地质灾害预警范例6篇

前言:中文期刊网精心挑选了地质灾害预警范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

地质灾害预警

地质灾害预警范文1

【Keywords】GIS technology; geological hazard; early warning

【中图分类号】F416.1 【文献标志码】A 【文章编号】1673-1069(2017)04-0123-02

1 引言

目前我国自然地质灾害发生率较高,受灾严重程度较大,目前常见的地质灾害主要包括泥石流、滑坡和崩塌等,造成地质灾害发生的主要原因除了自然因素之外,还包括人类的工程建设和矿产开发等活动。这些地质灾害的发生对人类的生活造成了较大的影响,在严重的时候会对人们的生命财产造成较大程度的威胁,针对目前地质灾害预警方法应用效果不明显的现状,在实际的地质灾害频发中,可以利用GIS技术对地质灾害多发地区的实际地理结构进行分析,并且进行实时监控,以此来实现对地质灾害的有效预警,减少由于地质灾害对人们所造成的影响。

2 GIS技术的定义和主要功能

GIS技术主要指的是地理信息系统,是在计算机信息技术的支持下,采用系统工程技术和信息技术,来对各个区域中的空间信息和地质结构信息进行收集、分析、整理和储存,并且采取相应的方式来将信息展现出来,属于一种将视觉效果和地理分析功能进行集成运用的系统技术,其主要功能体现在这样几个方面:首先是地图管理功能,GIS技术具有较大的空间内存,能够将收集而来的地图资源信息储存到数据库当中,并且根据实际情况的变化来进行及时调整,相比较传统的地图来说,具有更高的灵活性和精确性,能够进一步推动地质灾害预警工作的发展;其次是空间分析与查询功能,GIS技术具有空间定位功能,通过数据库的建立和对信息资源的收集、整理和处理,并且将其制作处理成地理信息图像,与原始图像相比较,两者的数据保持相同,在进行空间转换的过程中,也可以采用GIS技术来对于地理信息相关的数据进行查询;再次是地理模型预测功能,GIS技术的核心为地理信息,在对各个不同区域进行分析的基础上,能够利用当地的地理空间信息来实现地理模型预测功能,这样的功能主要指的是在对当地地理信息情况进行分析的基础上,来对某个未知结果进行预测和判断,也就是说通过对当地矿产资源、水文地理情况和资源开发利用情况进行勘察的基础上,来对不同区域中发生地质灾害的可能性进行预测;复次是三维功能,三维功能是在二维GIS技术上发展而来的,与二维空间技术相比较来说,三维技术具有更高的精确度和整体性,虽然在整体观察上可能较为复杂,但是具有较强的可视性,能够直观地反映出相关区域中各个部分的实际情况,三维功能是建立在三维模型的基础上来实现的,比如说结合地质工程的钻孔信息、剖面图和工程地质图等信息数据,能够建立三维地质模型,并且在三维场景中建立相应的图片信息,在经过编辑处理之后,就能够对地质灾害的发生现场进行模拟[1];最后是自动监测功能,自动监测功能主要是依靠各种检测仪器来进行实现的,在地质灾害发生的过程中,检测仪器会发生不同的变化,并且对相关检测区域的数据信息进行采集,并且传输到后台数据库中,经过对数据信息的分析,能够对当地区域进行有效监测。

3 GIS技术在地质灾害预警中的应用

3.1 建立多源信息数据库

对于地质灾害预警工作来说,GIS技术的应用是一个复杂的过程,其中的每一个部分都需要大量相关的数据信息来进行分析和调研,这些数据信息的来源各不相同,主要包括地形图、地质资料和地质结构信息等,对于地质灾害来说,其具有不可预测性,但是利用GIS系统中的数据库,能够在对数据信息进行分析的基础上,对地质灾害发生的次数、地点和级别进行预测,并且对地质灾害发生而产生的现象及预兆进行了解,以此来达到地质灾害预测的目的[2]。由于目前人类各种工程建设活动不断增多,所以说需要对地质灾害数据库进行及时更新,以此来提高地质灾害预测的准确性。

3.2 对地质灾害多发区进行实时监控

通过GIS技术,能够对地质灾害发生的信息进行收集和分析,在此基础上,能够对我国地质灾害多发区的分布情况和发生频率进行了解,在对地质灾害发生的信息和资料进行收集的基础上,能够结合当地的实际情况,建立相应的图表图像,并且与GIS多源数据库进行联动,实现对地质灾害发生区的有效监控,监控的主要过程体现在这样几个方面:首先是对影响当地发生地质灾害的因素进行分析和了解,结合当地的实际情况,对这些因素进行控制;另外是在所建立的三维空间模型上对该地区自然灾害的发生情况进行综合评价,以此来对地质灾害预测的准确性进行判断,并且根据最终结果来采取相关防治措施[2]。

4 GIS技术在地质灾害预警中的应用案例

此次研究地区为灵台县,灵台县陇东黄土高原南侧,在对当地自然灾害调查资料进行分析的基础上可以发现,该地区属于地质灾害频发区,地质灾害的发生类型不同,发生的频率较高,并且这些地质灾害多发生在人们居住密集和工程建设生产活动较为频繁的区域,根据以上的了解情况,可以对其地质灾害预警方法进行研究。

