前言:中文期刊网精心挑选了电力电子器件论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
电力电子器件论文范文1
当前物资供应链管理中加强了合同履约、结算过程与供应商的协同,及时跟踪合同执行进度,有效降低履约风险,进一步提升了公司物资供应保障能力。但重点物资履约功能尚未得到很好的利用,在物资供应链全过程管理方面仍缺乏全面有效的信息化管控手段。为了及早发现物资供应问题,通知相关人员进行处理,需要建设物资供应监控预警系统,实现物资供应问题的提前发现、主动提醒、流程管理和全程跟踪。
二、物资供应监控预警系统架构
根据物资供应监控预警系统的业务需求,基于ERP系统物资模块进行功能扩展,在ERP系统按需求逻辑进行自定义实现,形成推送数据中心的数据源,定时推送到数据中心。通过调取数据中心明细数据,在物资供应监控预警系统进行功能实现或功能展现。采用多层架构的设计思路,体系构架自上而下分可为:功能展现层、功能实现层、业务逻辑处理层三个主要层次。
1.功能展现层,是与用户进行交互的界面,主要采用SAPWebDynpro+Portal的方式进行展现。该展现层是基于在SAPNetWeaver平台之上,SAPNetWeaver平台的稳定和安全确保了整体功能运行高效可靠;另一方面,得益于SAPNetWeaver平台提供简单直观的开发工具,能够快速实现新增展现方式。此外还可以扩展Flash、JSP等其他插件来丰富数据的展现形式。本项目利用SAPWebDynpro技术,能够使SAP业务逻辑,轻松容易的在SAPNetWeaverPortal中进行展示,作为其工作平台和各大功能模块的UI界面,同时采用B/S结构,在客户端浏览器实现流程任务的显示和操作、文档数据的选取和传输、流程图和看板的展现、统计图表的输出等。
2.功能实现层,作为业务逻辑处理层与功能展现层交互的中间层。主要完成其用户界面UI的设计,及将业务逻辑层所处理出的数据进行用户UI展示。在SAPNetWeaver平台下,充分利用其界面友好、多语言支持、易于开发的Web应用程序特点,采用WebDynproforJava方式进行业务数据的实现。
3.业务逻辑处理层,业务数据均来源于SAPERP系统并通过数据中心作为中间数据库。
三、物资供应监控预警系统功能
物资供应监控预警系统功能主要包括监控预警管理、预警督办流程管理、监控预警统计报表管理。
1.监控预警管理。监控预警管理主要包含两大方面内容,即对业务的跟踪监控和异常数据的监控预警。
1.1业务跟踪监控。主要实现物资供应过程的全程业务跟踪。功能覆盖需求计划、合同签订、合同履行、合同结算、仓储管理各个阶段。通过优化数据存储结构和查询方式,可在一次查询中实现以往ERP中多次查询才能达到的效果,并且有效解决了ERP系统大数据量查询时的问题。对于查询出的数据,可在短时间内下载到本地电脑,即使是十万级的数据量,也能在几秒钟的时间内完成下载,这也是ERP系统所欠缺的。
1.2监控预警。预警机制:首先针对不同业务关键点设置各自的预警时限,即提前通知天数,该预警时限可以随时根据业务需求进行变更,然后设置数据筛选逻辑,通过程序执行定时任务统计出预警数据并下发,从而实现对物资供应问题的统一监控和事前预警。预警等级:根据业务紧急程度,划分预警等级,以预警灯形式展现,主要用三种颜色标识:绿色、黄色和红色,其中绿色表示正常状态,黄色表示一般预警状态,红色表示紧急预警状态。预警范围:针对物资供应各阶段的关键环节,我们都设定对应监控预警点,包括需求计划、合同签订、合同履行、合同结算和仓储管理。由于重点物资生产周期长,要求高的特点,还特别针对重点物资设定了专门的监控预警点,确保重点物资的供货效率和供货质量。
2.预警督办流程管理。根据物资调配中心组织架构和实际业务情况,制定由上而下的预警督办流程。预警督办功能实现3级预警机制,包括省公司、地市单位及县公司,保证业务预警督办的全面覆盖。系统根据监控预警数据自动生成督办单,然后通过工作流引擎,下发给各个单位及时处理,在系统首页形成待办工作提醒,同时监控督办流程执行情况。预警督办功能具有以下特点:
2.1督办数据唯一:预警督办单的产生并不只是简单的数据比对,由于预警督办的处理流程并不能全部在一天内走完,所以必须避免同一条数据在工作流中反复产生新督办单的问题。系统在预警督办单生成时,将预警数据和流程处理中的督办单明细数据进行比对校验,如果相同则不再生成新的督办单,以此保证了流程处理中的预警数据不会出现在新的督办单里。
2.2通知下发及时:对于最新督办数据,增加系统弹窗提醒,确保相关人员在第一时间掌握督办信息,及时进行业务处理。
2.3紧急程度划分明确:预警督办单使用红、黄、绿三种不同颜色的状态灯标注紧急程度,已完成处理的督办单标注为绿色,一般紧急督办单标注为黄色,特别紧急督办单标注为红色。预警督办处理过程要求在1个工作日内完成,一般预警处理过程要求在3个工作日内处理完成。
3.物资供应监控预警统计报表管理。实现物资供应监控预警信息的实时在线查询,预警数据、督办数据的统计分析,生成周报、月报。具体包括:物资供应统计分析、预警点明细数据实时查询、预警情况统计分析、预警督办单的实时查询、预警督办执行情况统计分析等。
四、结语
本文主要站在电力企业物资供应管理的角度,探讨如何使用现代化管理手段使得物资供应管理更加完善顺畅。
1.通过对监控预警现状进行调查分析,了解到电力企业借助信息化手段,建立监控预警系统,实现对物资供应全程监控预警的业务依据及其目的。
2.通过监控预警系统的运作和使用,能有效弥补ERP系统对业务监管的不足之处,加强企业数据统计分析能力,为企业决策层提供有力的数据支撑,同时,可以及时发现和处理物资供应过程中的问题,确保各相关部门有效、及时、准确的完成物资供应业务,保障企业日常物资业务运作。
电力电子器件论文范文2
关键词:发展趋势技术创新器件开发应用推广
1概述
自本世纪五十年代未第一只晶闸管问世以来,电力电子技术开始登上现代电气传动技术舞台,以此为基础开发的可控硅整流装置,是电气传动领域的一次革命,使电能的变换和控制从旋转变流机组和静止离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子的诞生。进入70年代晶闸管开始形成由低电压小电流到高电压大电流的系列产品,普通晶闸管不能自关断的半控型器件,被称为第一代电力电子器件。随着电力电子技术理论研究和制造工艺水平的不断提高,电力电子器件在容易和类型等方面得到了很大发展,是电力电子技术的又一次飞跃,先后研制出GTR.GTO,功率MOSFET等自关断全控型第二代电力电子器件。而以绝缘栅双极晶体管(IGBT)为代表的第三代电力电子器件,开始向大容易高频率、响应快、低损耗方向发展。而进入90年代电力电子器件正朝着复台化、标准模块化、智能化、功率集成的方向发展,以此为基础形成一条以电力电子技术理论研究,器件开发研制,应用渗透性,在国际上电力电子技术是竞争最激烈的高新技术领域。论文百事通
2电力电子器发展回顾
整流管是电力电子器件中结构最简单,应用最广泛的一种器件。目前已形成普通型,快恢复型和肖特基型三大系列产品,电力整流管对改善各种电力电子电路的性能,降低电路损耗和提高电流使用效率等方面都具有非常重要的作用。自1958年美国通用电气GE公司研制出第一个工业用普通晶闸管开始,其结构的改进和工艺的改革为新器件开发研制奠定了基础,在以后的十年间开发研制出双向,逆变、逆导、非对称晶闸管,至今晶闸管系列产品仍有较为广泛的市场。
1964年在美国第一次试制成功了0.5kV/0.01kA的可关断的GTO至今,目前以达到9kV/0.25kA/0.8kHz的可关断的GTO至今,目前以达到9kV/2.5kA/0.8kHZ及6kV/6kA/1kHZ的水平,在当前各种自关断器件中GTO容量量最大,但其工作频率最低,但其在大功率电力牵引驱动中有明显的优势,因此它在中压、大客量领域中占有一席之地。70年代研制出GTR系列产品,其额定值已达1.8kV/0.8kA/2kHZ,0.6kV/0.003kA/100kHZ,它具有组成的电路灵活成熟,开关损耗小、开关时间短等特点,在中等容量、中等频率的电路中应用广泛,而作为高性能,大容量的第三代绝缘栅型双极性晶体管IGBT,因其具有电压型控制,输入阻抗大、驱动功率小,开关损耗低及工作频率高等特点,其有着广阔的发展前景。而IGCT是最近发展起来的新型器件,它是在GTO基础上发展起来的器件,称为集成门极换流晶闸管,也有人称之为发射极关断晶闸管,它的瞬时开关频率可达20kHZ,关断时间为1μs,dildt4kA/ms,du/dt10-20kV/ms,交流阻断电压6kV,直流阻断电压3.9kV,开关时间<2ks,导通压降3600A时,2.8V,开关频率>1000Hz。
