部柱的荷载通过转换大梁传到下层两边的柱上。

梁式转换层结构的传力途径为墙一梁一柱(墙),传力途径清楚,转换梁具有受力性能好、工作可靠、构造简单和施工方便等优点,结构分析计算也较容易,一般用于上层为剪力墙结构,下层为框架结构的转换。免费论文参考网。

2.2 板式转换层

当上下柱网、轴线有较大错位,不便用梁式转换层时,可以采用板式转换方式。板的厚度一般很大,以形成厚板式承台转换层。它的下层柱网可以灵活布置,不必严格与上层结构对齐,但板很厚,自重很大,材料用量很多。

厚板转换层适用于上下柱网极不规则的结构,它的结构布置方便,从而更好地实现对高层建筑多功能的要求,但缺点也很明显。由于板式转换层一般很厚,有时可以达到3.0mm,自重很大,在地震作用下,这样大的质量必将引起很大的水平地震作用。因此对于地震区的高层建筑,转换层要慎用厚板楼盖。

2.3桁架转换层

在托柱形式的梁式转换层中,当转换梁跨度很大,且承托层数较多时,由转换梁承托上部框架柱传递下来的竖向荷载会很大,致使转换梁的截面尺寸过大。这在设计理论上可以实现,但在实际实施中却不可行。再者,采用转换梁也不利于大型管道等设备系统的布置,不利于该转换层建筑空间的充分利用。此时若根据上下柱网的轴线位置设置采用桁架转换层则可巧妙的解决此问题。

桁架转换的设计和施工较复杂,但是结构受力明确,传力途径清楚,使开洞与设置管道具备条件,而且它们的位置与大小都有很大的灵活性,能充分利用该转换层的建筑空间。采用桁架转换层,其钢材和混凝土的用量比采用梁式转换层要经济。

2.4斜柱转换层

斜柱转换层是一种在大量高层、超高层建筑中广泛采用的转换结构形式。它是桁架转换中最简单的一种,采用它将会解决转换层不便使用的问题,将目前巨型梁转换层仅能用作管道空间变为可有效使用的面积空间,变“死”空间为活空间,使转换层具有了更大的经济价值。

斜柱式转换层结构传力直接,可有效减小转换梁尺寸,且更易实现“强柱弱梁,强剪弱弯,强节点弱构件”的抗震设计原则。斜柱式转换结构侧向刚度比相同条件下的梁式转换结构大,更易满足规范中转换层上下结构侧向刚度比的要求,能有效地避免转换层形成结构薄弱层。斜柱式转换层弹塑性变形相对较小,可有效地避免结构在大震下,薄弱层因弹塑性变形过大而造成结构整体倒塌。

在工程实践中,应用得最广的是梁式转换,其次才是厚板转换等其他转换形式。斜柱转换克服了梁式转换和厚板转换的缺点,同时具有上述转换的优点,转换灵活,传力直接,减轻了梁所承受的剪力负担,使梁的剪压比大幅度减小。因此,无论从经济、建筑用途、还是受力模式上,斜柱转换层都是非常好的结构转换形式,是一种可在大量超高层建筑中推广采用的结构转换形式。

3.高层建筑结构转换层施工技术

3.1模板工程

转换层结构的自重大,施工荷载也大,因此要根据工程实际情况选择合适的模板支撑方案,以保证支撑系统具有足够的强度、刚度、稳定性,实际工程中常用以下几种支撑体系:

⑴一次性支模

该支撑方式适用于现场可用的支撑材料较多,且转换层相对较低的结构体系,但此种方式支撑材料需用量很大,在材料使用上不经济。

⑵荷载传递法支模

该方法将转换梁板的自重和施工荷载通过支撑系统传递给以下多层楼板或把荷载传递给转换层下的支承柱,由支承柱把上部荷载向下传递。

⑶叠合浇筑法支模

该方法应用叠合梁原理将转换层梁、板分多次浇筑成型,支撑系统只要考虑第一次浇筑时的结构自重和施工荷载,这样可减少大量下部支撑体系的负荷,节省大量的支撑钢管。

⑷埋置型钢法支模

该方法是在转换结构梁中埋设型钢,与模板连成整体,用以承载全部大梁荷载,可节省大量支撑材料。

3.2钢筋工程

⑴在钢筋绑扎前先设置好梁底钢筋保护层,可在钢板上焊钢筋作为保护层垫块,垫块长度同梁宽,垫块放好后,在模板上固定好。

⑵转换梁钢筋在梁模板支撑、梁底板安装完成后进行绑扎,绑扎钢筋一次绑扎到位,绑扎完成后检查钢筋直径和数量进行复核无误后,进行梁侧板及转换层楼板安装,安装过程中注意对成品的保护。钢筋的规格、形状、尺寸、数量、间距、锚固长度、接头位置必须符合设计要求和施工规范。

