前言:中文期刊网精心挑选了无机非金属材料工程范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
无机非金属材料工程范文1
中图分类号:G642 文献标识码:B
文章编号:1671-489X(2014)08-0072-03
目前,工程技术人才培养已提升到国家战略高度。《国家中长期教育改革和发展规划纲要(2010―2020年)》明确提出实施“卓越计划”,探索建立工程技术人才校企联合培养的新机制,创新工程师培养模式,完善卓越工程师培养体系,以期培养适应我国社会发展需要的工程技术人才 [1]。
洛阳理工学院是一所具有鲜明建材特色的本科院校。无机非金属材料工程专业作为河南省特色专业,在长期的办学过程中,一直以为建材行业和地方经济建设培养优秀人才为己任,工程实践教学中高校、科研院所与企业广泛参与,全程监督,重视技术能力的训练,重视工程素养的发展,培养了一大批“下得去、用得上、留得住”的工程技术人才。本文以无机非金属材料工程专业为例,根据教育部卓越工程师计划的培养目标及学校办学特色和专业建设经验,对卓越工程师人才培养体系的构建进行研究与探索。
1 卓越工程师的培养模式
国外卓越工程师培养模式 国外卓越工程师培养具有代表性的是以美国为代表的《华盛顿协议》成员模式和以德、法为代表的欧洲大陆国家模式。美国工程教育经历了最初的以实用主义为目的的工程技术教育(20世纪30年代以前)、重基础科学研究(20世纪40―50年代)、通识教育与基础科学教育并重(20世纪60―80年代)和回归工程教育(20世纪90年代以后)等过程,即美国在经历了“技术模式”“科学模式”后,正实践着当前的“工程模式”[2]。美国大学生在校期间完成基础科学、人文与社会科学和工程科学的学习,毕业后通过职业教育考试获取职业资格认证后成为工程师。而欧洲大陆国家工程教育呈现“分合辩证统一”的特点,如德国工程教育采用了由理工科大学(TU/TH)培养研究型工程师和应用技术大学(FH)培养应用型工程师的办学模式,法国则采用“双轨制”高教体制,通识教育与精英教育在职业教育中互为补充[3]。德法国家大学生在校期间完成工程师的基本训练,毕业时获得工程师学位以及职业资格。国外卓越工程师的培养,都要求注重实践教学,企业的参与和支持非常普遍。
我国卓越工程师的培养模式 对应于目前我国高等教育的人才培养模式,卓越工程师的培养采用三段式人才培养模式:应用型工程师培养阶段(四年制本科)、设计型工程师培养阶段(2年全日制硕士)和研究型工程师培养阶段(3~5年工程博士)。各个培养阶段安排相应的企业实习时间,强化工程能力的培养。不同类型的高校对工程人才的培养目标定位不同,洛阳理工学院作为新建应用型本科院校,在办学定位、服务面向、人才培养目标以及教学模式与途径等方面有别于办学实力雄厚的传统大学,应结合自身发展特点,在应用型卓越工程师人才培养上找到突破点,创新工程技术人才培养模式,提高人才培养质量。
2 卓越工程师培养方案的设计
培养方案应充分体现培养工程技术人才的工程知识、工程素质和工程能力的特征[4]。洛阳理工学院无机非金属材料工程专业在实施卓越工程师计划试点时,以为企业培养所需的工程师储备人才为目标,加大实践教学环节比例,培养基础扎实、素质全面、工程实践能力强且具有一定创新能力的应用型技术人才和工程管理人才。
人才培养模式的构建 根据学校办学特色与办学规格,“卓越工程师”人才培养模式采用“3+1”培养模式,即累计有3年时间在校学习,1年时间在企业学习。企业学习阶段主要包括两方面的训练内容,即企业培训内容和专业培训内容。企业培训内容包括企业课程、企业文化与规章制度教育、行业法规与技术标准学习、生产技能培训、生产过程控制与生产实习等,这部分内容主要由企业的人力资源部门和企业兼职教师负责实施。专业培训是针对承担具体企业业务所需要的相关专业知识的学习,并通过毕业设计(毕业论文)培养学生综合应用所学知识解决工程实际问题的能力,为其后续的发展打好基础。专业培训可以在学校教师和企业兼职教师的共同指导下在学校相关平台或企业工作平成。
专业方向的定位 洛阳理工学院无机非金属材料工程专业以服务建材行业为主,对国内建材企业进行充分调研,了解当前与未来的市场和企业对人才的需求,分析、比较国内设置同专业高校的培养目标与学生工作定位。根据学校建材方向上的传统优势,确定水泥工艺方向为“卓越工程师”计划的主要实施点。学校选择洛阳水泥工程设计研究院、河南天瑞集团水泥有限公司、中国联合水泥集团公司等企业作为合作伙伴,与其建立产学研战略联盟,协助完成本专业“卓越工程师”企业学习阶段的培养。企业的参与是实施“卓越计划”人才培养的关键,因此,学校与河南省内具有较强实力和良好合作基础的多家企业共同承担培养无机非金属材料工程专业卓越工程师的任务,培养的后备人才可以直接进入对口的企业就业,既解决了学生的就业问题,也为企业培养了“下得去、用得上、留得住”的合格人才,企业参与积极性很高。