首先是??用GIS技术中的空间信息系统分析技术和数据库系统,在对该地区所发生地质灾害情况进行分析了解的基础上,对研究区500m×500m范围内进行网格剖分,对复杂地形下的网格进行细化处理,对剖分好的每一个单元网格内各种地质灾害发生的数量、密度进行统计分析,对各种地质灾害的发生类型和判别准则进行确定,根据这样的判别原则来对每一个网格中地质灾害的易发性区划图进行分析,最后进行综合处理。在另外一个方面,需要对将发生地质灾害的主要影响因素作为地质灾害的主要评价指标,一般情况下,其地质灾害的主要影响因包括地貌类型、地层结构、降雨量分布、地形坡度和植被覆盖等,在确定完影响因素之后,需要对每一网格中影响因素的分布情况进行分析,结合当地的实际情况,来对每一个影响因素的权重进行确定,以之前确定好的地质灾害易发性区域规划图作为基图,将每个影响因素灾害性分级图与之相结合,形成区域地质灾害易发性区划图,这样就能够对当地地质灾害的发生情况进行预测。区域地质灾害易发性区划图能够真实准确地反映出当地地质灾害的发生情况,根据所发生地质灾害类型的不同,可以在图中轻松的找出高易发、中易发和低易发等不同区域的准确位置,以此来为地质灾害的预警提供准确的地理信息。

地质灾害预警范文2

掌握灾情信息,及时预防应急处理灾情关系到人民群众的财产和生命的安全。本文从地质灾害预警及信息管理出发,以GIS为基础,运用计算机技术、网络技术、射频技术等设计出一种高效、科学处理灾情的系统,重点介绍了系统总体设计、软件体系结构、灾情预警模块、数据传输模块、数据库等,实现对灾区实时监测、信息整合、灾情分析等功能。

[关键词]

地质灾害预警;GIS;数据库;实时监测

及时、全面、综合获取全面而又可靠的灾害信息是完美处理灾情的关键。GIS是一种有效地收集、存贮、分析、再现空间信息的信息系统[1-3]。他将空间信息和属性信息相结合,通过数据整合、管理、图层叠加、分析,集合遥感学、测绘学、计算机学等学科,融合先进监测技术实现对灾害区域有效掌控,以达到对灾情预知、灾后科学补救的目的。目前地质灾害的工作主要依赖于地质调查、野外调绘、现场观测等技术,缺乏一种完善的综合整理利用信息的系统,在预警方面也不能第一时间整合有效资源作分析寻找最优解决方案。因此,在地质灾害预警及信息管理工作中,如何让在短时间内,有效获取有用的信息提供给管理部门,理性提出解决方案为越来越多的人所重视[4-7]。本文统筹考虑多方面因素,提出一种基于GIS的管理系统,希望在地质灾害工作中有所帮助。

1GIS在地质灾害管理上的应用现状

随着科学技术的日新月异,计算机,RS、GPS等技术也得到迅猛发展,地质灾害领域的GIS由于得到新技术的支持,也使得它的应用越来越广泛。从上世纪九十年代起,GIS就成为我国研究的一个讨论热题,渐渐的被人们熟知。地理信息系统在我国起步比较晚,经过多年的努力,在技术上和经验上已经取得了可人的成绩,但也存在一些不足之处。就整体而言,在技术上和规模上达到了国际先进水平,但在硬件设备配套,软件的商品化,综合分析模型的使用性和系统更新能力等方面和国际先进水平相比还存在着差距。传统的系统不足之处在于对空间数据的管理比较困难,如空间环境的模拟机信息的显示,只能完成一些基本的数据查询、报表处理的工作。但就目前而言,GIS在地质灾害方面的应用比较单一,只要体现在对灾害的监测、评价、分析、预警等方面,缺乏一种整合信息综合管理的应用。GIS在地质灾害领域的发展不仅仅取决于GIS技术的发展,更取决于地质灾害领域信息化的进程,随着现代化、信息化的进一步发展,GIS将在该领域得到更加广泛的应用。

2系统设计

2.1系统总体结构

系统不仅服务相关部门同时也拥有面向群众的平台,主要承担两个方面的功能:一是通过计算机网络构筑灾害监控与管理实现数据的共享,利用GSM/GPRS无线网络实现基础数据、实时监测数据及其它有关数据的采集、交换等;二是通过灾害实时监控与管理平台,向社会公众和灾害管理人员提供信息和数据处理功能。

2.2应用软件体系

应用软件体系采用一种B/S、C/S混合的构架模式,充分利用两种构架各自的优势,包含展示、应用、平台、存储、网络传输、数据采集等层。

2.2.1C/S结构

C/S这种共享系统自国外引进经过发展与20世纪九十年代达到成熟[8],这种系统响应速度快并且对服务器造成的负担较小,在数据传输速率方面也可以达到很高的要求。C/S的客户端主要承担的功能是数据的查询、浏览等,服务器接受指令后迅速运作响应客户端需求,两个部分分开工作又相互配合实现数据的集中统一管理,由于问题在不同的构建解决,也有利于系统给的安全性。这种分开的工作机制也会带来相应的局限性[9]。首先,C/S这种构架只适用于电脑数量有限的局域网,超过百台后,即使匹配相符合的版本软件,也会因为自身工作结构的特殊性难以达到理想效果,且付出的代价很高昂。现在生活节凑加快,各种信息铺天盖地,这就要求大幅度提高各类信息资源获取的时效性,C/S构架也不能通过互联网实现移动办公、视频会议等现代办公需求。此外还有一种C/S三层结构,这种结构实在常规客户机基础上再添加一个服务器,对数据传输的数量、质量、频度要求比较高。