⑶楼板钢筋在模板安装后在模板上按设计间距纵横向量出钢筋位置,绑扎第一层网筋、第二层网筋。再按要求在两层网筋问设置马凳支撑钢筋、设置垫块。

3.3混凝土工程

⑴因转换层梁混凝土体积大,为尽量减少施工缝,采用混凝土搅拌站搅拌并一次浇筑成型,混凝土用泵进行输送;按照泵送混凝土配合比进行搅拌,严格控制坍落度。对于一些特殊部位,应制定专门的技术措施。

⑵为了减小混凝土内外温差,施工中应选用水化热较低的水泥,如矿渣硅酸盐水泥,火山灰水泥,或在混凝土搅拌中掺入沸石粉,降低水泥的用量。同时为降低水泥水化热,通常要掺入外加剂。主要使用高效减水剂、缓凝剂等。

⑶大截面梁的内部温度应通过计算确定,并应在其内部一定部位设置测温点,便于对混凝土温差的控制,若温差大于25℃,应采取措施,通常采用蓄热保温法,内降温外保温法,蓄水养护法等。

⑷在混凝土浇筑时,在表面要留有一定的泌水坡度,同时在模板上要留排水小孔,以利于提高混凝土的施工质量。

⑸为能使混凝土外表面温度不至于降低过快,通常先施工转换层外围结构和墙体;夏天施工时要注意采用温度较低的水搅拌混凝土,以降低混凝土的入模温度;采用分层浇筑方法,每层浇筑厚度通常在300mm~500mm,后一层浇筑要在前一层混凝土初凝前完成。另外采用叠合梁施工方法可缓解水泥水化热和混凝土内部的温度应力对裂缝的不利影响。

4.结语

实践证明,在转换层施工中,只要做好模板支撑体系,钢筋的定位,大体积混凝土等施工措施,转换层的施工质量一般就能得到保证,并可达到降低成本、取得较好的经济效益的目的。

参考文献:

[1] 唐兴荣.高层建筑转换层结构设计与施工[M].

转换层施工技术论文范文4

关键词:桥面铺装;高粘沥青;桥面处理;施工程序;质量控制

1.概述

桥面防水粘结层的施工至关重要,其质量的好坏直接关系到整个防水粘结效果,乃至桥面铺装层结构的成败。因此,必须通过现场施工探索总结粘结材料的施工技术,并研究确定现场质量控制内容及方法。本文以高粘沥青粘结材料进行研究,为今后沥青改性类粘结材料的施工提供参考。

2.粘结层施工前桥面处理

浇注水泥混凝土桥面板时,振捣常易导致离析,粗集料下沉,表面形成一层水泥含量较多、收缩性较大的浮浆层,浮浆层的存在不仅影响桥面的强度,而且易产生裂缝,不利于防水粘结层和水泥混凝土桥面的结合;在防水粘结层施工前,要求水泥混凝土桥面做到平整、干燥、干净,无浮浆、无油污,无钢筋等突起硬物。

待桥面清理完毕后,表面会存在较多的碎屑、灰尘和砂粒等残留物,首先采用人工清扫进行初步清理;然后根据所处环境要求,采用高压吹风机将灰尘清理干净;必要时再用高压水枪配合洒水车进行清洗处理。混浊的水必须排到桥面以外,以桥面流淌的水清澈作为清洗是否干净的标志。否则,混浊水中的水分蒸发后,留下来的浆液或粉尘会堵住桥面水泥砼表面的空隙,从而影响水泥砼与防水粘结层的粘结效果。

3.高粘沥青洒布施工

高粘改性沥青防水粘结层的施工包括防水粘结材料洒布和预拌碎石撒布两道主要工序,是桥面铺装工程施工的关键工序。防水粘结层施工质量控制重点为: ①防水粘结材料的熔化升温; ②防水粘结材料即高粘改性沥青洒布施工工艺参数控制。

3.1 施工准备

施工人员的准备充分与否对施工的质量影响较大,只有施工人员接受了较好的培训以及在施工前做好充分的准备,才能很好的保障施工质量。因此,施工前施工技术人员要做好如下的准备工作:

(1)熟悉设计文件;

(2)对现场施工条件做全面了解,掌握施工现场全面情况及特点;

(3)根据现场施工条件,组织施工人员,配备施工设备、劳力、运输工具等;

(4)做好材料的储备、运输、保管和检测工作;

(5)做好施工机械的维护保养,检查设备是否完好。

同时还应根据实际,随时调整施工进程。若施工时温度过低,桥面板表面的水分不易蒸发出来,施工后会在防水粘结层表面形成许多气泡,严重影响施工质量。根据防水粘结材料性能及现场实践经验,为保证施工质量,施工时最低气温≥5 ℃,雨天、大雾天、五级风以上均不得施工。因此,防水粘结层及面层施工应尽可能地选择在持续晴朗、不降雨的时段,并根据天气预报,随时做好防雨准备,调整施工计划。