课程体系的设置 在课程体系的设置上,按“通识教育、专业教育及综合教育”的方式实施无机非金属材料工程专业卓越工程师人才培养。通识教育与专业教育以第一课堂(校内)为主要形式实施,教学任务的实施由学校和合作企业共同完成。“通识教育”课程主要包括公共基础课与人文社会科学等课程,通过这些课程对学生的价值观、个人品德、职业道德、逻辑思维及语言表达等基本能力和素质进行培养。“专业教育”课程包括专业基础课程和专业课程。专业基础课主要包括无机化学、物理化学、分析化学、工程图学、机械设计与制造基础、材料工艺CAD基础、热工检测与自动控制、电工与电子技术、材料科学基础、材料工程基础和材料研究与测试方法等。在这些课程的教学中,明确要求教师在授课时要引入相应工程案例,让学生在学习中了解专业基础知识在实际生产中的实用性,激发他们的学习兴趣。专业课程主要包括水泥工艺学、新型干法水泥生产技术与设备、水泥厂工艺设计概论、水泥性能检测、混凝土工艺学和低温余热发电技术等。综合教育在人才培养中起到开拓视野、强化能力、提高素质、增强团队协作和交流等作用,通过课外科技创新、学术讲座活动、基础技能竞赛等形式,对学生的动手能力、创新能力和团队协作能力进行培养[5]。
3 卓越工程师的培养方式与途径
校企共建,联合培养 洛阳理工学院先后与中国建材国际工程有限公司、河南天瑞集团公司、中国联合水泥有限责任公司、河南省同力水泥集团、洛阳水泥工程设计研究院等建立了产学研战略联盟,以此为平台,建立了学科链、专业链对接产业链的办学模式,专业设置紧贴产业需求。采取校企联合培养的方式,邀请企业全过程参与学校相关专业培养方案的制订、课程教学内容的优化、实践教学工作的安排等人才培养环节,共同实施培养方案,共同评价培养质量,实现学校与企业的零距离对接,人才培养规格很好地满足社会需求,成为培养具有“勤奋、求是、创新、奉献”精神的卓越工程师的摇篮。
构建校内实践平台,培养学生工程能力 近年来,实践教学受到学生人数规模、工程实践条件等限制,实践要求与实践条件存在巨大反差,其教学效果明显下降。为了有效保障实践教学效果,进一步深化专业教学改革和满足高等工程教育培养应用型人才的需要,不断加强具有建材特色的校内实践教学平台的构建[6]。目前,学校与建材专业相关的省级实践教学平台有水泥工程实验教学中心和建材机械基础实验教学中心,此外,还有粉体工程实训中心、材料测试中心、河南省固废开发利用工程实验室和洛阳市硅酸盐材料重点实验室等。借助校内实践教学平台,有效开展教学与科研工作,学生熟练掌握工程设计、生产操作、材料设计与检测等基本技能,培养学生工程观念与工程实践能力。同时,这些平台也是企业的技术人员培训基地,如中国建筑材料工业协会、中国机冶建材工会全国委员会的洛阳培训基地就是以此为依托建立的。校内实践教学平台的构建,包含有一项重要的内容就是具有自主知识产权工程教学软件系统的研究开发,通过产、学、研的紧密结合,既锻炼教师队伍,又培养了大批工程技术人才,取得良好的成绩。如水泥工程的仿真教学系统获得河南省教学成果一等奖,学生在参加全国首届水泥中控操作技能大赛中获得团体一等奖。
构建产学研实践基地,服务建材行业 产、学、研的紧密结合,有利提升科研水平,加快科技转化,解决企业生产难题,是企业与高校专业服务对接、互动的桥梁与纽带。自洛阳理工学院升本以来,该专业与国内20多家建材企业签订了实习基地协议,开展产、学、研的互动活动。一方面,企业生产上的难题可以提出、讨论,通过校企之间的合作解决生产问题,企业获得技术支持,学生得到实践锻炼;另一方面,学校也可为企业提供优秀人才和优质的职工技术培训服务。
4 “卓越计划”的组织与管理
为了加强对无机非金属材料工程专业实用型“卓越工程师”教育培养工作的领导与指导,材料系成立了一个由系领导、专业教师和企业专家组成的“卓越工程师培养计划”项目工作小组,负责制定“卓越工程师培养计划”的培养目标、培养方案等,并聘请专家对“卓越计划”实施内容进行论证。
无机非金属材料工程专业“卓越工程师”培养计划试点班的生源采取“学生自愿报名,学院择优录取”的双向选择原则,建立了“因材施教、分流培养、能进能出”的“卓越工程师计划”试点班动态管理机制,旨在培养实践能力突出、富有创新精神且有志于从事水泥工程设计、技术开发、生产技术管理的工程技术人才。
5 结语
卓越工程师培养是一项长期的、复杂的人才培育工程。地方高校在构建应用型人才培养体系时,应突出自身的专业特色,找准专业技术人才培养的定位,在实际操作中积极探索,在发展中不断完善,将应用型人才培养专业越办越出色。
参考文献
[1]教育部高等教育司.2011年教育部关于卓越工程师教育培养计划实施与工程技术人才培养方案及专业课程教学标准:上卷[M].北京:高等教育出版社,2011.