3电力电子器件发展趋势
进入90年代电力电子器件的研究和开发,已进入高频化,标准模块化,集成化和智能时代。从理论分析和实验证明电气产品的体积与重量的缩小与供电频率的平方根成反比,也就说,当我们将50Hz的标准二频大幅的提高之后,使用这样工频的电气设备的体积与重量就能大大缩小,使电气设备制造节约材料,运行时节电就更加明显,设备的系统性能亦大为改善,尤其是对航天工业其意义十分深远的。故电力电子器件的高频化是今后电力电子技术创新的主导方向,而硬件结构的标准模块是器件发展的必然趋势,目前先进的模块,已经包括开关元件和与其反向并联的续流二极管在内及驱动保护电路多个单元,并都以标准化和生产出系列产品,并且可以在一致性与可靠性上达到极高的水平。目前世界上许多大公司已开发出IPM智能化功率模块,如日本三菱、东芝及美国的国际整流器公司已有成熟的产品推出。日本新电元公司的IPM智能化功率模块的主要特点是:新晨
3.1它内部集成了功率芯片,检测电路及驱动电路,使主电路的结构为最简。
3.2其功率芯片采用的是开关速度高,驱动电流小的IGBT,且自带电流传感器,可以高效地检测出过电流和短路电流,给功率芯片以安全的保护。
电力电子器件论文范文3
【论文摘要】:电能高效洁净地生产、传输、储存、分配和使用的技术将成为电力技术的重点领域。
“电力技术是通向可持续发展的桥梁”,这个论断已经逐渐成为人们的共识。研究表明,为了实现可持续发展,应尽可能把一次能源转换为电能使用,提高电力在终端能源中的比例。因为,在保证相同的能源服务水平的前提下,使用电力这种优质能源最清洁、方便,易于控制、效率最高。如果能将大量分散燃用的化石燃料都高效洁净地转换为电力使用,人们赖以生存的环境和生活质量就会大大改善。因此,电能高效洁净地生产、传输、储存、分配和使用的技术将成为电力技术的重点领域。以下将对若干电力前沿技术的现状和未来发展前景进行简单评述。
1.分布式电源
当今的分布式电源主要是指用液体或气体燃料的内燃机(IC)、微型燃气轮机(Microtur_bines)和各种工程用的燃料电池(FuelCell)。因其具有良好的环保性能,分布式电源与“小机组”已不是同一概念。
1.1微型燃气轮机
微型燃气轮机(MicroTurbine),是功率为几千瓦至几十千瓦,转速为96000r/min,以天然气、甲烷、汽油、柴油为燃料的超小型燃气轮机,工作温度500℃,其发电效率可达30%。目前国外已进入示范阶段。其技术关键是高速轴承、高温材料、部件加工等。可见,电工技术的突破常常取决于材料科学的进步。
1.2燃料电池
燃料电池是直接把燃料的化学能转换为电能的装置。它是一种很有发展前途的洁净和高效的发电方式,被称为21世纪的分布式电源。
1.2.1燃料电池的工作原理
燃料电池的工作原理颇似电解水的逆过程。氢基燃料送入燃料电池的阳极(电源的负极)转变为氢离子,空气中的氧气送入燃料电池的阴极(电源的正极),负氧离子通过2极间离子导电的电解质到达阳极与氢离子结合成水,外电路则形成电流。
通常,完整的燃料电池发电系统由电池堆、燃料供给系统、空气供给系统、冷却系统、电力电子换流器、保护与控制及仪表系统组成。其中,电池堆是核心。低温燃料电池还应配备燃料改质器(又称为燃料重整器)。高温燃料电池具有内重整功能,无须配备重整器。磷酸型燃料电池(PAFC)是目前技术成熟、已商业化的燃料电池。现在已能生产大容量加压型11MW的设备及便携式250kW等各种设备。第2代燃料电池的溶融碳酸盐电池(MCFC),工作在高温(600~700℃)下,重整反应可以在内部进行,可用于规模发电,现在正在进行兆瓦级的验证试验。固体电解质燃料电池(SOFC)被称为第3代燃料电池。由于电解质是氧化锆等固体电解质,未来可用于煤基燃料发电。质子交换膜燃料电池是最有希望的电动车电源。
1.2.2性能和特点