3.2高粘沥青的升温

高粘改性沥青在洒布施工前,首先要脱桶、熔化升温至185℃左右,才能进行洒布施工。升温过程中要注意使防水粘结材料均匀受热。如果脱桶、熔化过程中,加热温度不均匀或超过规定温度,材料中的复合改性成分会发生分解,造成软化点降低,影响其质量。可采用加热池进行防水粘结材料的熔化升温。

施工中记录防水粘结材料的加热升温过程(包括开始加热时间、熔化升温、搅拌开始时间、出料时间、滤网设置) 及观察是否有异常现象。

3.3洒布施工质量控制

由于高粘改性沥青防水粘结材料在185 ℃左右的高温时,其粘度与普通沥青没有太大的差别,所以用沥青洒布车洒布。洒布量的控制由控制洒布车洒布喷管宽度、喷管高度、车速、泵量和五轮仪等参数来实现。

(1)施工准备

高粘改性沥青防水粘结层施工时防水粘结材料采用智能洒布车洒布,以保障现场外观比较均匀。同时为保证施工质量,对高粘沥青及自行洒布车还应做以下准备:

①高粘改性沥青采用自行式沥青洒布车,主要有保温沥青箱、加热系统、传动系统、循环喷洒系统、操纵机构以及检查、计量仪表等组成。洒布量的控制由控制洒布车洒布喷管宽度、喷管高度、车速、泵量等工作参数来实现,正式施工前,须先进行试洒,确定洒布量与沥青洒布车工作参数之间的关系。

②对洒布车进行必要的检查与保养,如检查油量是否足够,仪表是否正常,管路与接头是否有泄漏,各种操纵装置是否灵活等。

③高粘改性沥青装车前,清理好洒布车:彻底清理车罐内的原有沥青,清洗汽车底盘,去除泥土杂物,清除所有管道内原有沥青粘结剂。

④在沥青泵入口或沥青车上加设孔径3 mm~5 mm滤网,防止沥青池中的杂物进入洒布车,以防堵塞喷嘴,致使桥面不能均匀洒布。

(2)质量控制

高粘改性沥青防水粘结材料洒布质量主要是通过洒布量和洒布均匀性来衡量,洒布均匀性主要通过观察来确定,洒布量则通过材料密度转换成洒布厚度来确定,用深度计测定。洒布时具有以下要求:

①高粘改性沥青的加热应在拌和站进行,加温至185℃,洒布车加热系统对沥青进行加热保温,保证沥青洒布时在180℃以上。

②沥青洒布车喷洒沥青时应保持稳定速度和喷洒量,并保持整个洒布宽度喷洒均匀,注意洒布设备的喷嘴应适用于沥青的稠度,确保能成雾状,与洒油管成l5°~25°夹角,洒油管的高度应使同一地点接受2个到3个喷洒嘴喷洒的沥青,不得出现花白漏空,对边部等局部未洒到部位,应进行人工补涂至改性沥青厚度达到要得厚度。

③在桥面两端用牛皮纸或彩条布或油毛毡等将起点和终点边界铺垫整齐,以便沥青洒布车起步和停洒时不正常状态下喷洒出的沥青落在预先铺垫好的牛皮纸上,并能保持整个现场的清洁。

④高粘改性沥青防水粘结层厚度要求1.2mm,洒布车设定洒布质量时应考虑沥青密度及洒布损耗。

⑤洒布质量主要通过洒布量和洒布均匀性来衡量,洒布均匀性主要通过观察确定,洒布量通过材料密度转换成洒布厚度确定。

4.预拌碎石撒布

4.1 施工程序

预拌碎石采用0.4%沥青用量的0.5cm~1cm单粒径石灰岩,对应沥青拌和站可只采用6×6~12×12(mm)热料仓热料。预拌碎石撒布的质量控制应控制好三个方面:第一是预拌碎石的温度;第二是撒布量;第三是要及时碾压。

预拌碎石撒布要求热撒,撒布温度应不低于170℃,由于预拌碎石是单一粒径材料,孔隙与外界相通,散热速度快,因此预拌碎石的运输过程中要用蓬布覆盖保温。

预拌碎石的撒布量通过撒布车料斗开口大小和撒布车的行车速度来控制。施工前可通过干料试验确定撒布车工作参数与撒布量的关系后,再正式用于桥面预拌碎石撒布。撒布要求为预拌碎石的撒布面积达到50%~60%,以现场能看见其下的防水粘结层,但车辆及人行走其上不接触为判断标准;随后,采用轻型胶轮压路机进行碾压。要求形成一层高粘改性沥青层粘结牢固且均匀分布的预拌碎石层,既可保护防水粘结层在沥青混凝土面层摊铺施工时不受破坏,又可与中面层相互嵌挤,确保防水粘结层与面层沥青混凝土间的粘结。