[2]王世斌,郄海霞,余建星,等.高等工程教育改革的理念与实践:以麻省、伯克利、普渡、天大为例[J].高等工程教育研究,2011(1):18-23.
[3]刘鸿.法、美、德、俄高等工程教育“卓越”之缘[J].大学教育科学,2012(2):46-50.
[4]周英.落实卓越工程师教育培养计划,大力培养工程科技创新人才[J].中国大学教学,2011(8):11-13.
无机非金属材料工程范文2
摘 要:材料工业是现代文明的基础支柱之一,对于整个人类社会的发展有着十分重要的作用,无机非金属材料是材料体系的重要组成部分,本文主要就其进行简单的介绍,详细分析与其有关的能源行业的发展问题,仅为无极非金属材料的应用研究提供参考。
关键词:无机非金属材料;发展历程;能源行业
无机非金属材料广泛应用于居民日常生活以及工业生产过程中,对于现代工业的发展至关重要,本文主要就这种材料进行简单的介绍,分析无机非金属材料工业发展历程,探讨有关的能源行业的未来发展方向,希望能够对相关研究人员的工作有所帮助。
一、无机非金属材料概述
无机非金属材料主要是由传统的硅酸盐材料演变而来,现在的无机非金属材料则囊括了碳化物、氮化物、铝酸盐、硼酸盐、硅酸盐、卤化物、磷酸盐等等领域。结构上来说,无机非金属材料的元素之间主要依靠共价键、离子键或者离子――共价键混合健进行结合。正是由于在这些化学键的存在,无机非金属材料往往拥有良好的抗氧化性、导电性、压电性、铁磁性、铁电性、较高的熔点、硬度、强度、耐磨损,广泛应用于各行各业。
无机非金属材料可以分为传统的无机非金属材料和新型无机非金属材料两大类。日常生活中常见的玻璃、陶瓷、水泥、搪瓷、电瓷等等都属于传统的无机非金属材料,与民众的生活及生产息息相关。而新型无机非金属材料的性能及用途都比较特殊,主要是凭借一些新的技术手段改造而来,广泛应用与国防事业及生物工程之中,比如非晶体材料、无机纤维、无机涂层等等。
二、无机非金属材料工业发展历程
随着人类社会以及科学技术的不断发展,无机非金属材料工业逐渐兴起,下文主要从水泥、陶瓷、玻璃三种材料简单论述无机非金属材料工业的发展历程。
(一)陶瓷工业
陶瓷材料是使用时间最长的无机非金属材料,在我国制陶技艺可以追溯到8000年前的新时期时期,商朝白陶的成功烧制为陶器向瓷器的过渡奠定了良好的基础,东汉至魏晋时期出现了青瓷,这种胎质坚硬加工精细的瓷器的出现标志着我国瓷器进入新的时代,宋朝起我国的陶瓷开始向欧洲及南洋的一些国家大量输出,出现了官、汝、定、钧、哥等名窑。古代的陶瓷窑主要是间歇式窑型,随着科学技术不断的发展进步,传统的窑型逐渐被现代窑型代替,1899年,法国出现机械式隧道窑,经过了上百年的发展,现代陶瓷烧制的窑型主要有窑车式隧道窑、步进窑、推板窑、辊道窑、气垫窑等等几种,其中窑车式隧道窑是现阶段应用较多的现代窑型,其他几种窑型都是在此基础上研究制造出来的,辊道窑烧成过程要求比较严格,必须要保证窑内环境的均衡稳定,这使得快速烧成及全自动操作控制成为可能,新型陶窑的能耗明显降低,陶瓷的产量得到了较大的提高,工人的劳动强度明显减少,生产环境得到了极大地改善。此外,为了改善当前陶瓷烧制过程中的生产污染,提高产品的烧制质量,许多厂家都在积极的引用低污染的洁净材料,以往传统的非洁净材料逐渐被摒弃。
(二)玻璃工业