燃料电池有以下优点:(1)有很高的效率,以氢为燃料的燃料电池,理论发电效率可达100%。熔融碳酸盐燃料电池,实际效率可达58.4%。通过热电联产或联合循环综合利用热能,燃料电池的综合热效率可望达到80%以上。燃料电池发电效率与规模基本无关,小型设备也能得到高效率。(2)处于热备用状态,燃料电池跟随负荷变化的能力非常强,可以在1s内跟随50%的负荷变化。(3)噪音低;可以实现实际上的零排放;省水。(4)安装周期短,安装位置灵活,可省去新建输配电系统
目前燃料电池大规模应用的障碍是造价高,在经济性上要与常规发电方式竞争尚需时日。
1.2.3技术关键和研究课题
燃料电池的技术关键涉及电池性能、寿命、大型化、价格等与商业化有关的项目,主要涉及新的电解质材料和催化剂。熔融碳酸盐电池(MCFC)在高温条件下液体电解质的损失和腐蚀渗漏降低了电池的寿命,使MCFC的大型化及实用化受到限制。需要解决电池构成材料的腐蚀;电极细孔构造变化使电池性能下降等问题。固体氧化物燃料电池(SOFC)使用固体电解质且工作温度很高,对构成材料及其加工有特殊要求。为了得到高温下化学性稳定和致密性(不通过气体)的电解质,在氧化锆中加入Y2O3生成钇稳定氧化锆。为了降低工作温度,应尽可能减少电解质薄膜厚度。通常采用熔射法、烧结法和电化学蒸发涂层法制备电解质薄膜。实用的电解质膜的厚度为0.03~0.05mm。比较先进的已达到0.01mm。这样薄的电解质陶瓷材料除应当有足够的机械强度外,必须具有高度的气体致密性,否则将丧失燃料电池的性能。燃料极使用镍锆等耐热金属陶瓷,镍还用作燃料重整的催化剂,空气极在运行中处在高温氧化中,难以使用一般金属。铂的稳定性好,但费用昂贵,需要寻找替代材料,可用电子导电陶瓷。为了降低工作温度,另外一个重要的研究方向是寻找低温的质子导电的电解质。工作温度倘若能降低到700℃以下,SOFC的造价就可以大幅度降低。2.大功率电力电子技术的应用硅片引起的“第
2.1大功率电力电子器件的重大进展
电力电子学(PowerElectronics)的应用已经有多年的历史。电力电子学器件用于电力拖动、变频调速、大功率换流已经是比较成熟的技术。大功率电子器件(HighPowerElectronics)的快速发展也引起了电力系统的重大变革,通常称为硅片引起的第。
近年来,大功率电子器件已经广泛应用于电力的一次系统。可控硅(晶闸管)用于高压直流输电已经有很长的历史。大功率电子器件应用于灵活的交流输电(FACTS)、定质电力技术(CustomPower)以及新一代直流输电技术则是近10年的事。新的大功率电力电子器件的研究开发和应用,将成为电力研究前沿。
2.2灵活交流输电技术(FACTS)
灵活交流输电技术是指电力电子技术与现代控制技术结合以实现对电力系统电压、参数(如线路阻抗)、相位角、功率潮流的连续调节控制,从而大幅度提高输电线路输送能力和提高电力系统稳定水平,降低输电损耗。
传统的调节电力潮流的措施,如机械控制的移相器、带负荷调变压器抽头、开关投切电容和电感、固定串联补偿装置等,只能实现部分稳态潮流的调节功能,而且,由于机械开关动作时间长、响应慢,无法适应在暂态过程中快速灵活连续调节电力潮流、阻尼系统振荡的要求。因此,电网发展的需求促进了灵活交流输电这项新技术的发展和应用。
电力电子器件论文范文4
1.课程建设与改革思路
教学内容和教学体系的改革是“电力电子技术”课程改革中最重要的环节,直接关系到教学质量的提高,关系到应用型人才培养的要求。我校按照电力电子器件—电力电子变换电路—电力电子电路的微机控制技术—电力电子技术应用的思路,以电力电子器件为电路服务,电路为电力电子系统服务,系统为电力电子应用服务的理念作为教学内容设置的主导思想,以应用能力和工程素质培养为核心,精选理论内容,强化技术应用,及时而恰当地引入电力电子技术的新知识、新技术、新工艺。
2.调整教学内容
