数控加工范例6篇

前言:中文期刊网精心挑选了数控加工范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

数控加工

数控加工范文1

计算机数控仿真是应用计算机技术对数控加工操作过程进行模拟仿真的一门新技术。该技术面向实际生产过程的机床仿真操作,加工过程三维动态的逼真再现,在很大程度上弥补了实践教学中设备品种、数量不足、学生操作时间不足的缺点,提高了学生编程能力和数控机床操作能力,可以反复动手进行数控加工操作,在培养全面提高数控加工技术的实用型技能人才方面有着重要作用。

【关键词】

宇龙数控仿真软件;数控加工;应用

1数控仿真软件介绍

数控加工仿真是以计算机为平台的基于虚拟现实的仿真软件,它通过计算机的编程和建模将加工过程用三维图或者二维图并以动态形式演示出来,面前国内较为流行的仿真软件有北京斐克VNUC、南京宇航Yhcnc、南京斯沃等,这其中以上海宇龙应用最为广泛,其界面简洁、操作简单,人机交流方便,支持的多种数控系统。其主要优点有几下几点

1.1提供多种数控机床和数控系统上海宇龙仿真软件提供车床、立式铣床、卧式加工中心、立式加工中心;控制系统有FANUC系统、SIEMENS系统、三菱系统、大森系统、华中数控系统、广州数控系统以及上海市技能鉴定机构所采用的PA系统。丰富的刀具材料库采用数据库统一管理刀具材料和性能参数库,刀具库含数百种不同材料和形状的车刀、铣刀,支持用户自定义刀具以及相关特征参数。鉴于各高校资金等方面原因,一般的高职院校不可能购买所有的数控机床和数控系统,同时随着机械行业的不断发展,将会涌现出更多新的机床和系统,而高职院校不可能更新如此频繁,数控仿真软件在很大程度了弥补了这一不足,学生可以在仿真系统上进行各种最新的数控系统的仿真操作,紧跟社会发展,为今后的就业打下坚实基础。

1.2模拟程度高,安全性高数控仿真系统实现机床操作全过程仿真。仿真机床操作的整个过程;毛坯定义、工件装夹、压板安装、基准对刀、安装刀具、机床手动操作等仿真。数控仿真系统实现加工运行全环境仿真。仿真数控程序的自动运行和MDI运行模式;三维工件的实时切削,刀具轨迹的三维显示;提供刀具补偿、坐标系设置等系统参数的设定。尤其是切削路线的显示在很大程度了帮助了学生对现有的程序进行有效的修改。数控仿真系统实现全面的碰撞检测。仿真系统中的手动、自动加工等模式下的实时碰撞检测,包括刀柄刀具与夹具、压板、机床等碰撞,也包括机床行程越界及主轴不转时刀柄刀具与工件等的碰撞。通过碰撞检测能实时发现问题并及时对已有的数控程序进行修改。数控仿真系统实现数控程序处理。数控仿真能够通过DNC导入各种CADCAM软件生成的数控程序,例如Mastercam、ProE、UG、CAXA-ME等,也可以导入手工编制的文本格式数控程序,还能够直接通过面板手工编辑、输入、输出数控程序。完全模拟了现实机床的数据传输方式,使得学生通过仿真后就能很快在机床上进行操作加工。

1.3便于掌握学生学习动态上海宇龙仿真软件具有记录考试操作全过程和考试结果的功能以及多种回放方式,便于教师及时掌握学生学生动态并给与相应的指导。同时该仿真软件具有互动教学功能,教师和学生可以相互观看对方的操作,进行互动交流。

1.4弥补了各院校设备不足的情况由于数控设备价格昂贵,尤其是多轴数控机床价格偏高,很多各高职院校无法购买较多的设备和系统进行教学,加上实训环境等多种因素影响,目前很多院校实习实训的都是几个学生一台数控设备进行操作,这样必然使得每个学生独立操作设备时间大量缩短,从而导致学生不能更全面的掌握数控方面的知识。而数控仿真系统弥补了这一不足,一台电脑就可以模拟进行数控加工,学生可以先在仿真系统上对程序进行模拟仿真操作,针对出现的问题对程序进行改正和改进,这样大量缩短了学生在实际操作中熟练操作面板和修改程序、校验程序的时间,有效的提高了数控实训的效率。