公元前3700年前,古埃及人烧制出简单的有色玻璃饰品及器皿,公元前1000年前,无色玻璃出现,公元12世纪,玻璃逐渐开始应用于工业生产之中,18世纪光学玻璃出现,并应于于望远镜之中,1874年比利时制造出平板玻璃。就目前来说,玻璃材料广泛应用于建筑行业、医疗、电子、日用、仪表等等领域之中。按照生产工艺,玻璃可以分为钢化玻璃、浮雕玻璃、琉璃玻璃、夹丝玻璃、调光玻璃、放光玻璃等等种类。就玻璃生产工艺来说,传统的工艺方法有平拉法、对辊法、有槽法、无槽法等等。1957年,浮法工艺开始在英国出现,1两年之后该种工艺技术成功应用于工业生产之中,与传统工艺技术相比,浮法工艺的生产效率明显较高,因此,浮法工艺迅速普及。随后相关厂家利用这种新型的工艺技术生产出磨光玻璃,随着生产成本的降低,玻璃的品种也在逐渐的增加,就目前来说,浮法工艺基本上已经完全取代了传统的玻璃生产工艺,并逐渐朝着大型化方向发展。现阶段,平板玻璃窑日熔化能力普遍较高,在400t~700t左右,部分厂家达到了900t。随着计算机技术的研究发展,浮法工艺生产线逐渐向着自动化方向发展,少部分厂家已经基本实现了全自动化,能源及原材料的消耗都大幅度降低,产品的质量也得到了明显的提高,现场的作业环境同时得到了较大的改善。
(三)水泥工业
水泥是一种是十分重要的胶凝材料,广泛应用于水利、国防、土木建筑工程之中。1756年英国工程师J.斯米顿在研究石灰在水中的硬化特性时发现,使用含有粘土的石灰石能够烧制出水硬性石灰,使用火山灰和水硬性石灰能够配成用于水下建筑的砌筑砂浆,这一发现是现代水泥研制发展的基础。1796年,另一个英国工程师J.帕克使用泥灰岩烧制出天然水泥。1824年英国建筑工人J.阿斯谱丁配制出波兰特水泥,这种水泥建筑性能优良,对于水泥史的发展具有重要意义。20世纪,水泥行业相关研究人员对波兰特水泥进行了不断地改进,同时研究出各种适合特殊建筑工程的水泥,就目前来说,全球水泥种类达到100多种,其中硅酸盐水泥是应用最为广泛的水泥品种。
水泥工业发展至今,已经经过了几个世纪,烧制工艺及设备也在不断地完善之中,现代机械化立窑逐渐取代了以往的间隙式土立窑,传统的干法回转窑逐渐转变为湿法回转窑、半干法回转窑,现阶段还出现了以窑外角解炉以及悬浮预热器为核心的新型干法回转窑系统,该系统中涉及到生料均化技术、原料预均化技术等等现代化的工艺技术,使得水泥生产的低污染、低能耗、高质量成为可能。
三、与无机非金属材料相关的能源行业
无机非金属材料大多是经过高温制成,而高温的获得与能源息息相关,因此无机非金属材料工业与能源工业联系十分紧密,下文就与无机非金属材料工业相关的能源行业进行简单的分析讨论。
就目前来说,无机非金属材料工业中使用的最为频繁的能源为燃料及电能,各种燃料主要用于普通无机非金属材料的工业规模生产,而电能主要用于新型无机非金属材料的生产。常见的燃料有天然气、液化石油气、煤炭、轻质柴油、重油等等,这些燃料都属于一次能源,不可再生,且煤炭、柴油、重油等物质属于非清洁性燃料,燃烧后会产生二氧化硫、二氧化碳等等物质,对大气造成严重的污染,无机非金属材料工业生产中绝大多数使用的是非清洁燃料,由于能源热效率较低,因此实际的工业生产之中燃料浪费的现象十分严重。随着环境污染、能源危机的日益加剧,节能、低排放甚至零排放成为工业生产研究的重点之一,无机非金属材料工业发展过程中也在积极的寻求新的能源,开发研究节能降耗技术,优化无机非金属产品的生产流程,改善产品的质量,从而促进行业的可持续发展。
结束语
无机非金属材料工业对于现代工业生产十分重要,本文结合陶瓷、水泥、玻璃几种产品就无机非金属材料的发展历程进行了简单的归纳分析,讨论了与无机非金属材料相关的能源行业未来的发展方向,无机非金属材料及其相关能源行业研究工作提供参考。
参考文献
[1]张晨昀.无机非金属材料及其相关能源行业研究[J].西部皮革.2016(06):14.
[2]李娟,姜洪舟,华.无机非金属材料及其相关能源行业技术状况分析[J].国外建材科技 2010(05):21―26.
[3]刘波,徐顺建,钟炜等.无机非金属新材料科技与产业概况及发展趋势[J].新余学院学报.2010(15): 84-86.