2.2.2B/S结构

B/S在克服C/S存在问题的基础上进行改进[10],这种结构最大的优势是在服务器端处理事务,简化了电脑载荷也降低了成本,从目前看在局域网使用这种构架是最划算的,在内网、外网、网络视频操控的方面也能体现出其强大的功能。B/S包含表示层、处理层、数据层三层结构。其显著特点是能实现客户端零维护,不需要软件只要有电脑拥有管理员分配的用户信息就可以使用[11]。由于其操作只是针对服务器,所以不管用户规模有多庞大都不会增加系统工作量。也正是这种工作模式,造成最大的弊端在于服务器负担过重,web浏览器也不能满足大量数据输入、输出,数据访问和业务处理也不在同一页面,难以实现共享。

2.2.3B/S、C/S混合结构

为了综合两种构架的优势,本灾害预警信息管理系统决定采取一种B/S、C/S相结合的结构。可以满足既可以满足普通用户的访问请求,应用软件体系如下图,其中表示层主要承担信息的浏览和输出、功能层处理用户请求并执行相应的程序实现反馈、数据层主要满足数据库服务器提出关于数据操作的请求,执行后提交服务器。

2.3灾害预警模块

根据国内外地址分析进程和预警研究的深度,综合GIS基本功能设计一种综合预警系统,主要作用体现在通过利用基本信息实现灾害区域三维可视化、场景现场化而实现灾害的预警和监测。利用GIS分析功能结合灾害区域基本地理特征,通过数据库统一管理综合遥感影像数据、DEM数据、三维模型数据等,调用灾害预测分析模型对数据进行分析,从而实现成熟的空间预测。系统根据模型结合区域实时动态信息,分析后实现空间和时间的预报。预警系统采用一种三维可视化监测方式,可对主要监测区实施可视化管理监测[12-13]。

2.4数据传输模块

地质灾害发生在野外,所以系统主要的应用领域在野外,数据由野外直接储存然后传给相关部门,这就对数据传输的质量要求比较高,野外地形地貌比较复杂,各种设施也不完善,电力、网络等条件也达不到,这就需要一种具备各种条件的传输系统保证数据的正常传输。在山地、林地等情况下,运用无线传输,采用多频技术跨频段传输,运用GIS地图分析功能将研究区域划分为多个单元模块,每个单元模块设立一个数据接收中转站,在网络覆盖地区设立数据接收站,中转站的数据通过网络传输给接收站,在传给相关部门。无网络传输区域采用风光互补发电系统供电,在无指令阶段进入休眠调度管理,提高野外应用周期,以ARM微型处理器为核心,传输频段使用2.4GHz和UHF/VHF频段,既保证数据传输的时效性,也提高了远距离传输的可靠性,采用多级延伸也可以拉大适用范围。公共网络覆盖区域采用移动4G、蓝牙、无线wlan等实现数据的正常传输[14-15]。

2.5数据库

数据库存储的有属性数据和空间数据,采用集成方法通过编程关键的字符段来避免数据类型不一致,属性数据以表格形式展示,包含监测区域名称、范围、图片,影像等信息,空间数据依托与专题地图,包含基本的河流、道路、湖泊、树木等,以遥感影像为基础图像在ArcGIS环境中对地图要素进行数字化等操作,最后存放在数据库中。增加管理员登录系统,实现对数据的统一分类管理,用户访问端拥有上传功能,可以上传最新的数据信息至数据库,通过这种平台可以有效节约更新成本,提高数据更新频率。数据库存储基本的灾害发生群众转移信息,通过分析得到转移最优路线,提高灾害应急能力。

3结语

基于ArcGIS设计的地质灾害预警及信息管理系统可以满足相关部门和普通用户对灾害情况的了解以及对灾害区域宏观的掌控,该系统提高了灾害处理的信息化、现代化水平,为进一步利用灾害信息处理灾情提供了平台,通过局域网和互联网,各级部门各层次用户可以有针对性获取信息,大大推动了灾情预防处理的进展。灾害预警功能的实现需要各类基础信息,所以不断地更新完善信息是系统发挥功能的重要条件。

作者:杨溯 张兵 单位:四川省第一测绘工程院 成都理工大学

参考文献:

[1]黄波林,殷跃平,王世昌等.GIS技术支持下的滑坡涌浪灾害分析研究[J].岩石力学与工程学报,2013,32(2):3844-3851.

[2]李剑锋,陈建平,孙岩.基于GIS异常信息提取的地震灾害分析[J].地质通报,2011,3(5):756-765.

[3]陈玉,郭华东,王钦军.基于RS与GIS的芦山地震地质灾害敏感性评价[J].科学通报,2013,58(36):3859-3866.

[4]贾胜韬,张福浩,赵阳阳等.基于政府GIS的地震灾害应急系统设计与实现[J].测绘科学,2014,39(5):65-68.

[5]刘斌.省级应急平台体系基础地理信息平台的设计研究[J].测绘科学,2008,3(1):84-88.

[8]邓越,徐永进,唐云辉.基于C/S与B/S混合架构的精细化滑坡监测预警系统设计与实现[J].安徽农业科学,2014,42(20):6862-6865.

[9]田兵,郭帆,邓飞.数字矿山基础GIS系统设计[J].工矿自动化,2013,39(5):5-8.

[10]张娓娓,陈绥阳,余洋.基于博弈论的P2P激励机制[J].计算机工程,2011,37(15):89-102.

[11]朱爱红,余冬梅,张聚礼.基于B/S软件体系结构的研究[J].计算机工程与设计,2005,26(5):1164-1167.