4.2注意事项

预拌碎石撒布时应注意以下几点:

(1) 运输车、撒布车、轮胎压路机在任何时候都不能进入未撒布预拌碎石区域;

(2) 撒布车、运输车、压路机调头时,必须在桥面以外;

(3) 预拌碎石洒布量过大,重叠区域即浮石要人工清除,对扫除不掉的可用喷灯烘烤表面,使碎石嵌入防水粘结层;预拌碎石撒布量过少,有粘轮危险时,可人工撒布少许碎石;

(4) 两侧边缘20cm~30cm范围内不撒布预拌碎石;

(5) 预拌碎石撒布车在撒布碎石过程中应有水喷嘴冲洗车轮;撒布车及轮胎压路机使用前必须清洗干净,去除附带泥块、杂物等。

预拌碎石拌合完毕后,记录拌合温度、油石比、撒布面积、范围及外观状况等。在整个粘结层施工工程,应注意防水粘结层的喷涂、预拌碎石的撒布、碾压及与铺装下层施工之间的合理配合,保证各工序井条有序的进行。

5.交通管制

施工完毕的桥面高粘沥青防水粘结层,在沥青混凝土面层施工前要进行交通管制,禁止重载车辆通行,其他车辆限制通行,控制车速低于5km/h,不得刹车或调头,以免遭受破坏,同时做好防尘防污染等措施;并且在其上不得任意堆放物品,严防产生人为破坏。在正式施工沥青混凝土面层时,也要注意运输车及摊铺机不能损坏高粘沥青防水粘结层。

防水粘结层施工完毕后,需静置48小时使其完全固化,方允许在其上铺筑沥青混凝土面层,在此期间除进行交通管制外,还应做好对防水粘结层的养护工作,防止其它外界因素对粘结层的损坏。

参考文献

[1] 于静涛.沥青铺装与桥面板层间粘结改善技术研究:[长安大学硕士学位论文].西安,长安大学,2006,29~34

[2] 杨桂新.水泥混凝土桥面柔性防水层应用技术研究:[东南大学硕士学位论文].南京,东南大学,2006,19~36

[3] 李雪莲.系杆拱桥面铺装结构力学性能研究:[长沙理工大学硕士学位论文].长沙,长沙理工大学,2005,65~70

[4] 李.国产环氧沥青防水粘结材料在水泥混凝土桥面应用研究:[东南大学硕士学位论文].南京,东南大学,2005,3~7

转换层施工技术论文范文5

【关键词】高层建筑;转换厚板;叠合浇筑法

1.混凝土叠合结构的概念

叠合梁板由于具有二阶段制造和二次受力的特点,其受力性能与整体浇筑的梁板相比有较大的差别。多年来欧美和前苏联一些知名学者,对叠合梁板进行了深入研究,并写出了专门著作。美国ACI学会早在60年代就提出了“建筑用组合梁设计暂行建议。但国外研究得较多的是叠合面的抗剪强度、抗剪联接;叠合面上下两部分的收缩微差造成的附加内力和变形;预制构件对后浇混凝土极限变形的抑制;以及抗裂度和挠度的计算方法等问题。并且大都是在一次受力情况下进行试验研究的,未能反映这种结构在无支撑施工条件下的二次受力特性。关于叠合梁的强度,国外的研究认为不受叠合前弯矩的影响,即叠合梁(板)正截面的承载能力等于同样截面尺寸、配筋和混凝土强度的整体梁截面的承载能力。但实际上叠合梁板的强度、最大配筋界限值以及在使用阶段的受力性能还受很多因素的影响。

自1990年以来,华北水利水电学院赵顺波等人也对混凝土叠合结构进行了深入研究,他们得到了水利水电基金、河南省自然科学基金、大连理工大学海岸与近海工程国家重点实验室基金的资助,在混凝土叠合结构理论研究方面取得了一系列显著成果。