无机非金属材料工程范文3
无机非金属材料专业实验建设与改革
1师资建设方面
无机非金属材料工程专业实验师资建设应遵循年龄结构均衡、职务结构合理和学历结构高层化的建设原则,在师资队伍发展方面,注重引进人才,同时从科研和教学两方面培养青年教师。材料实验中心现有专职教师5人,应加大人才的引进,鼓励高学历及高职称教师参与专业实验教学及实验室建设和管理,鼓励实验室人员不断深造和充电,加强自身修养和业务水平,鼓励实验室人员积极参与科学研究。力求经过几年的努力,使教师年龄结构日趋合理,教师学历和学位层次明显提高,职称结构平稳,师资队伍结构全面优化,现已形成一支富有奉献和创新精神、治学严谨、相对稳定的教师队伍。
2专业实验课程体系建设
无机非金属材料工程专业实验课程体系建设要从培养无机非金属材料行业生产一线的工程应用型本科人才出发,以素质教育为主题,以工程教育为主线,把人才培养与社会需求紧密结合起来,把材料学科及产业发展与传统办学特色紧密结合起来,把材料科学与材料工程紧密结合起来;把培养工程意识和工程能力与培养学习习惯和学习能力有机结合起来,把适应近期就业的针对性专业训练与适应职业变换的能力教育有机的结合起来[3]。在无机非金属材料专业实验课程体系建设中要注重以下几点:⑴以“深化课程基础实验教学、加强综合实验能力训练、注重创新意识和创新能力培养”为宗旨,根据无机非金属材料工程专业培养目标、要求,构建“大材料”学科共同的知识和技能平台实验室;⑵注重我院专业特色,充分体现土木工程材料的特点;⑶实验课程设计不完全依附理论教学,充分体现实验教学自身的作用;⑷增加综合设计性实验,充分体现学生的创新性;⑸编写自己的实验指导书,注重启发性教学,加强探索性引导;⑹专业实验课程应及时体现无机非金属材料的最新进展。
3实验室建设
无机非金属实验室的建设要根据专业培养计划开展,考虑到我院的经济状况,可采取整体规划,逐年完善的方针进行建设。经过近几年的发展建设,无机非金属专业实验室已有初步的雏形,但实验室建设仍然面临场地不足、设备老化、设备配置不合理、设备购置混料等一系列问题。考虑到我院土木建筑材料的特色,要加强这方面的建设,首先建设一条模拟水泥生产线,并开辟一块土木工程材料原料堆放场地。最后还要加强材料性能评价实验室的建设,争取配备一些先进的性能测试设备,争取在未来的几年内把无机非金属实验室建设成配置有大量国内外先进的实验设备,可进行先进材料的制备、结构分析、材料性能评价等实验,实验教学条件已达到省内一流先进水平的现代化实验室。
4实验室管理建设
加强实验室管理建设,是提高实验教学质量的保证。在实验室管理建设中,要规范与完善规章制度,在实验室工作中建立激励机制。完善实验室和仪器设备的责任制管理制度。分别制订实验室和仪器设备的责任制管理制度,由专人负责对贵重仪器和低值仪器设备分别进行分类管理。单价5万元以上的贵重仪器,除实行专人责任制管理外,并逐件建立仪器档案,仪器档案上交由学院综合档案室统一管理,既使贵重仪器实现了全院资源共享,也强化了管理。建立激励机制,实行工作业绩与晋升职称、津贴分配等挂钩的考核制度,有力地促进了实验室的管理建设。结合学院的有关规章制度,每学期进行一次考核,根据量化的考核标准,把考勤情况、实验室教学和科研工作量以及工作效率等综合考核结果,直接与个人的晋升职称、津贴分配等直接挂钩,鼓励多劳多得,优质优酬。加强开放实验室的管理机制[4],制定具体开放流程,理清责任。实验室开放时,必须有指导教师值班,负责做好教学秩序、器材供应、实验室安全等管理工作,并认真做好实验室开放记录。学生进入实验室实行登记制度,在实验室进行实验应遵守实验室的各项规章制度。损坏仪器设备的需按有关规定处理。
小结
无机非金属材料工程范文4
[关键词]材料发展、金属材料、无机非金属材料、高分子材料
人类社会的发展历程,是以材料为主要标志的。历史上,材料被视为人类社会进化的里程碑。对材料的认识和利用的能力,决定着社会的形态和人类生活的质量。历史学家也把材料及其器具作为划分时代的标志:如石器时代、青铜器时代、铁器时代、高分子材料时代……