在教学设计上理论与实践相结合,知识传授与应用能力培养相结合,课内与课外相结合,讲授与研讨相结合。将电力电子器件、变换电路作为传统内容,将电力电子技术应用作为实用内容,将最先进的自动控制生产线作为新技术,对典型电力电子及电气传动系统分析作为讨论内容,将科研课题引入课堂作为启发内容,通过典型案例分析,将理论与实际结合,培养学生解决实际问题的能力,并通过渗透行业规范、安全操作规程、文明生产等知识培养学生的工程素质。课程的讲授以电力电子器件的工作原理、特性、参数、选择、驱动与保护电路为基础,以AC/DC、DC/AC、DC/DC、AC/AC变换电路结构、工作原理、波形分析和参数计算及电路设计为核心,以微机控制的脉宽调制技术(PWM)和各种软开关技术作为新的控制方法和新技术,把电力电子学科的发展方向引入课堂。以电力电子器件的应用电路为教学的重点,解决实际工程问题,使学生能充分认识现代电力电子技术对交、直流电路的控制和变换能力,并掌握各种变换原理和方法,为后续课程“运动控制系统”深入学习及毕业设计打下坚实的基础。
二、强化实践教学,提高学生实践能力和创新能力
1.完善实践教学条件
“电力电子技术”课程具有很强的工程性和实用性,而实验是培养学生理论联系实际、动手能力、严谨的态度和科学研究方法的重要手段。因此,以营造真实的、先进的工程环境为目标,紧密结合工程实际应用,投入100多万元建设和完善了电力电子技术实验室。现实验室拥有实验设备24台套,开发了电力电子技术仿真研究平台,构建了电力电子技术实践教学体系(包括课内实验、课外实验、课程设计、生产实习和毕业设计等),编制相关的教学文件。实验室向学生全面开放,学生以团队的形式开展自主性实验和学科竞赛培训,并为学生提供实际工程技术资料、仿真实训教学软件,培养工程实践应用能力。
2.精心设计实验内容
课程组精心设计了实验教学项目和内容,引导学生从问题出发,逐步由基础实验走向设计性和综合性实验,再过渡到创新性实验。开设了晶闸管整流、逆变的验证性实验,使学生对本课程的应用有初步认识;对直流斩波、交交变换以及PWM控制技术部分的实验,则由教师给出电路参数要求,由学生自行设计主电路、驱动电路等,完成设计性实验,培养学生分析问题,解决问题的能力;软开关技术的实现等具有较高实用价值的实验项目,密切联系着当今电力电子技术发展的最前沿技术,并且在国民经济发展中起着重要作用。通过实验学生了解了电力电子新技术的发展动态,同时对本课程的应用领域、可以解决的问题有了更直观感性的认识。实验项目与科研、工程、社会应用实践密切联系,形成良性互动,实现基础与前沿、经典与现代的有机结合,有利于学生创新能力的培养和自主训练。3.增设课程设计与调试环节开设了1周“电力电子技术”课程设计与调试实践环节,以完整的电力电子系统为载体,将电力电子器件选择以及电力电子主电路、驱动电路、保护电路、检测电路、控制电路等内容有机地结合起来,使学生通过设计、组装、实验和调试“四位一体”的训练,培养学生的实践能力和创新能力。同时,在教学中使用计算机仿真软件Matlab/Simulink搭建各种常用电力电子电路,且可方便地调整电路的参数进行仿真,培养学生应用计算机处理复杂电力电子电路的能力,也为日后从事工程设计和科学研究打下良好的基础。
三、改进教学方法与手段,调动学生学习主动性和积极性
在实际教学实践中,笔者始终坚持以学生为主体、教师为主导、能力为主线的教育理念,根据课程内容合理采用不同的教学方法组织课堂教学,将“理论+实践+应用能力”的教学模式贯穿在整个教学活动中,由传统的教师满堂灌唱独角戏变成了教师学生共同参与的互动学习,教与学融为一体。教师有所教,学生有所学,极大地调动了学生的学习积极性,加深了学生的理解,加快了学习步伐。通过启发教学法、案例教学法、任务驱动教学方法等,增强学生主观能动性,活跃课堂气氛,挖掘学生潜力,增强专业素养,逐渐让学生由“学会”变成“会学”,由被动变主动汲取知识。为了分析电力电子器件和电路的工作状态,使学生弄清电路中能量的变换和传递,笔者制作了本课程比较完善的多媒体教学课件。利用多媒体技术将实际应用中的电路和电力电子装置做成影音资料带到课堂上,结合典型工程实例,并把电力电子前沿的研究状况、最新的研究成果以图表、图片等方式充实到教学课件中,提高学生的感性认识,激发学生学习的兴趣,不断提高教学效果及教学质量。同时,建设了本课程的教学网站,网站资料丰富,包括教学资料和典型工程实例等,学生可以在网上学习,教师可以在网上进行答疑,激发了学生学习的兴趣,提高了教学效果。
四、改革考核方式,提高学生对知识的综合运用能力
1.考试过程全程化