地质灾害预警范文3

1、根据市区已有历史山洪—泥石流灾害资料,市区发生山洪—泥石流灾害的日最大降雨量为96.88mm,一小时最大降雨量为52.0mm,10分钟最大降雨量为18.66mm。

二、实时监测

1、监测内容

街道指挥机构负责监测、收集本辖区内降雨、水位、泥石流等信息,接受传递上报。按照“政府负责、站点预警、群策群防”和“谁受威胁、谁负责监测”的原则,对本辖区内主要隐患点建立山洪灾害防御的群测群防体系和日常监测制度。

2、监测要求

结合街道具体情况,主要以雨量监测为主,群防群测为主,专业监测为辅。

三、通信

当灾害来临时,应立即采用电话及时进行报告。一旦通讯线路遭到破坏,应立即采取措施并派人向指挥部报告。一旦出现汛情,防汛指挥部指派专车、专人承担信息的传递,以保证抢险物资、队伍及时到位。

四、预报预警

1、预报内容

气象预报(天气、降雨量)、山洪—泥石流水(泥)位预报。

气象预报按照气象部门提供的预报进行预报;山洪—泥石流水(泥)位预报应按国土资源部门提供的预报信息进行预报。

2、预警内容

降雨是否达到临界雨量值、可能出现大的暴雨等气象监测和预报信息;山洪水雨情监测和预报信息;可能发生泥石流的监测和预报信息等。

3、预警启用时机

(1)当接到暴雨天气预报,防汛指挥部负责人和各工作组人员应引起高度注意和重视,值班、值勤和监测人员必须在岗。当预报或监测所发生的降雨接近或达到相应的临界雨量值(临界雨量值及

预警标准划分表)时,应即时相应的暴雨预警信息。

(2)当洪道出山口水位接近或达到临界水位时,应当即时预警信息,街道防指启动预案将危险区人员向安全区转移撤离。

4、预警信息处理办法

(1)街道防汛办:

A、在收到区防汛办的信息后,处理办法:

三级预警:将信息通知至街道防指全体成员和社区防御工作组,街道防指副指挥上岗指挥。街道防指监测组、信息组投入工作,其他各应急组集结待命。同时将防灾组织及准备情况及时上报区防汛办。

二级预警:将信息通知到街道防指全体成员和社区防御工作组,街道防指指挥长上岗指挥。街道防指成员全部在岗,监测组、信息组密切掌握情况,其他各应急组进入社区,与指定安全区所在街道防指及时沟通协调,并组织危险区居民随时准备转移撤离到指定的安全区,为转移撤离和抢险救灾做好一切准备工作。同时将防灾组织及准备情况上报区防汛办。

一级预警:将信息通知到社区、户,街道防指各成员、各防汛工作组及各部门和单位负责人全部按岗就位,按指挥部统一指挥安排,以最快的速度开展防灾救灾行动。按既定的撤离路线和安全区安全转移群众,全面投入抢险救灾工作。同时将防灾救灾组织及准备情况及时准确地上报区防汛办。

B、与区信息中断后,处理办法:

街道根据当地的降雨情况,自行启动预案,并设法从相邻街道与区防汛指挥部取得联系。

C、与社区信息中断后,处理方法:

各责任人直接下到社区,组织指挥避灾、救灾。

(2)社区防御工作组:

A、在收到区、街道防汛办信息后,处理办法:

三级预警:将信息及时通知至社区主要干部。社区防御工作组指导员、组长及各成员上岗指挥;巡查信息员密切注意天气变化,加强巡查和信息联系;其他各应急队人员进岗待命。同时将防灾组织及准备情况及时准确地上报街道防汛办。

二级预警:将信息及时通知到所有社区干部、各应急队和危险区、警戒区内各住房,巡查信息队加大巡查密度和信息联系,做好人员转移等各项准备工作。同时将防灾组织及准备情况及时准确地上报区、街道防汛办。

一级预警:将信息及时通知到所有社区干部、各应急队和危险区、警戒区内各住户,启动预案;各责任人到岗到位,各应急队投入抢险救灾,做好群众转移安置工作,将防灾救灾组织及准备情况及时准确地上报区、街道防汛办。

地质灾害预警范文4

关键词:地质灾害监测;预警;滑坡远程监控

中图分类号:P642.22 文献标识码:A 文章编号:1006-8937(2013)17-0151-02

1 地质灾害监测预警示范系统的内容

地质灾害是指源于自然以及人为的地质作用对生存环境造成的灾难性破坏。地质灾害主要有地面塌陷、泥石流、滑坡、地层崩塌以及地层裂缝等。在地质灾害研究中,关于滑坡、泥石流类灾害的研究是行业研究的重点。地质灾害监测预警示范系统是基于遥感技术RS、地理信息系统GIS和全球定位系统GPS以及相应的地质灾害监测技术,划定一定的地质灾害预警方位,用以监测该范围内的特定地质灾害在变现象,并将监测结果、破坏信息以及诱发因素等以信息平台的模式进行。在这个地质灾害监测预警示范系统中,使用人员可以通过对监测数据进行系统分析,并且根据现场搜集的地质变形因素和相关因素进行规整分析,进而对地质灾害情况的稳定性状态和变化趋势做出预判,从而达到揭示地质灾害时间和空间的分布规律,为地质灾害治理及决策奠定基础。

地质灾害监测预警示范系统中主要使用的专业设备有:位移传感器、雨量计、视频监测网络、地理信息系统动态记录等。地质灾害监测预警示范系统可以和地理信息测绘系统紧密结合,两者相互配合,充分补充在地质勘察中发现的不良地质情况,进而对不良地质情况中的地质灾害实施预警和监控,同时采用系统中的资源分析调配,采用构建地质灾害模型的方式来对地质灾害进行预演。地质灾害监测预警师范系统还可以对已经发生的地质灾害实施连续、实时、动态的监测和检测,及时获取和记录全面准确的数据,并且采用信息系统自动化集成技术进行分析,协助相关的地质灾害处理和决策部门针对地质灾害情况进行高效协调处置,进而节约地质灾害救援时间,避免地质灾害影响的扩大,尽最大可能减少人民群众的生命财产损失。