当然,仿真系统毕竟只是虚拟仿真的一个软件,与现实的设备还是存在一定的差别,其主要缺点有:(1)无法验证程序的准确性仿真软件只验证程序的可行性,无法验证其准确性,比如在直线加工过程中,应该采用G01指令,但是如果采用G00指令,仿真依然正常进行,不会出现报警显示,而在实际加工过程中,直线插补只能用G01指令。仿真软件无法验证选择的切削用量是否合理,刀具是否选择合理,而在实际的加工过程中切削用量是最重要的工艺分析,往往很多同学在仿真时随意设置切削用量导致实际加工中出现尺寸偏差,严重的会出现撞刀等情况。(2)对于有些指令仿真软件不支持比如上海宇龙仿真软件,4.0版本的不支持宏程序编程,不支持倒角指令编程,现在新升级的4.9版本能支持宏程序但是不支持倒角指令。这样华中系统的倒角指令就无法仿真校验。(3)无法实现复杂零件的加工检测上海宇龙仿真软件虽然能实现零件的加工仿真,但是对于复杂的零件,比如配合件,无法实现配合件的组合和检测功能,这不得不说是个遗憾。同时在装夹上,实际加工过程中很多地方是不能进行装夹而仿真时任何地方都可以进行装夹,比如圆锥、螺纹处,这样在一定程度上给初学者带来一定的误解。

2结论

综上所述,数控仿真软件在数控加工中有着广泛而重要的应用,尤其在高职院校已经成为机械加工必不可少的软件,虽然仿真软件还存在一些缺点但是这些缺点我们可以通过各种方法去改进和避免。在实际的数控加工过程中,我们必须充分发挥数控仿真软件的优势,合理、科学、有效的利用软件为我们教学服务,为学生服务,为我们数控加工服务。

参考文献:

[1]上海宇龙软件工程有限公司.数控加工仿真系统使用手册,2004.

[2]涂志标.斯沃V6.20数控仿真技术与应用实例详解[M].北京:机械工业出版社,2012.

[3]吴长有.数控仿真应用软件实训[M].北京:机械工业出版社,2008.

数控加工范文2

关键词:虚拟制造;数控加工;加工周期;前期设计

制造业一直以来都是我国国民经济发展的支柱性产业,随着中国经济发展的逐步加快,制造业的弊端也逐渐体现出来,比如产品生产水平低、产品质量不稳定、生产产品的机械设备水平不及国际先进水平的10%;生产调度缺失,往往会出现产品分散、协调性差的问题;技术水平差,以往加工零件都是根据加工者的经验来试切,以检查加工的准确性和零件是否达到预期目的,这不仅延长了加工周期,还增加了成本;生产产品的设备老旧,生产工艺落后,人才储备不足,导致企业的发展缓慢。为了解决这一系列问题,我们将虚拟制造技术运用到了产品的前期设计、加工中来。

1虚拟制造的技术及特点

虚拟制造技术指的是产品在成批量加工前,不需要制作实物样品,而是运用计算机模拟软件,比如CAD/CAM/CAE技术等建模软件来完成产品的虚拟加工制造,并检验产品各个机构零部件间的装配关系是否合理,NC加工路径是否有撞刀或过切的现象。如果有错误的,则可以及时反馈并在软件中修改、更正,重新修改零件加工路径以及零件整体的装配尺寸,从而符合要求。这一系列工作都可以在计算机中进行,因此,可以运用互联网完成。通过虚拟制造技术可节省时间,缩短产品的设计周期,从而控制成本,大大提高了产业在同行业中的竞争力。