2.转换层厚板叠合浇筑法的施工现状

由于叠合浇筑法能够解决厚板高空支模这一问题,并能节约大量支撑材料,因此这一施工方法得到了广泛应用,我们也能查阅到大量有关转换层厚板叠合浇筑施工法的论文。在众多的论文中,大多数是从技术角度出发对高空支模的方法进行了分析,提出厚板底部支撑只需考虑首次浇筑时的施工荷载,从而解决模板支撑问题;然后再从经济角度出发,将叠合浇筑法与传统施工方法进行对比,提出叠合浇筑法与传统施工方法相比能够节约大量的支撑材料,证明叠合浇筑法在经济上的可行性。厚板转换层属于大体积混凝土结构,厚板在在养护过程中将释放出大量的水化热,一旦由于水化热引起的温度应力超过混凝土所能承受的抗拉强度,即会引起开裂。为了避免厚板中产生温度裂缝,国内学者就这一问题也作过众多研究,并提出了一些措施,比如采用低水化热水泥、控制混凝土的入模温度、在厚板中部设置循环水冷却管、实施“内降外保”的养护措施等等。虽然有很多带厚板转换层的高层建筑通过叠合浇筑法己经建成,但转换层叠合浇筑法的研究还不成熟,还有许多问题有待研究,比如上述众多研究中,多是针对“叠合厚板本身的受力特点”这一问题,而对“与厚板一次整体浇筑相比,厚板叠合浇筑时厚板下部框支柱的内力是否有较大变化,却没有人作过分析。对叠合浇筑法做进一步地研究,可为广大设计及施工单位提供重要的参考资料,并将有力的促进我国建筑施工技术水平。

3.厚板叠合浇筑时先浇层厚度的施工

3.1纵向受拉钢筋应力的控制

二次受力叠合结构的底部受拉钢筋具有应力超前的现象,而应力超前会导致结构的裂缝宽度及挠度增大,使得纵向受拉钢筋在使用阶段就可能处在接近屈服强度的高应力状态,并较早地达到屈服强度;如果应力超前值过大,则会引起结构安全储备严重降低,进而不能满足正常的使用要求,使叠合梁失去应用价值,因此必须对纵向钢筋的应力加以控制。而现行的一些规范也对叠合构件纵向受拉钢筋应力作出了规定,比如《水工混凝土结构设计规范》规定钢筋混凝土叠合式受弯构件正常使用极限状态纵向受拉钢筋应力应满足的条件。该规范所附的条文说明对此也有解释,认为由于叠合构件在施工阶段先以截面高度小的预制构件承受该阶段全部荷载,使得受拉钢筋中应力比假定用叠合构件全部截面承担同样荷载时大,这一即为“受拉钢筋应力超前”。受拉钢筋应力超前使得叠合构件与同样截面的普通受弯构件相比钢筋拉应力及曲率偏大,并有可能使受拉钢筋在弯矩标准值。

3.2钢筋混凝土受弯构件截面的控制

目前在普通钢筋混凝土梁受弯性能方面的研究比较成熟,对梁正截面内力的分析方法大同小异。梁正截面内力计算公式针对的是“梁”在“受弯”时的状况,而我们要分析的转换层结构是一块“板”,用这些公式计算出来的转换层厚板板底钢筋应力会有一定的误差,不过在厚板应力变化不太剧烈的部位误差应该不会太大,我们可以尝试用这些公式来估算厚板正截面纵向受拉钢筋“应力超前”值。我国《混凝土结构设计规范GB50010一2002》也给出了混凝土受压的应力与应变关系曲线,表达式与本文相论述的应力应变曲线相。各种应力应变曲线表达式只有细微的差别,因而其计算结果也只有细微的差别。当受拉边缘混凝土应力小于抗拉强度关时截面并未开裂,混凝土及钢筋均处于弹性受力阶段。这时钢筋混凝土梁的应力分布与连续、匀质材料梁相似。

3.3底筋应力超前的控制

为了定量的分析分层叠合浇筑对厚板底筋应力超前值的影响,我们可以对比转换层厚板一次整体浇筑与分两层叠合浇筑时厚板纵向受拉钢筋各自的应力,看看它们的差别究竟有多大。普通钢筋混凝土梁正截面内力较为精确的分析方法,用这种方法分别计算一次整体浇筑与分层叠合浇筑时厚板底筋的应力两者之差即为初始阶段的底筋应力超前值。厚度不同的板的刚度是不一样的,厚度大的板刚度会较大。转换层厚板先浇层厚度为一个固定值的时候,取不同值时,它与厚板下部墙柱所形成的结构在相同荷载作用下的内力是不一样的。厚板叠合浇筑不会引起底筋的“拉应力超前”,相反还会缓解该点钢筋在作用力的方向产生最终拉应力。

4.结束语

总之,转换层厚板叠合浇筑对下层框支柱的弯矩设计值有较大影响,尤其是边柱。厚板叠合浇筑会加剧厚板下部部分框支柱的内力,但也会缓解部分框支柱的内力。如果厚板采用叠合浇筑法施工,在对带厚板转换层的高层建筑进行设计时,应该考虑先浇层厚度,对厚板下部框支柱受力的影响,及时调整框支柱的设计值。在通常情况下,叠合浇筑的厚板能够满足现行规范对钢筋混凝土叠合式受弯构件正常使用极限状态纵向受拉钢筋应力的控制要求,不会引起结构安全储备的严重降低。