2 滑坡远程监控的要素及子系统配置

滑坡远程监控作为地质灾害监测预警示范系统的有效组成部分,其监控内容较为专业且单一,需要配备的专业仪器及系统配置相对较为简单且使用便捷,主要针对滑坡这一单项地质灾害专门配置,具有高效、简洁、明晰的优势。

滑坡远程监控子系统的设备配置主要包括:

①智能型电子测斜仪:主要测量XY两个维度,测量范围为±30°,自带温度补偿以及相应的数据输出端口。

②高智能裂缝宽度仪:量程200 mm,分辨率0.01 mm,自带温度补偿以及相应的数据输出端口。

③智能型雨量计:分辨力0.1 mm;降雨强度测量范围0.01~8 mm/min;测量误差:±0.2 mm;输出信号RS-485接口;雨量计本机存储记录容量大于1.5 a。

④多数据采集传输仪,采集仪主要针对单类型地质灾害进行多数据采集,采用传感器数据通过无线传输网络进行监测数据的传输及预警,并且绘制预警曲线,使用者可以进行实时查询,并且设置预警警告。此类数据采集仪可以针对滑坡、泥石流、岩石崩塌等单类型地质灾害进行多数据监测和远程警示,但是对于综合性的地质灾害则需要进行调试,目前效果仍未尽如人意。

在建筑工程施工过程中,由于边坡的受力处于不稳定状态,特别是在暴雨水浸情况下极易发生岩体移动和滑坡,形成地质灾害。为防止这类地质灾害的发生,目前较为常用的方法是对这类存在地质灾害隐患的边坡进行远程监控以及远程警示,并且根据监测的结果进行汇总和分析,绘制预警曲线,并根据预设情况出相应的地质灾害治理方案。目前的滑坡远程监测主要以调查岩体移动量、移动速度为主要手段,监测地质灾害时的地层演变信息和诱变因素,根据滑坡监测的数据结果,结合岩体力学和水文地质学科的调查分析,汇总出不良地质岩体移动方向的预设型资料,进而分析得出岩体移动的规律,设置数理模型来预判定不良地质移动岩体闫滑动面移动的位移、边线以及不良岩体的形状、大小以及滑动倾角等数据,从而判定岩体移动带来的影响,形成地质灾害的稳定性评价报告和监测预测报告。在稳定性评价报告和监测预测报告的基础上,才能形成地质灾害治理的综合意见,才能对移动的滑坡岩体采取相应的地质灾害防治措施,减少人民群众的财产损失。

3 滑坡远程监控预警示范系统应用方法

滑坡远程监控是在处置不良地质情况中用于预测及分析滑坡情况的方法,集合了监测仪器、监测数据搜集分析,并且结合地质灾害形成机理、地理信息处理技术和预测预报等技术为一体的一门综合性技术。滑坡监测一般可以分为几种监测方法实施,常规型的监测方式是采用位移监测法,目前的滑坡远程监控仪器已经可以进行毫米级的监测。而在部分重点工程中,如果采用高精度的位移监测方法,剔除了影像影响,则可以达到0.1 mm的监测精度。目前国际上较为流行的是光纤应变分析技术之布里渊散射光时域反射技术,又称BOTDR技术,这项技术此前主要应用于大型的建筑物及构筑物的安全监测和健康诊断,且在电力、通讯领域应用较为广泛,是应变监测和监控的主要手段。在我国,首先由三峡水库区中巫山滑坡监测中应用BOTDR技术。与传统的滑坡监测技术相比,BOTDR技术具有综合行、实时性、高精度和长距离的特点。由于采用了合理的点位布置方式,不仅可以长期使用,而且可以直接控制多个施工阶段以及后期使用过程,可以非常方便的对各类边坡的不同部位进行监测。而且由于这种技术才用了多种复合方式,使用多种有效监测方法进行对比校核修正,实现了错误数据剔除,使得数据更接近于真实,更为可靠。而且由于其实现了空中、地表、以及深达不良地质灾害体内部深部的立体化监测网络,建立了相应的数据模型,也增强了数据应用能力,加强了数据综合判别能力,同时也就促进了地质专业人员数据分析的精度,也相应提高了对地质灾害评价和预判能力。

在滑坡远程监控预警示范系统中,基于ESRI Arc GIS平台,以 2.0为开发平台,选用C语言,Web服务器采用IIS,在线数据通信部分在.Net平台使用C/S与B/S相结合的模式开发方式;系统的后台数据库选用Microsoft SQL Server 2005 Express或Oracle 10 G数据库,可以实现滑坡监控BOTDR技术的综合管理,同时开发了多个应用平台和管理权限,可以满足不同应用领域的技术要求。

在大型的长期地质灾害治理项目中,采取多点位传感器布置的方式进行信息采集,这样的方式进行滑坡监测,彻底改变了传统的多点和线路布设的模式。采用网状布设模式,结合地理信息处理系统,则可以在边坡的每个单元都可以采集到多个信息,将这些收集到的不同信息进行系统集中处理之后,就能够得到该地区的地质灾害三维图像数据。而随着地球物理系统的全面运用以及地质勘察勘探方法中关于数据采集、信息处理和资料传输能力都由计算机来高速实现,高分辨率、大图幅、大样本技术的应用也得到了实现,进而将滑坡监测技术推向二维和三维采集系统方向发展。由于有计算机参与,在数据收集上可以通过加大测试频率次数进而时间长时间序列上的滑坡监测。