100万年以前,原始人以石头作为工具,称旧石器时代。1万年以前,人类对石器进行加工,使之成为器皿和精致的工具,从而进入新石器时代。现在考古发掘证明我国在八千多年前已经制成实用的陶器,在六千多年前已经冶炼出黄铜,在四千多年前已有简单的青铜工具,在三千多年前已用陨铁制造兵器。我们的祖先在二千五百多年前的春秋时期已会冶炼生铁,比欧洲要早一千八百多年以上。18世纪,钢铁工业的发展,成为产业革命的重要内容和物质基础。19世纪中叶,现代平炉和转炉炼钢技术的出现,使人类真正进入了钢铁时代。与此同时,铜、铅、锌也大量得到应用,铝、镁、钛等金属相继问世并得到应用。直到20世纪中叶,金属材料在材料工业中一直占有主导地位。20世纪中叶以后,科学技术迅猛发展,作为发明之母和产业粮食的新材料又出现了划时代的变化。首先是人工合成高分子材料问世,并得到广泛应用仅半个世纪时间,高分子材料已与有上千年历史的金属材料并驾齐驱,并在年产量整理的体积上已超过了钢,成为国民经济、国防尖端科学和高科技领域不可缺少的材料。其次是陶瓷材料的发展。陶瓷是人类最早利用自然界所提供的原料制造而成的材料。50年代,合成化工原料和特殊制备工艺的发展,使陶瓷材料产生了一个飞跃,出现了从传统陶瓷向先进陶瓷的转变,许多新型功能陶瓷形成了产业,满足了电力、电子技术和航天技术的发展和需要。
现在人们也按化学成分的不同将材料划分为金属材料,无机非金属材料和有机高分子材料三大类以及他们的复合材料。
金属材料科学主要是研究金属材料的成分组织、结构、缺陷与性能之间内在联系的一门学科。金属材料科学与工程的工作者还要研究各种金属冶炼和合金化的反应过程和相的关系,金属材料的制备方法和形成机理,结晶过程以及材料在制造及使用过程中的变化和损毁机理。对其按化学成份进行分类可以分为钢铁、有色金属以及复合金属材料。按用途分类包括结构材料和功能材料。
无机非金属材料工程范文5
关键词:生物技术;无机非金属材料;应用前景
在本世纪70年代, 逐步发展形成的现代生物技术( 亦称生物工程技术), 从广义上说, 它包括人类对动物、植物以及微生物有目的利用、控制和改造。随后80年代, 美国和口本便分别召开了 “用生物方法合成材料”和“使用生物技术创制新材料”等专题学术研公寸会。由此可见, 现代生物技术在材料学与上程中的应用前景颇为看好。例如现代生物技术在金属材料行业中的系统应用已经成功地形成生物冶金分支学科。所谓生物冶金或称细菌冶金, 即细菌萃取金属或生物浸出金属, 是一种利用细菌的氧化作用把不溶性金属化合物转变成可溶性化合物, 再用湿法冶金从溶液中回收金属的方法。又如开发研究生物降解高分子材料, 及时防止和解决当今世界上极为严重的“白色污染”的决定性措施, 亦是现代生物技术在有机高分子材料行业中的应用热点。至于现代生物技术在尤机非金属材料行业的应用前景, 是又可望又可即的。
1 生物提纯硅酸盐矿物原料
生物提纯是指现代生物技术利用生物浸出法在非金属矿选矿过程中的应用。这种技术的应用原理主要就是利用微生物能够让金属矿物进行液化的功能, 使得生物技术在矿物融滤过程中得到广泛的应用。由于这些铁杂质一般都以黄铁矿的形态存在于硅酸矿物质中, 人们可以利用氧化铁硫杆菌和其他菌类对黄铁矿变成可溶性化合物, 在形成这一反应时。根据调查显示, 这种真菌可以对高岭土壤中铁的含量至少降低4 %左右, 并且让高岭土的白亮度有很大的提高, 这成为陶瓷和造纸行业产品的质量关键的因素。根据上述分析, 现代生物技术将会为硅酸盐矿物原料。
2生物矿化过程
生物矿化过程是在一定的细菌分泌和特殊机质的作用下的成矿过程, 也是在特定的机质下长成晶体结构。以珍珠贝的珍珠层为例, 珍珠层的结构是由霞石的碳酸钙晶体组成, 并在这种情况下形成了大小不一的螺旋形, 由于这种基质的网络结构中存在不规则的钙物质, 能够使碳酸钙在一定的距离成核并且按照自身的生长规律形成霞石螺旋。碳酸钙的生物矿化过程既是一个化学过程, 也是一个生物过程,这是两者共同作用过程的结果。日本研究人员还培育出一种海藻和一种单胞藻, 它们都可以联系生产处石灰石颗粒, 每天这些形状的石灰石最佳生产率为15毫克每升和90 毫克每升, 并可以对回收后的细胞进行再生产。根据上述材料表明, 人类可以在人工手段下实现细胞固定化技术, 并利用生物的成矿能录生产石灰石质纳木材料和生物装饰材料, 也可能利用生物的成矿功能进行复合材料的生产。
3 用稻壳制备高纯度高性能碳化硅
从仿生学的角度来看, 人们可以利用稻壳制造出高浓度、高性能的碳化硅。主要的步骤为: 首先, 将稻壳进行碳化, 使稻壳中的纤维素进行分解, 形成不定性碳化物; 其次, 在还原性和惰性的条件下, 对稻壳进行高文炼烧下形成碳化硅。在稻壳中所存在的二氧化硅凝胶会与多糖基质进行紧密的结合, 多糖的谈话会在二氧化硅的表层发生, 并且二氧化硅一直处于高化学活性的多孔和微粒状态下, 因此, 在对它进行炼烧时,可以最快速度与二氧化硅产生反应。德国的一位建筑师利用自己设计的一种水下装置放到海中, 在经过两到三个月的时间用过海藻作用可以产生2 5尺长、五尺宽、2寸厚的生物大理石材料板。近期, 日本的工业技术研究所成功利用稻壳制备出碳化硅的新工艺, 这种技术与原来的硅石和煤气还原法相比, 同时达到了降低成本和实现了对稻壳的最大利用。在稻壳中存在碳、二氧化硅等有效化学成分, 这就具备了形成碳化硅的先决条件, 但是一旦在发生反应时磷成分过多时, 就无法形成碳化硅, 那么就必须研究减少磷产生的方法。这种工艺的原理是以弱酸性缓冲剂进行爆破性处理, 在多种酶的作用下可以溶出碳, 然后再对其进行氧化处理, 在无氧加热条件下形成高浓度、高性能的碳化硅。