参考文献

[1]金泽乾,朱一鹏,金宗镰.转换板分层施工及支模技术.建筑技术,2004,12

转换层施工技术论文范文6

关键词: 隧道工程;浅埋暗挖;大管棚;小导管;施工技术

南京地铁鼓楼站~玄武门站区间隧道是南京地铁一期工程的控制性工程,地处南京市政治、经济和文化中心。工程环境极其复杂,隧道北端隧道穿过地层为软流塑状淤泥质粉质黏土,隧道上方地面有多幢2-7层建筑物。南京地铁鼓楼站~玄武门站区间隧道采用浅埋暗挖法施工,隧道穿越软~流塑地质段,该段土层具有高压缩性、高灵敏度、强度低,易产生蠕动现象,开挖后自稳能力极差,易坍塌,地面沉降难以控制。经多方论证比较,采用大管棚结合小导管超前预注浆和掌子面注浆施工方案,其施工方法简单,方便快捷,投资少,顺利的完成了隧道开挖的施工,为后续主体结构的施工争取了时间,论文详细介绍了该工程的施工。

1 工程概况

南京地铁南北线一期工程鼓楼站~玄武门站区间隧道为矿山法施工区间,从鼓楼站北端K10+337.7起,沿中央路西侧向北,在傅厚岗附近穿过中央路,再沿中央路东侧向北至玄武门站南端K11+401.3止,区间隧道右线全长1063.6m;左线隧道全长1064.094m双洞单线,线间距17.2~13.0m。区间隧道穿越Ⅰ、Ⅱ、Ⅲ类围岩,其中Ⅰ类围岩段中部分地段穿越软~流朔状粉质粘土层,施工较为困难。区间南端设有停车线,该段结构断面大,变化多,工序复杂,施工困难。工程具有如下特点:

(1)地质条件差,流塑状淤泥质粘土地层,具有高压缩性、高灵敏度、低强度、易产生蠕动,间夹薄层粉土及粉细砂透镜体,含水丰富;I、II类围岩道长度占95.33%;地下水位浅,局部丰富;覆盖层薄,隧道埋深8―17m;

(2)断面复杂,双洞单线,在停车线区段,形成了单线隧道、双线隧道和三线隧道不同断面大小的隧道,各种断面交错布置,转换频繁,开挖断面从6.2×6.32m2到17.438×11.271m2,其最大断面积为159.46m2,它是目前粉质粘土地层中国内最大跨地铁隧道断面。渡线区段多洞室构成的洞群,断面转换次数达22次。两洞室最小净间距为0.348m。

(3)本区段的地质条件复杂,主要是软~流塑粉质粘土层,土层压缩性高、灵敏性高、强度低,易产生蠕动现象,层间夹的薄层粉土~粉细砂构成地下水的水平通道,使该层含有较多地下水,开挖后自稳能力极差,易坍塌,地面沉降难以控制。

2软流塑地层浅埋暗挖隧道施工技术

2.1 整体施工方案

隧道开挖施工时采用台阶分步法开挖,长管棚结合小导管注浆和掌子面超前预注浆法,是在隧道拱部打设长管棚和小导管注浆,对拱部进行加固和超前支护,并对隧道掌子面的地层进行注浆改良,然后在管棚和加固拱圈的保护下进行开挖、支护与衬砌,该方法在软弱地层浅埋隧道施工中能有效地控制地面沉降。然后在管棚和加固拱圈的保护下进行开挖、支护,该方法在软弱地层浅埋隧道施工中能有效地控制地面沉降。

2.2 施工技术及施工要点

拱部150°范围设立管棚支护,注浆加固范围1.5m,大管棚采用35m长φ108钢管,钢管打孔注浆,浆液采用水泥―水玻璃双液浆,大管棚搭接长度3m,环向间距0.35m。短导管3m长φ32普通水煤气管,搭接长度1.5m,环向间距0.35m。掌子面采用13m长、直径φ42PVC劈裂注浆管,搭接长度4m,间距0. 5×0. 5m。下台阶施工时,对上部钢架拱脚处,应采用跳槽开挖,及时支撑开挖后的拱脚,先开挖一侧设置2根φ32普通水煤气管长2.5m锁脚锚杆,锁脚锚杆置入角度60°。其施工工艺流程见图1所示。

图1 施工工艺流程图

2.2.1超前预支护大管棚施工

超前预支护采用Φ108大管棚,长40米,环向间距0.35m,拱部150O范围内布设,管棚搭接3~4m,管棚采用花管注浆,浆液采用水泥―水玻璃双浆。

1)开挖管棚工作室:在软弱围岩中开挖工作室,要加强支护,进行混凝土衬砌;管棚工作室长6m。为便于架设钻机,安设钢管,工作室应挖至隧道开挖线以外0.8m。由于I类围岩段隧道较长且为弧线,根据现有水平孔钻进技术条件,隧道分段施作管棚。首先施工第一段管棚工作室,施作第一段管棚,注浆后进行隧道掘进。第一段管棚段开挖31.6m后,进行第二段管棚工作室施工及钻孔,纵向管棚搭接长度3.0m。以此类推,完成管棚超前支护施工。