2虚拟制造相对数控加工的过程

虚拟制造的第一步就是了解工作的目标是什么,要整体了解客户的需求,所需产品的要求,细心听取客户意见并整理归纳,总结出产品的外形结构、功能特征、性能要求。从而进行后期的产品虚拟设计、工艺安排、产品零部件设计、机构后期装配、虚拟运行等。经过客户的反复验收,直至获得客户的认可后,方可进行实物制作。虚拟制造首先要设计的是最基本的零部件,对于零部件的设计,通常我们都会优先选用标准件,这样会大大缩短设计时间,也使设计的产品有极高的通用性。一般情况下,优先进行齿轮齿条、链轮、螺栓螺母、切削螺纹的设计,后进行一些独立零件机构的设计,从而完成某种特定的运动方式,达到预期的工作目标。这些都可以采用国家标准,运用标准的理论公式、参数不断修改,并运用有限元分析、边界元检查、实验检查等方法,完成虚拟制造中的计算机标准设计和多次优化更改。由于设计的零部件都是用的国标和图集的最高基础标准,所以,为今后的维修、更换提供了保障。对于每个零件,都是经过标准设计的,已经满足强度、韧性、疲劳强度、静态平衡和动态平衡等要求,形成的各种零件的外形、用途、行为意图等属性的结果满足性能要求后,再经过外形的美观设计,确定表面颜色、纹理渲染,产出最终成品模型。虚拟设计由虚拟制造设备来完成,此处的虚拟设备就是一个模拟的数控加工仿真设备,以上的零部件都是由这个虚拟的数控加工设备来完成制作的,且大多数独立设计的零部件机构都需要加工制作。对于加工零件的设备,可在虚拟的设备中体现设备的功能特征和形态特征,比如数控机床的工作主轴转速、进给速度等。对设计的零部件先采用CAD、Solidworks、Pro-E、UG等软件进行外观设计,再将各个机构分解成每个零部件,比如链轮机构分解为主动链轮、从动链轮、链条、主轴、从动轴等,然后将各个零件分别放入虚拟的数控设备,确定好基准坐标,依照坐标的变换关系完成动作的运行。运动模块具备了虚拟的数控设备的各种运动功能,虚拟数控机床由外部输入的数据控制,设备对数据进行分析处理,并输出相对应的控制运动参数,控制相应的几何模块的位置变换和运动,实现模拟的物理设备加工运行。依托各个模块设备的运动数据支配相对应的运动系统,每个模块都以规定好的数控参数运动。具体而言,应先确定原始坐标基准、加工坐标基准、机床原点、加工原点,并依据数控铣刀插补的原则,确定铣刀转速、走刀速度、加工距离,根据不同的数控加工系统原代码编制圆弧刀路、直线刀路、抛物线刀路插补规则。虚拟的数控加工可以很好地检查和避免加工工艺中的工装夹具、加工刀具和被加工工件在加工过程中出现的碰撞。在试驾加工前,先进行虚拟加工,确定不会存在撞刀损坏机床和零件过切的情况后,方可进行实际加工。对于加工使用的虚拟的数控设备,应严格控制主轴的快慢转速、正反转向、单轴运动、多轴联动、换刀等。产品加工过程如图1所示。图1产品加工过程基于以上虚拟制造的数控加工的方式,形成了一整套虚拟三位加工系统,此系统由虚拟的数控加工系统驱动,把机械零部件从毛坯的形式装换成成品。此过程全程在计算机系统中运行。设计者全程监控零件加工过程中的撞刀和过切现象以及后期的成品装配,从而评定零件机构生产的可行性。此外,还可以为数控加工的学员提供直观的学习过程,避免在实际操作时的误操作损坏设备。3结束语随着中国经济的不断发展,企业对虚拟制造技术的需求越发重视。虚拟制造引入数控加工大大提高了企业的发展速度。

通过虚拟的设计和制造,缩短了实际加工中的加工时间,大大缩短了设计周期,节约了成本,提高了经济性,数控加工技术的虚拟制造引入有效促进了我国在现代科学技术方面的快速发展。虚拟制造的出现让我国在工业方面的发展紧追全球化经济的脚步。基于虚拟制造的创新发展,必定会对我国的制造业发展产生更加深远的推动。

作者:林柔红 单位:广东省城市建设高级技工学校

参考文献

数控加工范文3

关键词:加工参数;正交试验;试验因素水平

DOI:10.16640/ki.37-1222/t.2017.02.162

1 引言

研究切削加工机理及大量切削加工试验可知切削速度v对表面粗糙度af影响较大。在低速或高速切削加工时,一般不会出现积屑瘤,在v=20~50m/min加工塑性材料时,易出现积屑瘤,同时切屑分离时的挤压变形与撕裂作用使得表面粗糙度af恶化。所以v越高,切削加工过程中切屑与加工表面的塑性变形越小,表面粗糙度值越小。试验表明,产生积屑瘤的临界速度是随刀具状况、切削液、加工材料等改变而改变。