教师根据“电力电子技术”课程性质和不同阶段的教学要求,通过课堂提问、讨论、平时作业、单元测验、实际操作、撰写报告或论文等方式加强形成性考试评价,并安排阶段性考试以强化学生平时对课程教学内容的学习和掌握,弱化期末终结性考核。
2.考核内容能力化
考核内容围绕应用能力和工程素质培养为核心这个目标设置,结合新的“电力电子技术”教学内容体系,加大电力电子器件特性分析、实际电路分析、应用案例分析、实践技能的比例,侧重考查学生对知识的综合运用、解决问题的能力。
3.考核方式多元化
根据不同阶段的教学要求,考核采取口试、笔试(开卷、闭卷)、开发设计相结合的形式,变单一形式的考核为多种形式的考核。
五、组织课外科技创新活动,探索课内与课外培养的有效机制
按照课内培养与课外培养相结合的原则,把培养学生实践创新能力固化在教学任务中,成立了课外科技活动小组,注意引导和鼓励学生积极参加各种科技竞赛活动。依托电力电子实验室的硬件设施,积极组织学生参加全国大学生电子设计大赛和“挑战杯”竞赛,以培养和提高学生的自学能力、实践能力和创新意识。在运行中,加强课外实践活动的组织和管理,制订《大学生课外科技创新实践活动运行管理办法》和《实验室开放运行管理办法》,对大学生第二课堂教育的条件保障、激励政策、管理办法、评价办法等做了明确规定,形成了有效的大学生科技创新实践活动保障体系。
六、加强青年教师培养,提高课程组教师整体水平
师资队伍建设是课程建设的关键,课程组教师的理论教学水平、工程实践能力、科研水平直接关乎“电力电子技术”课程建设水平。按照校内培养与校外培养相结合、教学培养和科研培养相结合的原则,通过建立青年教师“导师制”、定期开展教学研讨和教学观摩、实行青年教师实验室坐班制、深入工业企业生产实际、选派教师参加新技术培训等措施,不断提高青年教师教学水平、学术水平和实践能力。
七、结语
电力电子器件论文范文5
通常情况下,电力电子得理论教学都是按照教科书的章节顺序进行,难免枯燥乏味,高深难懂。电力电子学科涉及面比较广,如果将电力电子学科理论划分为多个部分会起到更好的效果。比如划分为四大变换电路部分、器件与控制部分以及电力电子前沿技术等三部分进行教学,三部分既可以先后进行也可以同时穿行。
1.分析电路尽量使用多媒体。
电力电子技术的核心就是整流、逆变、斩波和交交变换四大基本电路,在电路工作过程的分析中,通常一个电路都有多个工作状态,不同的工作状态又分别对应着不同的电压电流波形,也就是说电路的工作过程往往都是动态的过程,而传统的书本上的文字和原理图是无法很好地展现动态过程的。这时,如果采用幻灯片等多媒体形式,可以将电路工作的动态过程很好地展现给学生们观看,把书本上静态的电路以及波形图动起来,这样就能够让学生们更好地理解电力电子电路的工作过程。与此同时,结合书本上的理论,再将不同电路的特点进行总结,使同学们复习时结合着书中的理论,头脑中联想着多媒体演示动画,便会在学习中事半功倍,容易记忆,提高学生的分析计算和实际解题的能力。
2.器件与控制部分应注重练习。
电力电子器件及控制部分具有覆盖面大、定性与定量相结合的特点,学好这一部分,就必须将概念的理解与相关的计算进行练习,在习题式的教学中,不断提高分析问题和解决问题的能力。研究生阶段,各高校几乎很少带领学生做与课程相关的习题,多数学生也只有在考试的时候才有机会在试卷中解答一些问题,虽说现在不提倡传统针对考试的题海战术,但是平时适当做一些典型的练习还是有必要的,电力电子器件种类多、特点各不相同,而控制方法也有很多,甚至与自动控制原理等其他学科相关联,在教学中适当找一些典型例题进行讲解,可以让同学们在繁杂的知识中抓住重点内容进行突破,最终掌握这部分知识要点。
3.学生自主参与新技术教学。
电力电子技术具有发展速度快的特点,新的技术和应用领域不断出现,加强电力电子新技术的教学可以扩展学生知识面,掌握电力电子技术发展新方向。这一部分的特点是没有定量计算、难度不大、但对于资料的收集工作量比较大,根据这些特点,在教学中,可以将这部分安排给每个学生进行讲解,在讲解前每个同学查找相关资料,然后对资料进行分类总结,加入自己的理解,在讲解过程中既可以使用多媒体也可使用板书的形式,讲解后学生之间可以相互提出问题,相互讨论,形成良好的研究氛围。在这种学生自主教学的过程中,既提高了学生查找资料的能力,也能提高学生的概括的创新能力,还为研究生毕业学术论文的撰写提供了相关的经验。
