前言:中文期刊网精心挑选了智能化系统研究范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
智能化系统研究范文1
关键词:智能化作业系统;智能作业提醒;知识架构挖掘
中图分类号:TP393文献标识码:A文章编号:1009-3044(2008)19-30126-03
Research of Web-Based Intelligent Homework System
ZHANG Hui-yan, ZHANG Hu
(College of Information Technology, Anhui University Finance & Economics, Bengbu 233041, China)
Abstract: This paper design a schema and its layer model on which it works for the intelligent homework system. All of the schemas are based on the Student-oriented mode. And we use four layers model, data layer, network service layer, users type of performance layer and personalized performance layer; The database design of the system applications based on the relationship between the object-oriented database theory, Convenient access to information, at the same time improve the system scalability.
Key words: Intelligent Homework system; Intelligent Homework awake; knowledge structure mining
1 引言
远程教育是学生与教师、学生与学校之间采用多种媒体方式进行系统教学和学习交流的一种教育形式。现代远程教育是随着现代信息技术的发展而产生的一种新型教育方式。现代远程教育是随着现代信息技术的发展而产生的一种新型教育方式。计算机技术、多媒体技术、通信技术的发展,特别是互联网技术的出现和发展,使远程教育的手段有了质的飞跃。
基于Web的远程教育方式是指教学资源(如大纲、教案、课件、作业、考试等)存放在Web服务器上,学习者可以在随时随地通过浏览器独立地进行课程学习、做作业、考试,向教师提问以及和其他同学交流,我们称之为异步的或面向学生的(student-oriented)学习模式 。
采用“学习者需求驱动模式”的思想设计的远程教育网站,可以统计学生的学习情况,更直接与科学地了解到学习者的需求与教育网站的资源信息的冗余和不足,适时地调整自身的策略、方案来满足受教育对象的需求。
传统作业系统平台在设计过程中忽略了学习本身是一种个性化的过程,接受教育的对象存在个性差异,学习者的学习能力、兴趣与习惯、努力程度都存在巨大的差异。现有的作业系统平台虽然可以做到作业形式多样,数量巨大,但是学生并不了解自己的课程掌握程度,于是就不了解哪些是适合自己的作业,或者同一作业中哪些题目适合自己,老师也不了解学生的学习进度,只能够统一作业,所有的学习者都是相同的作业,这样在教学方法与模式上就显得很单一。网络教学过程中忽略了老师的个别指导作用和因材施教的教学原则,在传统的远程教育平台,这是一对无法调和的矛盾。
随着互联网技术的发展,在Web领域开始采用人工智能和数据挖掘技术,通过知识发现、机器学习、统计分析或其他方法,从大量的学习者学习行为数据中进行数据挖掘,提取有用的信息。这些使个性化教学服务成为可能。将为学习者提供更具有针对性的学习资源,作业系统平台上的内容也更具有针对性,能够更好的促进学习者掌握教学内容。因此,在传统的远程教育技术上引入智能化是必要的、可行的。
2 基于Web的智能化作业系统模型
智能化作业系统模型主要研究如何搭建一个智能化、开放化的作业系统平台。相对于传统的作业系统,这一系统主要实现两个方面的特性:一是对于作业系统中的数据流,状态流,控制流建立统一标准,使其能够与作业系统外的其他远程教育子系统共享;二是通过数据信息的分析与挖掘,提取有用的学习行为信息,并在系统运行过程中不断的进行自我学习和扩展。
本系统设计在四层模型层次结构上来实现。即在通常三层(数据层、服务层、表现层)模式基础上,将表现层分为二层:用户类型表现层和个性化表现层。
数据层的数据提供给网络服务层,网络服务层对数据进行组织,通过编写的服务过程来完成网络服务功能。用户类型表现层调用网络服务层提供的服务功能,实现在用户界面中基本内容的表现,最后经过用户个性化表现层的个性化服务,对内容进行筛选、调整,最终表现出不同用户的个性化界面。
这样,通过对表现层次进行细化,即体现了用户在用户类型表现层的共性,又在个性化表现层体现了作为一个个性化的服务系统所具有的表现特性。在这样一个模型的基础上,我们来实现作业平台的智能化、个性化。
这个模型中各层次中与基于Web的智能化作业系统相关的主要功能为:
1) 在数据层上主要存放与作业系统相关的数据,我们把所有数据信息分为几种类型的对象。主要包括:
①用户对象:是指用户的属性以及他们的行为记录;
②资源对象:是指学习者的主要学习对象,也是指导者的主要管理对象。他们本身具有一定的属性(如,资源名称、存储路径等),同时也具有一定的行为;