加工参数中进给速度Vf 对加工效率有重要影响。一般Vf越高,去除同一材料所需时间越短。试验表明其他加工条件一定情况下,进给速度Vf与加工时间t为反比。

分析可知,提高主轴转速和进给速度,既可降低表面粗糙度值,又可减少加工时间。还能影响切削热产生、刀具磨损、破损及耐用度等。所以了解主轴转速与进给速度变化规律有利于分析切削加工过程并完成切削加工参数合理优化选取。

2 试验条件

针对目前数控加工参数合理优化选取的特点与研究现状,本文以DMC60H卧式铣削加工中心为试验平台,以铝合金壳体类零件为试验对象,以圆柱铣刀、T型刀、通用量具、JB-4C型表面粗糙度测量仪为试验刀量具,以铝合金壳体类零件加工中铣孔与铣槽为试验内容,以提取数控加工铣削参数优化选取试验数据为试验目的。

3 试验方案设计

本试验采用正交试验方法,以主轴转速与进给速度作为试验因素,根据零件结构、使用刀具及各因素关注度的不同划分因素水平并设计正交表,可分成三个阶段来完成。

3.1 试验设计原则

试验设计原则包含零件结构、刀具类型与关注度。按零件结构不同将试验划分为铣槽加工与铣孔加工;刀具类型原则是以刀具不同及加工孔径不同为原则划分工步;关注度原则是以加工时间(因本试验主要以提高加工效率为目的)为依据将加工工步划分为高、中、低关注度。

根据加工技术要求及试验需要,本文对刀具、切宽、切深等参数做了修整。铣孔加工基本数据如表1所示。

3.2 正交试验设计实施

第一阶段试验是在现有加工条件下,确定主轴转速与进给速度极限范围,试验水平数一律为3,主轴转速与进给速度为试验因素,查正交试验表可得最为接近。

第二阶段试验目的是提取出试验数据用于数控加工铣削参数合理优化选取。参考第一阶段试验的极限主轴转速与极限进给速度按等分原理划分试验因素水平等级,其中对关注度高、极限主轴转速与进给速度间距大的工步取较高的试验水平数,对关注度中、低的工步取较低的试验水平数。工步23属高关注度工步,故正交试验因素水平数取5,主轴转速与进给速度为试验因数。查表可得为最接近的正交试验设计表。

第三阶段试验是以前一阶段试验数据为基础,分析研究加工要求,以基本尺寸、表面粗糙度为试验扩展因素设计第三阶段试验。基本尺寸试验因素水平数以3或5为主,表面粗糙度因素水平设置为1.6、3.2、6.3。在前两阶段试验中已出现的基本尺寸将不再最后阶段重复安排试验。

4 小结

本文介绍了数控铣削加工机理、铣削加工参数与加工性能及加工效率的关系、数控铣削加工参数优化的试验条件及要求,提出了本次试验设计方案及试验设计方法,科学有效地解决了数控铣削加工的试验研究,为后续加工参数优化选取研究打好了基础。

参考文献:

[1]张臣,周来水余,湛悦,安鲁陵,周儒荣.基于仿真数据的数控铣削加工多目标变参数优化[J].计算机辅助设计与图形学学报, 2005,17(05).

[2]唐克岩,陈远新,王小莉.高速铣削7050-T7451铝合金时影响铣削力的因素[J].机械工程师,2008(10).

数控加工范文4

【关键字】UG;五轴数控加工;加工仿真

现阶段,使用的五轴数控仿真系统通常只有二维动画仿真,且整个仿真系统的几何功能有所限制,加工零件和机床模型必须借助其他CAD软件才能建模,整个模型的仿真精度不高。基于UG软件创建五轴数控机床仿真模型,能够准确读出数控代码,并为机床的各个部件实施三维仿真,同时对零件加工环节机床各部件之间的干涉进行检查,为合理修改刀具轨迹提供可靠依据,避免因文件格式转化导致仿真精度降低的情况。