4 生物混凝土
在很早以前, 我国就应经学会利用存在于粘土中的细菌对粘土进行发酵来增强它的可塑性。目前, 我国很多学者都预言几千年后老鼠建造洞穴的材料将用比混凝土还牢固的白蚁排泄物。这种材料是天然的高分子非金属材料的符合混凝土, 也是细菌作用下形成的生物混凝土。与此同时, 在日本也有相关报道曾预言提出这种单材质发酵技术的应用。新型生物混凝土具有多层结构:第一层是防水层,能够防止雨水渗入,避免对建筑结构造成破坏;第二层是生物层,能够收集雨水以供植物生长,例如它可以为微型藻类、菌类、地衣和苔藓等提供天然生物屏障;第三层是覆盖层,能够让雨水通过这一层渗入生物层,并可防止水分流失。与传统混凝土相比,这种新产品的最大优势是既能吸收二氧化碳,改善城市环境空气质量;又可美化墙体,改变城市色彩单一的外观面貌;还能提升建筑物的保温性,降低能源消耗。
5 生物铁氧体功能陶瓷材料
在常温条件下, 可以利用海洋水中想磁性细菌合成比较均匀的磁性微粒, 磁性微粒通常情况下也被称为生物铁氧体功能陶瓷材料, 它与人工制成的磁微粒材料相比, 它的表面积比较大, 而且表面部位被坚硬的有机薄膜覆盖, 在这种情况下很难将铁浸。
6 结语
将现代生物技术应用到非金属材料领域中比较重要的工程, 这也将大大推动生物非金属材料工业的发展和进步。我们必须积极探索现代生物技术的作用, 抓住现代生物技术的特点, 现代生物技术作为一种低能耗、高效益的新兴技术, 必将在非金属材料领域大面积的应用, 以推动我国经济和科技的发展。
参考文献:
[1]朱跃钊,卢定强,万红贵,韦萍,周华,欧阳平凯. 工业生物技术的研究现状与发展趋势[J]. 化工学报,2004(12).
[2]王大博,孙艳艳.浅谈我国无机非金属材料的应用与发展[J]. 黑龙江科技信息,2011(13).
无机非金属材料工程范文6
【关键词】化工建筑;化学腐蚀;防护
在化学工业的生产过程中,总避免不了部分气体和液体(通常称作化学介质)的泄漏,这些液体和气体通常都是有腐蚀作用的,对建筑会产生腐蚀性作用,给化工行业带来巨大的经济损失。本文主要讨论化工生产过程中一般性化学介质对建筑的腐蚀性作用以及其防护方法,建筑材料主要有金属以及无机非金属材料组成,因此本文只解决金属和无机非金属建筑材料的腐蚀和防腐。
1.金属建筑材料的腐蚀和防护
金属材料的腐蚀主要是化学腐蚀,化学腐蚀是金属与接触到的物质直接发生氧化还原反应而被氧化损耗的过程,化工行业建筑的腐蚀主要是泄漏气体和液体。一般的防护方法有钝化、电镀、刷隔离层等。
1.1金属建筑材料的腐蚀
1.1.1气体泄漏腐蚀
化工生产中往往会有含硫、含氮等腐蚀性气体的泄漏,加上空气中存在的一些气体水分,与金属建筑材料的直接接触而具有的极大地腐蚀作用。
1.1.2液体的腐蚀
化工生产过程中的液体往往是非电解质,因此暂不考虑电化学腐蚀。金属在非电解质中为什么会腐蚀?
从热力学的角度来看,这是由于金属的不稳定性导致的,它和周围介质发生作用有形成金属离子的倾向。金属这种形成金属离子的倾向与金属本身的性质有关,也受外界条件和周围介质的影响。
1.2金属建筑材料的防护措施
1.2.1改变碳钢的组成成分
在碳钢中加入一些合金元素,是增加其抗气化性的有效途径,增强钢的抗氧化性有效的合金元素有Si、Al、Cr等。铬铝等合金元素和氧的亲和力比较大, 铬铝等元素在金属表面和空气接触易发生作用形成致密的氧化膜而阻止里层金属离子的向外扩散,从而保护里层的金属。
1.2.2采用在金属表面覆盖金属或非金属镀层的方法,来防止介质与底层金属直接接触,从而提高了金属的抗氧化性。
1.2.3改变介质的组成,使用保护性气体或通过控制气体组成,来降低介质的腐蚀性。在金属热处理时这种保护方法应用的比较多。其基本原理是通过控制热处理炉中的气体成分,使钢铁制件既不发生氧化,也不会发生渗碳、脱碳的现象。
2.无机非金属建筑材料的腐蚀与防护
2.1无机非金属建筑材料的腐蚀
建筑工程中无机非金属材料主要组成成分是硅酸盐,通常有玻璃、水泥、陶瓷等,它们在一般的情况下都具有良好的耐腐蚀性能,但绝对耐腐蚀的无机非金属材料是不存在的。通常认为无机非金属材料的耐腐蚀性是由下类因素决定。