③行为对象:对应于用户对象的某一种行动,即用户对象的行动是一个新的对象。行为对象的属性(行为执行人、行为发生时间等)是后台实现数据挖掘,实现智能化的基础;
④行为结果对象:是一些行为发生后所产生的结果对象。由于行为的结果可以反映用户对象,尤其是学习者的学习偏好和学习效果,所以这一类对象也是后台数据挖掘、学习评估和智能化指导的一个基础;
⑤后台信息统计对象:是由于后台数据挖掘而产生的对象。这些对象是后台系统对用户对象的行为、表现、偏好,根据一定的数据挖掘算法得到的结果。
对以上这些对象,我们采用面向对象的数据库来保存这些信息,为上层的功能实现提供信息基础。
2) 网络服务层的功能是接收表现层发来的请求,对数据层的数据进行存取,并根据服务要求调用相应的服务来完成用户的请求。
本模型将作业、答案、作业批改、管理等功能都以模块化的方式在服务器端运行,并且允许遵循一定定义规则的新功能的自由添加。其主要特点是:对于系统中的数据流(数据库数据),控制流(消息传递),过程流指定统一标准,使各个子系统中信息都能遵从一定标准而方便共享。通过数据信息的分析与挖掘,智能化作业系统可以不断的进行自我学习和扩展。
3) 用户类型表现层设计用户类型基本接口,按照用户类型产生基本用户格式表现和用户请求类型。
4) 个性化表现层是用户的接口,包括根据用户的个性化定义,接收用户请求与产生格式化数据返回页面。
3 作业系统部分智能化功能的实现
3.1 智能作业提醒模块
在基于Web的作业方式中,学生通过网络资源学习,接受老师布置的作业,由于对作业上交期限没有注意,导致过了期限,从而影响了作业的成绩。另外,可能由于学生各人对于Web的掌握能力有限,可能造成其根本不知道作业的上交期限。这就要求我们建立一个能够以各种方式在特定时间向用户发送作业上交提醒的模块。
我们通过将当前的系统时间与数据库中各个作业的最后期限相比较,若是符合设定的条件,则向所有还没有交此作业的学生发送提醒。
向学生发送提醒消息的实现:当查找到符合提醒要求的学生以后,记录其用户代号,在数据库的消息表格中添加一条消息,将其属性设置为新消息,即未阅读的消息,并将其内容设置为提醒内容,所属用户设置为此用户。
向学生发送提醒电子邮件的实现:当查找到符合提醒要求的学生以后,记录其用户代号,在数据库用户电子邮件表格中查找到用户的电子邮件,将其连同邮件主题及内容等添加入待发邮件队列,完成某个作业判断以后,通过系统提供的邮件发送控件,将邮件发送出去。
作为系统的智能作业提醒功能,应该是自动的运行,由于数据库的查找有嵌套,所以数据库的查询及修改操作的数目很大,所以不可能让该功能不停地运行。所以将其设计为,加入某个页面的头部,每次该页面被请求的同时,该功能就被启动。将作业提醒功能在用户登陆远程教育主页时就运行,这样就能保证该功能的正常运作。并建立一个记录文件,文件中记录的为上次提醒功能运行的日期,每次远程教育首页被请求时,提醒功能启动,首先读取该记录文件,读取上次运行时间,如果与系统日期相同,说明已经运行过提醒,就跳过提醒直接进入首页;若读取的日期与系统日期不同,则需要运行提醒模块。
3.2 智能化作业统计模块
在传统的课堂教学方式中,教师在完成作业的批改之后必须手动做出统计表格,才能对学生的作业情况有一个整体的了解,以安排合适的教学进度和教学方法。在远程教育系统中,我们可以实现智能化的作业统计功能。
作业上交情况统计的实现:在数据库中查找出当前课程下的所有作业;然后对于每个作业,查找其相应的班级人数、已上交人数、迟交的人数和已经批改的人数。这样,经过计算就可以得到应交人数、异交人数、迟交人数、未交人数、已批人数和未批人数,及其各自的百分比。
作业得分情况统计的实现:在数据库中查找出当前课程下的所有作业,同样,该作业必须是未删除的作业;然后对于每个作业,查找统计出已经上交的人数,再查找出分别获得各个分数的人数,与已上交人数相除就可以得到其相应各个分数人数的百分比。
3.3 知识架构智能挖掘模块
学生知识架构的挖掘是智能化作业系统的一个重要部分。通过智能化作业系统,教师可以了解学生的作业完成情况,进而了解不同学生的知识架构,掌握学生对知识点的掌握情况,然后根据不同学生的特点选择合适的教学方法。这里我们需要实现知识点与作业相关联的数据库表格设计,还有设计教师布置作业时指定与知识点的连接关系的方法。
在教师布置作业时,通过多项选择框列出的所有与该课程相关的知识点。教师在布置作业的同时选择和该作业相关联的知识点,然后将新作业插入作业表格,将其与知识点的关系插入知识点关联表。
然后我们在每次作业学生全部完成后,通过数据挖掘功能,挖掘出学生本次作业完成的情况,作业中知识点的掌握程度,以及本次作业与以前知识点的相关程度,学生对相关知识点的掌握,进而在教学过程中发现知识点的相关性,把握好教学的重点和难点。
4 小结
基于Web的远程教育环境具有4W(Whoever、Wherever、Whenever、Whatever)的特征,但目前这种教育模式也有许多的缺点有待克服。尤其是目前的大多数远程教育系统都缺乏足够的开放性和智能性,站点基本是静态的内容,所有资源完全交给用户自己去选择。这种做法忽略了学生之间的能力差异和学习兴趣,忽视了教师在学习中的指导作用。因此,在传统的基于Web的远程教育环境基础上,充分考虑了远程教育的特点和实际应用中的需求,提出了建立一个开放化、智能化的远程教育平台。在这个平台下,学生可以获得动态的个性化的教学资源配置,通过智能化的反馈,使得学生真正做到按需学习,老师真正做到因材施教。
参考文献:
[1] Pat-Anthony Federico.Learning styles and student attitudes toward various aspects of network-based instruction Computers ,Human Behavior,2000.