创建三维仿真系统的步骤

(一)仿真系统工作流程

三维仿真环境是基于计算机虚拟系统中,以不消耗能源和资源真实加工系统的映射,虚拟环境的操作应于实际加工系统所具备的功能相互一致。五坐标数控机床建立的仿真系统具体流程如图1.五坐标联动机床进行加工的零件极为管饭干,可以综合考虑工件、道具等物品的外形、参数的变化,通过装配的形式把制作的CAD模型加入仿真系统内,从而提升仿真系统的灵活性。用户依照实际加工操作基于UG环境下创建刀具、工件等模型,进一步方便对这些模型的尺寸进行修改,在仿真系统的操作直视下,用户只要挑选最佳的部件和位置,

就能把工件、夹具等模型装配至仿真系统的模板文件内。

Y

N

N

Y

N

图1 仿真系统程序具体流程图

初始化仿真环境

建立合理的仿真模型之后,应对UG环境展开初始化操作,随之进入运动分析模块。为了方便在仿真系统内合理控制机床的各个运动部件,在开展仿真操作前要对机床模型中的几何体实施遍历,随后获得相关几何体的指针。

解释NC代码语义

基于NC代码对整个机床加工环节进行仿真操作,必须准确解释机床NC代表的意义,把代码指令进行转化,从而得到机床不同轴的联动运动。机床NC代码是由大量繁乱的机床运动指令组成,每次读取的代码都必须进行语义解释,从而把NC代码内有用的控制命令和数据转换为机床各个轴的位移。

基于三维造型仿真加工过程

使用三维实体造型的办法,能在仿真环境内更改不同的视角并无需重新进行计算,准确表示刀具与工件之间的几何关系和位置。把NC代码予以转化成各个轴的位移,并对其运动情况实施仿真操作。在三维造型中把动画一帧帧的展示出来,并保存到UG后台数据库内。经过存储的仿真动画能够反复回放,可以根据各行的NC代码依次显示,实际显示时可以进行放大、缩小及变换视角等操作。基于三维造型对整个加工环节进行仿真操作,能够准确展现出空间内实体之间的位置关系,三维效果非常好。

干涉检查仿真过程

对仿真过程进行干涉和检查操作,主要是对加工操作中刀具、夹具、刀柄与工件之间进行干涉。因整个仿真过程采用三维实体造型的模式,因此干涉检查就是对机床模型运动时是否相交进行判断。采用模型的几何体指针,对加工环节内可能出现的干涉部件其位置关系展开检查计算。如果运动部件遭到干涉,创建干涉产生的实体,并通过UG系统获取干涉部位的深度、体积等相关信息,并输出形成干涉效果的NC代码,为合理修改刀具轨迹提供可靠依据。

五坐标机床仿真系统实现

文中以五坐标联动机床为研究对象,为该机床建立仿真模型,同时为三元叶轮的铣削加工环节实施仿真操作。整体式三元叶轮形状非常复杂,具有大量的约束条件,因此加工难度较大,这是五轴数控加工操作中独具代表性的零件。根据数控机床具体的传动尺寸,基于UG环境创建仿真模型,对机床各个轴的运动方向及副作性质进行设定,同时把建立的模型存储为模板文件。五坐标联动机床的运动轴是由2个转动轴,和三个移动轴组合而成。根据实际机床部件的具体尺寸,使用UG/Modeling模块为机床部件创建各自的实体模型,随后使用UG/Assemblies模块把不同部件进行装配操作,从而形成完整的实体模型。在UG/Motion运动分析模块挑选工作台等机床部件定义成连杆,移动副由机床的X、Y、Z轴定义,B、C轴表示转动副,根据设定的机床传动轴运动方向进行操作,同时设定运动副其驱动方式是Articulation。对仿真完成的机床模型进行保存,就能加载各类工件、刀具及夹具,如此采用同个机床对各类工件进行加工时,不需要反复创建仿真模型。通过UF_UI_FILENAME函数弹出的对话框,挑选应该装配的部件,同时输入待装部件的位置,采用UF_ASSEM_assembly函数对部件进行装配,并把部件实体指针设置为运动副。若装配部件有必须隐藏的地方,可通过UG中Blank命令对其进行隐藏操作。

【结束语】:总之,基于UG建立的数控加工仿真模型,可以对整个加工过程机床干涉情况进行检查,为合理修改刀位提供有效依据,提升整个数据加工的工作效率,具有优良的实用性。

【参考文献】

[1] 范蓉.整体叶轮曲面造型及数控加工仿真研究[J].中国机械,2013,(6):102-103.