2)搭设平台、安装钻机、测定孔位(见图1所示):开孔前必须检查设备,保证设备状况良好,对组合好的钻具要检查丝扣联接是否紧密。按管棚孔设计方位要求固定钻机,跟管钻进放入管棚钢管。为了保证钻孔精度,开孔段钻进是关键。钻进前10~20m时,要反复校核钻杆方向,调整钻机位置,并用罗盘及挂线检测偏斜无问题后方可继续钻进。管棚管下入孔内前要先配管,保证管棚管的同心度。

3) 注浆:注浆采用前进式注浆,利用自制的注浆套管与管棚用套丝连接,注浆套管上准备由出气管与进浆管,由阀门来控制开关,如图5-6所示。然后安装20mm塑料管作为排气管,连接注浆管等各种管路,利用锚固剂加固掌子面与管碰见的孔隙,防止漏浆。注浆水泥采用32.5#普硅水泥,水玻璃模数2.6,25~35BeO,水灰比0.6~0.8,水泥水玻璃体积比1:1,注浆压力0.8~1.5MPa。注浆时,采取低压力中流量注入,注浆过程中压力逐步上升,流量逐渐减少,当压力升至注浆终压时,继续压注10分钟,才结束注浆。注浆效果检查采用分析法,注(压)水试验,开挖取样等方法进行,达不到结束标准,应补充重新注浆直到满足要求为止。

图2管棚施工示意图

2.2.2 超前预支护小导管施工

1)小导管制作:超前小导管采用φ32×3.25mm普通钢管,管长4.0m,注浆管一端做成尖形,另一端焊接上铁箍,在距铁箍端1.0~1.5m处开始钻孔,钻孔沿管壁间隔200mm,呈梅花型布设,孔位互成90°,孔径8~10mm。

2)小导管施工:通过在隧道拱部超前打入带孔眼的导管,并注浆。小导管采用3.0m长φ32普通水煤气管,搭接长度2.0m,环向间距0.30m,浆液采用HC- T凝胶时间可调注浆材料(超细)单液浆或水泥―水玻璃双浆液。小导管采用不开孔直接顶入地层施工。

3)小导管超前注浆:水泥采用32.5#普硅水泥,水玻璃模数2.6,25~35BeO,水泥浆水玻璃浆液体积比1:1,水灰比0.6~0.8,注浆压力0.8~1.5MPa。

2.2.3 掌子面加固施工

掌子面采用L=10m小导管进行注浆加固,掌子面注浆加固如图7所示,导管间距1.0×0.75m,梅花型布置,小导管为Φ42PVC劈裂注浆管,采用水泥―水玻璃双浆液劈裂注浆,注浆参数如下:(1)水泥采用32.5#普硅水泥;(2)水玻璃模数2.6,25~35BeO,水泥浆水玻璃浆液体积比1:1;(3)水灰比0.6~0.8,注浆压力0.5~1.0MPa;(4)止浆墙为25cm厚C20网喷砼。

如注浆效果不理想,我们将采用流动性大、注浆效果较好的新型材料,如HC-T凝结时间可调注浆材料。注浆孔的布置采用等边三角形全断面布置,注浆的先后顺序:先四周,后中间,中间布置一排水孔,以利于软土地层中的滞水在注浆过程中受到挤压时顺利排出。

2.2.4 开挖及初期支护

为保证施工安全,开挖采用台阶分部法施工。上台阶环形开挖,预留核心土,及时进行挂网初喷,架立格栅钢架,每个拱脚施作两根锁脚锚杆,锁脚锚杆为Φ25中空锚杆,L=2.0m,施作边墙3.5m长、环纵向间距1.0m的置入式中空注浆锚杆、注浆,及时架设I16工字钢临时仰拱。如地质条件不好,开挖时如掌子面不稳,则每次开挖后均采用网喷砼封闭掌子面。喷砼均采用双快(硫铝酸盐)水泥。初期支护施工完成后,立即对初期支护背后进行回填注浆加固。

2.2.5 基底加固

在进行仰拱初期支护喷砼之前,打设Φ42钢管,钢管间距50×50cm,待施作完初期支护喷砼之后,进行劈裂注浆加固。浆液为水泥―水玻璃双浆液,注浆参数如下:(1)水泥采用32.5#普硅水泥;(2)水玻璃模数2.6,25~35BeO ,水泥浆水玻璃浆液体积比1:1;(3)水灰比0.6~0.8,注浆压力1.0~1.5Mpa。

2.2.5 防水与二次衬砌

防水层和二次衬砌施工在开挖完成,初期支护结构稳定后施工。施工先施工仰拱,边墙和拱部一次浇筑成型,混凝土采用商品混凝土。

2.3 施工技术体会

根据多年软弱地层中的施工经验,隧道开挖一次支护应从上而下,衬砌结构应从下而上。其关键是如何控制拱部、掌子面的稳定及落拱封闭前的下沉。其各工序施工控制点如下:

1)大管棚应采用顶入法施工,避免钻孔难于成孔和塌孔现象的发生,同时减少了地面沉降。对掌子面进行PVC管后退式全断面注浆加固,注浆顺序从周边向内圈依次注浆,压力控制在0.8-1.0Gpa,并喷20cm厚C20混凝土封闭,很好的解决了软流塑掌子面不稳定现象。

2)施工中要重视开挖过程中的时空效应,就是开挖弧形导坑和架设格栅拱、喷混凝土要快,连续作业,一般应控制在最短时间(7~8h)内完成。

3)软流塑施工中钢格栅拱脚下铺设钢板,钢板宽度与钢拱架匹配,纵向长度50cm,并架设临时仰拱,拱部格栅与临时仰拱应连接牢固。临时仰拱喷砼封闭,形成整体刚度。

4)上台阶开挖时,拱脚应高出台阶10~20cm,避免积水。对初期支护背后应及时进行充填注浆,以充填初期支护背后空隙,防止下沉。浆液采用1:0.5~1:1水泥砂浆填充,压力0.2~0.3MPa。上台阶长度应控制在一倍洞径(5~6m),充分发挥掌子面的空间效应。

5)整个施工过程应严格按照动态设计、动态施工、动态管理,要及时进行信息量测与反馈,及时测量,及时处理。更要突出快的决策、机制,这是安全通过的重要条件。

6)加强初期支护喷射混凝土施工缝处的处理,必须做到无污泥、浮碴,以免初支闭合后出现渗漏水。房屋出现裂缝的加固处理采用灌注环氧沙浆和粘贴玻璃纤维补强,很好的解决了因地面沉降造成的房屋裂缝。针对地面及房屋的沉降控制标准应该视现场情况具体分析,不能一概而论不超过30mm。

3 施工安全措施及效益分析

3.1安全防范的要点

建立健全安全生产保证体系,成立安全工作领导小组,项目经理为安全生产第一责任人,主管安全施工生产的项目副经理为安全生产的直接责任人,项目总工程师全质量室,各班组设安全员,配齐配强专业技术为劳动保护和安全生产的技术负责人。经理部设安全质量部,各施工队设安人员。其工程要点如下:

1)加强全过程的开挖、支护工作,做好监控量测,控制地表沉降,避免隧道塌方。

2) 加强对既有建筑物的保护,避免出现变形、开裂、倒塌事故,重点防护右线K11+225~K11+401.3段地面建筑物和地下污水管线。

3) 防止机械伤害、触电、高处坠落事故。注意交通安全,避免交通事故。

3.2 效益分析

采用本施工技术,施工环境好,施工造成的污染小,采用的措施保证了建筑物和地下管线安全,对周围环境影响小;保证了建筑物和地下管线安全,施工对周围居民和企事业单位生活生产无影响;保证了工期,保证了地铁的按期运营。同时降低了工程成本,提高了工效,和原定的冻结法方案相比,减少了投入。

4 结论

南京地铁南北线一期工程鼓楼站~玄武门站区间隧道为浅埋暗挖法施工,区间隧道右线全长1063.6m;左线隧道全长1064.094m双洞单线,线间距17.2~13.0m,埋深约8m。采用采用大管棚结合小导管超前预注浆和掌子面注浆施工方案,克服了上述不利条件,保证了施工进度和安全。通过本工程的施工总结了一套浅埋暗挖地铁隧道穿越软~流塑地层的施工工艺,积累了施工经验。顺利的完成了隧道的施工,确保了周边建(构) 筑物的安全,取得了良好的经济效益。

参考文献

[1] 李凤蓉. 城市地铁穿越软流塑地层段的设计施工技术[J]. 隧道建设 , 2007,(01)

[2] 袁正辉, 贺美德. 地铁隧道施工对地下管线的影响[J]. 市政技术 , 2006,(05)

[3] 谢晋水, 王寿强, 王华伟. 软流塑地层中地铁竖井施工技术[J]. 铁道标准设计 , 2004,(06) [4] 陈进杰, 冯卫星, 赵玉成. 软塑性土质隧道地表劈裂注浆加固技术的试验研究[J]. 石家庄铁道学院学报 , 1995, (03)

[5] 陈志良. 超浅埋暗挖隧道施工技术研究[J]. 铁道标准设计 , 2004,(10)

[6] 黄俊,张顶立. 地铁暗挖隧道上覆地层大变形规律分析[J]. 岩土力学 , 2004,(08)

[7] 吴波,高波,索晓明. 地铁隧道开挖与失水引起地表沉降的数值分析[J]. 中国铁道科学 , 2004,(04)