4 滑坡远程监控现场布点及方案

在一般的滑坡监测中,可以通过实地调查和分析来判定边坡岩体不稳定范围的大小和形状以及岩体移动的方向。在选择相应的滑坡监测方案前要对地质灾害隐患进行实地的考察,选取最为适宜的监测方案和监测仪器。对于设备的集成度、自动控制模式、数据标准化程度和信息模式等,由滑坡监测系统的自动化程度决定,针对大型的长期地质灾害监测,应建立相应的数据整理系统,优选相应的监测参数后,采用多参数数据组合、设备选型调整等方式进行系统优化,以便应用于不同的地质灾害规模、针对不同的地质危害程度以及不同的发展阶段。

5 滑坡远程监控后期内业及管理

在滑坡监测外业进行之时,应及时开展相应的内业工作,对观测结果进行成果整理,根据收集到的滑坡数据计算和绘制滑坡曲线图。对于较为简单的滑坡监测,采用手工数据整理以及绘图就可以达到报告要求。但是针对大型长期项目监测,则需要进行系统建立和数据录入,采用计算机进行数据处理以及高速运算的优势,由系统出具相应的滑坡曲线图。基本的岩体移动范围确认之后,就能够在岩体移动变化较为活跃的区域,在增加一些分散的观测点,通过对于移动观测,了解到每个测点的移动量随时间变化的情况,对初步的岩体移动区域划定进行校核,同时针对位移点数据结合观测线进行综合分析。根据内业处理,就可以通过对多测点移动值大小以及方向的分布情况分析,总结出不良地质滑坡岩体移动的方向和趋势。根据分布观测点的水平位移和竖直位移,就可以求出观测点移动总方向的请教,从移动的倾角及倾向就能判断可能产生滑坡的空间位置。在数据模型监测系统中,一旦发生移动曲线的突变情况,出现跃迁进入岩体临滑突变阶段,就能够根据监控结果及时向有关部门通报,采取相应的财产及人员转移信息,避免人员及财产损失,并且为后续的不良地质情况处理提供相关的准确数据和信息。

6 结 语

伴随着地球物理信息系统的建立以及计算机技术的普遍应用,针对不同的地质灾害情况也衍生了不同类型的监测技术和方法。根据项目实际情况,选用远程监控方式对滑坡进行监控,既节省了大量的人力资源投入,也达到了长期监控及时处理的目的,保证滑坡的监测效果,满足地质灾害治理要求。

参考文献:

[1] 丁继新.边坡位移监测的若干技术问题[J].水文地质工程地质,2007,(5).

[2]施斌.BOTDR应变监测技术应用在大型基础工程健康诊断中的可行性研究[J].岩石力学与工程学报,2004,(2).

[3] 魏彪.测氡技术的工程地质应用及其在三峡库区滑坡监测中的应用展望[J].重庆交通学院学报,2003,(5).

地质灾害预警范文5

1 地质灾害与地质环境

一般而言,地质灾害是由自然因素和人为因素共同作用对地理环境造成影响,从而使得地表层发生移动形成的灾害,对人们的生命安全和财产安全具有很大的威胁性,如果不加以防治必然会影响到社会的发展,所以需要采取有力的措施加以解决。但是地质环境也有积极的一面,所以应该把地质灾害防治和地质环境保护利用积极地结合起来,既能减少和降低地质灾害发生的频率,又能使地质环境得到可持续发展。在分析如何防治地质灾害和利用地质环境之前,首先来分析地质灾害和地质环境的形成与现状。

1.1 地质灾害的形成和现状

地质灾害是一种由于地表作用或者人为不正当行为导致地质环境发生恶性变化,引起地表的变化,引发比如泥石流、滑坡等的自然灾害。这种自然灾害具有不可抗性和不可预测性,目前为止,受到我国经济发展和技术水平的限制,很难及时预测到地质灾害的发生,只能采取有效的措施把这种灾害带来的破坏降到最低,减少对人们、对经济的不利影响。近年来,一方面是我国本来就幅员辽阔,部分地区得不到有效的环境监测,一旦发生灾害又很难采取有力的措施加以防治,所以地质灾害带来的影响非常严重,灾害的强度很大,受灾的面积越发被放大;另一方面随着经济的快速发展,人们的一些不正当行为也在加剧地质灾害的发生,泥石流、滑坡等自然灾害频发,给人们的生命财产安全以及社会的发展带来极大的桎梏。所以政府应该加大对地质灾害防治的资金和技术的投入,加大对环境的监测控制,采取措施规范人们的生产生活行为,尽量减少对地质环境的破坏。对于受灾比较严重或者容易发生地质灾害的地区建立地质灾害防治体系,实施对地质灾害的监控与防治。

1.2 地质环境的形成和现状

地质环境指的是岩石、水和大气等物质所组成的体系,在这种体系中,岩石圈、生物圈和大气圈发生作用,互相交换能量,随着地球的运动,地质环境也在发生变化。地质环境的形成是在一个相对比较开放的环境中,是由于生态环境中各种物质、各种能量发生作用形成的,其存在于岩石圈、生物圈和大气圈中。所以对地质环境加以研究能够了解地质运动的特点和规律,从而可以对可能发生的地质灾害做出科学预测。