[2] 章芳芳.基于Vericut的车削中心仿真系统研究[J].科技视界,2013,(28):180-180.

[3] 丁刚强.整体叶轮五轴数控加工技术的研究[J].制造技术与机床,2013,(4):100-103.

数控加工范文5

【关键词】宏程序;G代码;曲线加工;刀具参数

在数控加工中一般使用G代码命令来编程。G代码提供了G2、C3、I、J、K、R指令,很容易编制比较简单的曲线(圆弧、半圆)数控的加工程序,但对于一些复杂、不规则的曲线,常规的G代码很难描述清楚。根据生产过程中的实践经验,通过借助一些工具软件,经过特殊处理,编写G代码来解决此类问题。常用的方法有两种:(1)将曲线导入Mastercam软件,设置一定的参数,自动生成数控加工程序。(2)用G代码宏程序产生程序的主程序文件,然后手动在程序设置刀具参数,成为可加工的程序。

1.利用Mastercam软件

Mastercam软件,其广泛应用于数控加工,界面亲和,易学易用。如何将AutoCAD文件导入Mastercam,自动生成加工程序,以解决G代码不能解决的复杂曲线问题。以垂尾卡板XX-XX(见图1)为例简单介绍一下。

操作流程如下:①新建一个Au-

toCAD文档,将曲线单独拷出,另存格式*.dxf文件。②打开Mastercam软件,打开*.dxf文件,删去其他不需要加工的轮廓线,只留样条曲线。③选择加工方式。④生成加工程序。

具体步骤如下:

第一步,将*.dxf文件读入Mas-

tercam软件:档案档案转换,选择AutodeskR读取适度化,选择所有编程的曲线。见图2。

第二步,导入Mastercam后,将曲线平移原点:转换平移所有的图素执行两点间,选择曲线起点。见图3。

第三步,设置刀具参数:选择刀具路径外形铣削串联执行,会弹出刀具参数对话框,根据需要选择合适的刀具,选择合适的切削参数。该过程中要需要几个重要的参数的确定。见图4。

①曲线打断成线段的误差值:误差值大小决定加工精度,其值越小精度越高,则程序也越长,一般取值0.01。

②刀补类型:常用的是自动补给与手动补给两种。自动补给是根据刀具实际情况计算出刀具轨迹,生成程序,不用刀补;手动补给则不需要考虑刀具的规格,生成刀补的程序。

③刀补方向:一般根据其加工方式和操作方式而定。

第四步,生成加工程序:回主功能菜单刀具路径操作管理执行后处理,点击确定,生成程序*.NC。见图5。

第五步,将所生成的程序*.NC存储到数控加工设备,运行程序。

加工后发现加工出来的圆弧并不光滑存在拐点,经过分析:曲线是由许多点按次序连成多线段,由于显示栅格问题,在图纸中显示是曲线,但实际上是多线段,为了使加工曲线光滑,需要把多线段变为样条曲线。经过多次实践,在Auto-

CAD用PEDIT拟合(F)命令,将多线段转化为样条曲线,经加工试验后,很好的解决了拐点问题。

2.用G宏程序生成程序

以Z80无人机机头卡板XX—XX为例,其外形是个抛物线,用G指令也很难将它写出来,Mastercam中也无法描述曲线。借用G宏程序来生成程序主体。

例:机头外形曲线方程式如下:

0≤X≤300

在Mastercam无法绘制,用宏程序来计算离散点,过程如下:

主程序:

T1M06

G90 G00 G54 S3000 M03

G43 H01 Z100 M08 D01

G00 X300 Y67 Z2

G01 Z-2 F300

………

G00 Z100 M09

G28 Y0

M30

G代码宏程序:

#1=300

N10

#2=SQRT[#1*15]

G01 X#1 Y#2

#1=#1-0.5

IF[#1GE0]GOT010

#1=0

N20

#2=SQRT[#1*15]