二、实验教学应进行分类
电力电子技术是一个应用性很强的一门学科,在理论教学的同时一定要有相应的实验来配合和补充,开设实验课是对理论课的延伸和补充,更能够突出应用型学科的特色。在实验教学上,应分为验证实验、探究实验、拓展实习三个部分进行教学。
1.验证实验应紧密结合课本。
验证性实验的特点是对已经有的理论进行实验验证,与学生的理论教学紧密衔接,通过书上的理论来指导实验的操作,同时实验的结果又可以加深学生对于书本理论的深度理解。在理论课程之后,应当有相应的实验课程相跟进,在实验开始前,老师带领学生对课本知识点进行回顾,确定实验目的和实验步骤,同学们按照实验要求完成相应的实验操作,并能够运用书本上的知识来解释实验中的现象,最后通过实验报告的形式进行总结,得出验证性的结论。
2.鼓励开展探究性试验。
电力电子技术是一门正在快速发展的学科,在实验教学中,应当鼓励学生进行自主探究,通过对已有知识的学习让学生们充分发挥想象力,制作一些相关的小制作、小发明,在探究性试验的过程中培养学生的创新能力。学生根据自己掌握的知识,结合当今电力电子发展的前沿技术,加上自己的想象力和创造力,独立设计出属于自己的电子作品,而在探究的过程中难免会遇到一些问题,这时老师应进行适当指导,给出一些方案,让学生自主解决实际问题。平时尽可能地开放实验室,使学生增加动手操作机会。此外还应当鼓励学生参加“挑战杯”等科技比赛,增加在创新方面的交流合作,从而学会更多解决问题的新方法。
3.拓展实习应突出实际应用。
在传统的教学环节之外,对于电力电子技术这种应用型很强的学科,应适当组织学生到某个单位进行参观学习。学习的目的是为了应用,当今电力电子技术已经应用在了许多领域之中,在实验教学中可以联系某个具体单位进行参观,在实际的生产过程中,让学生们更加具体地了解电力电子技术的应用。除了参观之外,也可由老师或者学生找一些与电力电子技术应用相关的视频资料,分享给大家进行观看,也可以起到非常好的效果。实习结束之后,学生以报告的形式写出自己学到了什么或者是心得体会。这样,理论联系实际,对于理工科的教学是有很大帮助的。
三、总结
电力电子器件论文范文6
现代电源技术是应用电力电子半导体器件,综合自动控制、计算机(微处理器)技术和电磁技术的多学科边缘交又技术。在各种高质量、高效、高可靠性的电源中起关键作用,是现代电力电子技术的具体应用。
当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经济、实用,实现高效率和高品质用电相结合。
一、电力电子技术的发展
现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。
1.1整流器时代
大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。
1.2逆变器时代
七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。
1.3变频器时代
进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。
二、现代电力电子的应用领域
2.1计算机高效率绿色电源
高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。
计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。
2.2通信用高频开关电源
通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。
因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。
2.3直流-直流(DC/DC)变换器
DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。
通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。
2.4不间断电源(UPS)
不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。
现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。
目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。
2.5变频器电源
变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器,将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。
国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。
2.6高频逆变式整流焊机电源
高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。
逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合,整流滤波后成为稳定的直流,供电弧使用。
由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。
国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。
2.7大功率开关型高压直流电源
大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。
自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。
国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。
2.8电力有源滤波器
传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。
电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流;(2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。
2.9分布式开关电源供电系统
分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。
八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。
分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。
三、高频开关电源的发展趋势
在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。
3.1高频化
理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合闸用等各种直流电源也可以根据这一原理进行改造,成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。
3.2模块化
模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和增加冗余提高可靠性方面的考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。这样,不但提高了功率容量,在有限的器件容量的情况下满足了大电流输出的要求,而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。
3.3数字化
在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC)问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。
3.4绿色化
电源系统的绿色化有两层含义:首先是显著节电,这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。这些为2l世纪批量生产各种绿色开关电源产品奠定了基础。