2 地质灾害防治

2.1 建立地质灾害调查区

为了降低地质灾害发生的频率,从而减少地质灾害带来的破坏,相关地质灾害防治部门需要在地质灾害发生频率较高的地区建立地质灾害调查区,并成立专门的?{查小组对地质灾害发生频率高的地区进行水土、地质特征的调查分析,从而可以提高对地质灾害预测的准确性。在调查中需要把可能发生的地质灾害按严重程度进行分级,对所发生的地质灾害进行研究分析,得出地质灾害发生的规律,并建立应急防治方案,为之后的地质灾害防治工作提供依据。

2.2 建设地质灾害警报装置

地质灾害防治的另一关键措施是要建设地质灾害警报装置,通过高效的警报系统及时地预测到地质灾害的发生,并通过发出警报能够使相关地质灾害防治部门及时得到灾害信息。在警报装置建设部分,主要是预警的管理和预警的技术,也就是要采取先进的科学技术对地质灾害进行监测,根据地质灾害发生的特点以及地质灾害的层级,再采取先进的设备仪器准确地定位地质灾害发生的位置,并捕捉到地质灾害发生时详细的灾害信息和当时的地质环境情况。同时还需要采取行政手段对所捕捉到的地质灾害预测信息进行公布,上报给有关部门进行决策,然后及时采取措施加以灾害控制。

2.3 建立健全搬迁机制

在对地质灾害进行科学预测之后,需要对预测到的信息进行研究,分析出地质灾害可能发生的具置,所波及的范围以及可能造成的影响程度。对于那些地质灾害发生中心地带,波及范围广,造成后果严重的地区应当按照搬迁机制组织当地居民进行搬迁,把居民有组织地安全地转移到预先设置的安全区域,并对受灾人民进行安抚工作。如果受灾地区受灾严重,还需要加强灾后重建工作,可以从人文环境建设和自然环境建设两方面着手。加强对房屋建设质量的监控,保证灾后工作得以顺利展开。

2.4 完善应急处置方案

地质灾害的发生具有隐蔽性和不可测性,尽管这些年我国在预测地质灾害上投入了很多资金和技术成本,但受到目前技术和经济水平的限制,还是无法做到精确预测。所以应该要完善应急处置方案,完善信息收集平台,建立应急设备,能够在灾害发生之前做好充足的准备,在灾害发生之后较快进行应急行动,紧急撤离到安全区域,能最大限度地降低地质灾害带来的损害,确保受灾地区人民的财产生命安全。建立应急处置方案一般是在受灾比较严重的区域将人力财力和技术结合起来,建立紧急响应机制。

3 地质环境利用

3.1 工程地质环境安全建设

在原则的基础上,阶段是工程运营阶段。主要涉及不同影响因素下的现状评价和预测评价。可以采用机理分析和数学力学解析方法。

在地质环境利用中,工程地质环境安全建设是其重要的组成部分,主要可以分为三个方面:首先,要对工程所处的地质环境进行信息分析,既要了解工程的风险性以及风险的类型,又要对工程周边的环境做宏观的把握,了解影响工程安全性的因素,对工程的安全性进行评价可有效降低工程地质环境建设的风险;其次,在工程地质环境安全建设的过程中,建设人员需要有可持续发展的理念,因为对工程地质环境建设造成影响的除了自然地质环境,还有人为因素的破坏,如果建设人员可以重视对工程地质环境安全建设,以长远可持续性的眼光对待建设和管理工作,工程地质环境的建设就有安全保证;最后,除了要对工程地质环境安全建设有关风险和地质环境做出评价,还要综合各种因素,以可持续性发展为原则,利用工程建设安全评价技术,比如建设工程区域地质安全评价、建设工程场址地质安全评价、建设工程单体地质安全评价等(如表1所示)。注意工程地质建设中的注意事项以及相关标准要求,使地质环境得到有效的利用。

3.2 区域地质环境的利用

区域地质环境在利用之前首先要对该地区的特点进行研究分析,然后再根据地区的特点进行地质环境的勘察利用。比如说如果该地区具有公益性、服务性,那在勘察利用的时候就要根据这两点采取妥善的方式,避免破坏该地区原有的特征属性,在利用该地区地质环境的时候仍然要保证它的公益服务性质;其次,建立地质环境的评价机制,也就是通过对该地区的地质环境评价了解监测地区的地质情况,然后再对这些评价得到的信息分类汇总,进行合理的管理与建设。在进行评价的时候要注意评价的可操作性和可行性;最后,在区域地质环境的有效利用中需要注意经济和社会的发展以及发展的可持续性。在建设区域地质环境利用体系中,还可以通过工程地质环境的质量、地质环境中的工程容量评价、工程功能的区域划分、灾害防治的调控等方式。

地质灾害预警范文6

防治工作与地质环境治理工作的通知

 

各村委会,镇直有关单位:

为切实做好我镇2021年地质灾害防治工作,最大限度地减少和避免地质灾害给人民生命财产造成损失,根据县有关文件精神,结合我镇地质环境条件和工作实际,制定《2021年三班镇地质灾害防治方案》,各村要根据方案认真执行,做好汛期地质灾害、高陡边坡地质灾害、矿山地质灾害防治工作。具体要求如下:

一、认真落实防灾责任

做好地质灾害防治工作,加强领导是关键,各村要切实加强对地质灾害防治工作的组织领导,成立地质灾害防治工作领导小组,确保责任到人、措施到位。切实抓好防灾机构、人员、责任、措施、经费的落实,对辖区内地质灾害隐患点的防灾工作责任进行层层分解、细化。要及时向社会公开地质灾害隐患点的防灾责任人和监测责任人的责任和联系关系,将接听灾情和险情报告的电话号码向社会公布,以便偶遇突发事件时,能够在第一时间保证联络渠道畅通,便于指挥和组织协调。