G01 X#1 Y-#2

#1=#1+0.5

IF[#1LE300]GOTO20

宏程序短小精炼,具有很强的适用性,对于一些复杂的方程曲线,可以用C语言(或其他语言)来描述,其原理和宏程序一样。它的原理是:任何曲线都可以分成无数很短的曲线,每个很短的曲线都可以近似的认为是一段直线。当每段曲线的长度趋于零时,与直线的误差也趋于零。足够多的直线连起来可以替代一段曲线,这样就把曲线转化成有线段的直线。直线的程序很容易实现,所以问题就得到了简化。为了尽可能的减小曲线的误差,每段曲线长度尽可能的短,由于步长固定,曲率小的地方误差小,曲率大的地方误差大。

3.总结

本文介绍的两种曲线编程的方法各有的优、缺点,可以根据实际需要,灵活应用,选择适用的方法。

参考文献

数控加工范文6

(1)数控技术的概念

数控技术是在传统机械加工技术的基础上,采用数字控制技术来进一步提高机械加工的质量,并且结合传统机械制造技术、计算机技术与网络通信技术等进行机械加工运动。较传统机械加工技术来说,其不但具有高准度与高效率,同时还具备柔性自动化等优点,国内现在对数控技术的应用主要是预先编制好程序,再通过控制程序来控制设备,一般采用计算机进行控制。

(2)数控加工技术的主要特点

数控加工技术可以简便的改变相关工艺参数,因此在进行换批加工与研制新产品时非常方便。另外,像普通机床很难完成的加工复杂零件与零件曲面形状等,利用数控加工技术都可以高质量量完成。数控加工技术采用模块化标准工具,在换刀与安装方面都节省了很多时间,同时对工具的标准化程度与管理水平都有较大的提高。

2数控技术在机械加工技术中的应用意义

(1)数控技术在机械加工技术中的应用

提高了机床的控制力近年来数控技术在机械加工技术中的应用,对机床控制力有了很大程度上的提高,进一步提高了机械加工的工作效率。采用数控技术来控制机床设备,充分发挥了机床设备的功能,同时使机床设备的操作更加简单,通过在数控器上预先编制好机械加工的流程与操作方法,并由控制器依据相关数字信息来控制机床运行,不但保证了机械加工的质量,同时也使机床设备更具高效化。

(2)数控技术在机械加工技术中的应用

推动了汽车制造业的发展数控技术对进一步发展汽车制造业有很大的帮助,通过将数控技术应用到机械加工技术中以提高机械加工技术的有效,为进一步发展汽车制造业提供了技术保障,在汽车零件的加工中运用数控技术可有效提高生产率,同时强化了汽车进行机械加工的效果,使原本复杂的操作更加简单,提高汽车零件加工生产的效率同时促使汽车制造业实现最大化收益。

3有效提高数控技术在机械加工技术中的应用效果

(1)重视对数控技术的应用

近些年来,数控技术虽已被广泛应用到机械加工技术中,但是仍然有一部分企业内部对数控技术的应用缺乏足够的重视。因此,要想进一步将数控技术融入到机械加工技术当中,首先就必须要让企业的经营管理者充分认识到数控技术在机械加工技术中的重要意义,给予充分的重视。同时,积极组织数控技术相关知识的培训,提高工作人员数控技术水平,结合数控技术的实际操作与理论知识,以便更好的发挥数控技术的优势,提高机械加工的质量与效率。

(2)在机械加工过程中实现自动编程

一般在机械加工的过程中都是采用人工手动进行对生产制造图样与编写零件加工程序单以及工艺过程进行确定,这样不仅效率低且容易出现人为计算失误。因此,应注重对数控技术有效性的应用,尽快实现自动编程,使用计算机来替代人工操作,不但可保证加工质量,同时提高机械加工制造的效率,实现人力与物力的合理化配置,为加工企业节约制造成本,进一步推动机械制造业的发展。

(3)合理改进并更新机械加工中的原有设备

在全球经济发展的推动下,我国工业大力发展,数控技术被越来越普遍的应用到了机械加工技术中,而时代新形势对机械加工的要求越来越高,因此,应当积极创新数控技术,大力倡导经济型数控机床的发展,以保证数控机床的稳定性与高效性。同时,对机械加工中的原有设备应当进行合理改进,提升机械加工的技术水平,完善数控技术的应用,提高我国机械制造业的生产水平。

(4)实现数控技术的智能化与网络化发展

上一篇电工技术

下一篇数控编程