2.1.1无机非金属材料的化学成分
硅酸盐主要组成成分以SiO2为主,SiO2(尤其无定型SiO2)容易与强碱容易发生反应,生成硅酸盐和水,而硅酸盐除硅酸钙硅酸钡等不溶于水外,大部分都易溶于水,都能溶于强酸而生成硅酸,因而对其产生腐蚀性作用,其主要的化学方程式如下:
SiO2+2NaOH=Na2SiO2+H2O
Na2SiO3+Hcl+H2O=H4SiO4+Nacl
SiO2与大部分酸都不起反应,耐酸强度比较高,因此一般情况下SiO2含量较高的材料耐酸性能比较高,SiO2含量较低的材料耐酸性能比较低。但其能与唯一的两种酸—HF和高温H5PO5起反应,SiO2能和任意浓度的HF和温度高于300摄氏度的磷酸发生反应,其主要反应化学方程式如下:
SiO2+4HF=SiF4(g)+2H2O
SiF4+2HF=H2[SiF6](氟硅酸)
H5PO5HPO3+H2O
2HPO3=P2O5+H2O
P2O5+SiO2=SiP2O7(焦磷酸硅)
2.1.2无机非金属材料的矿物组成
一般情况下, SiO2的在材料中的组成成分越多,材料的耐酸性越好,但也有其他组成成分的影响。如铸石中的SiO2的质量分数比较低,但其与三氧化二铝、三氧化铁等组合,在高温下能形成耐腐蚀性很强的矿物—普通辉石。碱性氧化物很容易与酸发生反应,生成易溶于水的盐,例如:Fe2O3与Hcl反应,生成Fecl3,因此含有大量碱性氧化物(CaO、MgO)的材料,基本上不耐酸性,但是其耐碱性是异常的好。
2.1.3形成原电池
无机非金属材料中如果存在易导电的物质与电解质结合,就容易形成原电池,加快化学腐蚀,例如有些无机非金属材料中存在着石墨,在酸性溶液中与金属结合,就构成了原电池。
2.2无机非金属建筑材料的防护
2.2.1加覆盖层和贴面材料
在有腐蚀的环境下,可以在混凝土表面加一具有较好粘结力和弹性的贴面材料层或覆盖层。如果该贴面材料层或者覆盖层粘结力和弹性较差的话,该保护层可能会产生裂缝,甚至脱落。此保护层可以选用花岗岩、瓷砖、沥青毡等材料,根据材料的特性与实际的使用要求进行选择使用。
由于化工企业还存在火灾、爆炸等危险,因此耐腐蚀材料的选用还要进行综合性的考虑,例如,如果表面要求既能防腐蚀又不会产生火花,这时就不能选择花岗岩作为贴面材料层,因为花岗岩能够产生火花;如果表面要求既能防腐蚀又能检修荷载,则需要选用贴面材料,而不能选用脆性材料。
2.2.2提高混凝土致密度与表面处理
混凝土越致密,就越难被腐蚀,因为腐蚀介质很难渗入致密的混凝土。通过正确的设计混凝土的配合比例,降低水灰比值,仔细选择集料颗粒大小的级配,采用抽真空、养护、振捣密实等方法,即可得到致密的混凝土。或者采用化学方法对混凝土的表面进行处理,使得混凝土中的氢氧化钙转变成致密的难溶物质。基于成本的考虑,通常采用碳酸化方法,即在混凝土构件投入使用之前,先将构件在空气中进行碳化处理使其产生致密的碳酸钙外壳。对混凝土表面使用硅酸盐(如硅酸镁、硅酸锌)的水溶液进行处理可以提高混凝土的抗渗性和耐腐蚀性。
2.2.3改变矿物的组成和水化产物的组成和形态
根据腐蚀机理可以推断,减少C3S在水泥熟料中的含量,可以增强水泥的抗硫酸盐性,也能够降低水泥的软水溶析能力;如果在减少熟料中的C3S含量的同事,相应适当地增加C3FA的含量,则还能提高水泥的抗酸性能。这是由于C4AF(铁铝酸四钙)的水化物为水化铁酸钙和水化铝酸钙的固溶体C3(A,F)H6,铁酸钙的硫酸盐性能比铝酸钙要好。此外,铁酸钙还会在水化铝酸钙周围生成致密的薄膜,从而提高硫酸盐性能。
3.结语
化工行业的建筑结构的腐蚀主要是由于化工生产过程中腐蚀性介质的泄漏。防止或减少腐蚀性介质的泄漏,是防止建筑物和构筑物最有效的防护措施。因此在一般的环境下,首先考虑的应该都是如何减少生产过程中的泄漏,因此如何提高设备的致密程度,减少介质通过的环节就变得尤其重要。
腐蚀除了存在于化工产业,还存在于生活的各个方面,比如自然的污染、机器的老化等等。腐蚀现象给我们造成了巨大的经济损失,给我们的生命安全也造成了很大的威胁,腐蚀现象也越来越引起人们更多的关注,虽然腐蚀是不可避免的,但实践告诉我们,充分的利用现有的防腐技术,严格执行科学化的管理措施,可以避免30%~40%的由于腐蚀而导致的经济损失。 [科]
【参考文献】
[1]惠云玲,郭永重,李小瑞.混凝土结构中钢筋锈蚀机理、特征及检测评定方法[J].工业建筑,2002(2).
[2]王锋,张艳梅,吴平.钢筋混凝土烟囱筒身可靠性鉴定与加固[J].低温建筑技术.2003(5).