二、加强隐患排查

各村要迅速组织力量对本辖区内地质灾害重点隐患地区进行全面仔细排查,对排查中发现的重大隐患点,务必设立警示标志,提醒行人和车辆注意安全。建立防灾明白卡,并及时将防灾明白卡发放到受威胁单位和人员手中,切实将灾害监测任务落实到实处。

三、狠抓督促检查

镇自然资源所、各村要采取多种形式,督促检查防灾工作的落实情况,将列入重点监测的地质灾害隐患检查一遍,检查群测群防监测责任人是否到位、是否对自己负责的地质灾害隐患点的情况了如指掌,检查中发现问题要及时解决。

四、做好气象预警预报

镇自然资源所会同气象部门在汛期(6—9月)地质灾害气象预报,预报内容主要包括地质灾害可能发生的时间、地点、成灾范围和影响程度。加强监测,进一步加大应急能力建设和宣传力度,全力做好地质灾害防范工作,确保国家和人民群众生命财产安全。

五、强化群测群防体系建设

实行地质灾害群测群防,在地质灾害的早发现、早报告、早防范等方面具有明显的优势。做好群测群防工作,关键在于健全体系。一是要进一步完善由县、镇、村、企业和单位共同参与的地质灾害群测群防体系,把地质灾害的日常监测和防治任务落实到单位、落实到人。重点落实汛期值班制度和灾情速报制度(值班电话:23578018)。进一步落实“四应有”要求,即:应有地质灾害防治方案和群众转移预案;应有地质灾害防治值班制度;应有地质灾害防治责任人、监测人、协管员;应有地质灾害防治简易工具、通讯工具。二是进一步对防灾责任人、群众监测员进行防灾基本知识和监测技能的培训,使防灾责任人、监测人做到“四应知”和“四应会”,即:应知辖区隐患点情况和威胁范围;应知群众避险场所转移路线;应知险情灾情报告程序和办法;应知灾点监测时间和次数;应会识别地灾发生前兆;应会使用简易监测方法;应会对监测数据记录分析和初步判断;应会指导防灾和应急处置。

六、进一步提高应急能力

认真落实突发地质灾害应急队伍建设中,业务加强培训,提高应急能力,应急队伍建设,保证关键时刻拉得出、顶得上。

七、加强地质知识宣传,提高防灾能力

利用各种宣传媒介,广泛宣传地质灾害防治知识。组织分发地质灾害防灾避险宣传画和宣传册,在各学校、村、广场等范围进行发放、张贴、宣传、有效提高防灾减灾能力。

八、强化相关部门的防灾责任

各村、各部门应对地质灾害防治工作应始终保持高度警惕,要在思想工作上高度重视,工作上认真部署,措施更加细致。切实把我镇地质灾害防治工作责任落到实处。

 

    附件:三班镇地质灾害防治方案

 

 

                              三班镇人民政府

                              2021年3月24日

 

 

 

 

 

 

 

 

 

 

附件

三班镇地质灾害防治方案

 

三班镇地处山区,是地质灾害多发区,本着“预防为主,避让与治理相结合”的防灾减灾方针,制定防灾方案。通过落实灾害点监测、临灾预报、临灾应急、灾后抢险救灾等防灾救灾措施,使地质灾害造成的损失减少到最低限度,现制定地质灾害防灾方案。

一、地质灾害监测

1.监测为主:地质灾害点可采用简易监测法,以定期目视检查及安装简易监测设施二种。定期目视检查要求监测责任人必须定期对可能滑动本体采取目视检查,尤其在汛期、台风暴雨时,应检查被监测地灾点有无异常变化。安装简易监测设施要求在被监测地灾点敏感变化部位(如滑坡前或后缘裂缝中设立简易固定标尺或水泥砂浆观测其变化情况)。

2.监测工具:简易观测一般采用钢卷尺、皮尺、三角堰等工具。

3.监测工作制度:(1)监测频率。每年1—4月和10—12月为正常时段,每月观测一次;每年5—9月为汛期,每10天观测一次;暴雨期间每日至少观测一次。(2)监测资料收集。每次监测都应认真做好记录,监测记录应及时上报镇防灾领导小组办公室和县国土资源局,正常情况下每月上报一次。暴雨期间各村应及时向镇防灾领导小组办公室汇报监测情况。

二、地质灾害临灾预报

地质灾害监测的目的在于预报灾情。当群众、监测人发现异常情况、灾害前兆和险情时,镇领导小组办公室应马上组织人员到现场落实,并立即通过电话或传真上报县国土资源局。

三、临灾应急

当县政府临灾预报,宣布灾区进入临灾应急期后,镇地质灾害防治工作领导小组要立即有组织地把灾民、财产撤离险区,确保人民群众的生命财产安全,继续进行灾情监测,对灾情趋势进行预测,及时制止致灾动力的破坏作用,并在地质灾害前兆出现时制定险区人员疏散撤离和安置计划。

四、灾后抢险救灾

地质灾害发生后,要在县地质灾害防治小组的统一指导下,镇、村干部应立即发动群众积极开展抢险救灾工作。

1.迅速进入灾区了解灾情,按速报制度要求在24小时内提交速报报告,根据已经获得的可靠信息,说明地质灾害发生的地点、时间、伤亡人数、财产损失情况。

2.抢救受灾群众,帮助和医治伤病人员,把群众撤离到安全地带,做好灾民的安置工作。

3.抢修被破坏的供水管道、供电线路、通讯系统,抢修被破坏的公路、桥梁和水利设施,保证生命线工作尽快恢复使用。

4.提出灾情趋势研究意见和防灾工作建议,计算筹集防灾救灾资金和物资。

五、职责分工