[2] Draft Standard for Learning Technology-Learning Technology Systems Architecture (LTSA).IEEE P1484.1/D6,2000-11-14.
[3] Chien Chou.Constructing a Computer-Assisted Testing Evaluation System on the World Wide Web-The CATES Experience[J].IEEE TRANSACTIONS ON EDUCATION,2000,43(3).
[4] B. Parkinson,P.Hudson.Extending the Learning Experience Using the Web and a Knowledge-based Virtual Environment[J].Computers & Education,2002,38:95-102.
[5] 申瑞民,戴欣,孙健.基于Web的智能远程学习环境的构建[J].计算机应用与软件,2004(02).
[6] 陈思敏,黄晓橹,顾君忠. 基于XML技术的远程教育协同系统研究[J].计算机应用研究, 2002(01).
智能化系统研究范文2
【关键词】智能化;供电设备;状态检修技术;系统研究;应用
前言
目前,我国供电设备的检修阶段已经从对故障进行检修转变为定期检修。目前,技术人员在对设备进行定期检修的过程中,虽然能够检修道其中存在的隐蔽故障,但是这种检修方式却具有一定的局限性,当技术人员到时间进行检修时往往会发现很多问题,加大了人力、物力、财力的投入。随着社会的发展,为了满足人们的要求,供电设备也不断增多,此时检修人员必须要缩短其检修的间隔时间,这就增加了停电的发生概率,也缩短了设备的使用寿命,不利于电力系统的稳定运行。由此看来,对供电设备的定期检修已经不能够满足当前社会发展的需求,影响到电力系统的稳定运行。为了保证供电设备的运行效率,我们需要开展状态检修工作,并将其与定期检修、故障检修有机的结合起来,从而满足人们对电力的高要求。
一、状态检修工作的开展
所谓状态检修也就是技术人员对供电设备的运行状态及停电状态进行检测,分析各个设备的运行状况,通过对比了解其状态信息,了解其未来运行情况以及使用期限,从而制定出一个科学的检修计划,这种检修方式可以在设备分析中获得更为准确的数据。但是在实际工作中,我们需要通过分析来获取大量的数据,这就需要我们采用先进的技术。智能化供电设备状态检修技术支持系统主要由分析系统、专家系统、自动判断设备、预测设备等部分构成,其中分析系统也就是以供电设备的运行状态为基础,获取更多大量的数据,并对其科学的管理;专家系统主要包含了技术人员丰富的技术经验,并根据设备运行的数据作为参数;再由自动判断设备对这一参数进行预测,了解供电设备的运行状态及其运行过程中存在的问题,最后再根据这一诊断而制定一个报告,并编制出合理的维修措施,以保证设备的稳定运行。
二、智能化供电设备检修技术支持系统的特点
(1)在实际工作中通过设备运行状态建立一个数据管理平台,可以将设备的整个运行状态以及故障点进行检测与控制,以保证设备运行的安全性与可靠性。
(2)该系统能够覆盖大范围的供电设备,可以通过电容式电压互感器、变压器等设备来对各个供电设备运行的数据进行分析,诊断其中存在的故障,并根据实际情况制定合适的维修报告。
(3)该系统能够对供电设备进行全面分析,有较高的自学习能力。在实际工作中,该设备能够综合技术人员对设备的分析及维修等情况,从而积累丰富的经验,对供电设备进行智能化分析,从而有效的提高供电设备的运行效率,获得较高的经济效益。
三、智能化供电设备状态检修技术支持系统的数据层结构
在现代化社会发展中,我们对状态检修技术支持系统采用的B/S结构,即是通过互联网技术来开发网页应用程序,然后将复杂分析信息有机的结合起来,从而提高信息传递的效率,一方面实现了资源共享,另一方面还减少了资源的占用空间。为了方便人们的查询,我们在支持系统建立的数据库中采用了多线程查询技术,每一个查询通道都具有一个相对独立的县城,此时用户在信息查询过程中可以不会受到其他因素的限制,使信息可以同时使用。在一定程度上减小了资源的占用面积。智能化供电设备状态检修技术支持系统的数据结构主要分为以下三个层次:
1、设备检测综合数据库
设备健康状态信息来源于多种途径,有手工录入、其他软件导出的,从实时采集器读入的等。数据形式多种多样,转换后以统一的形式存储在设备检测综合数据库里,这些信息都是对设备现在或未来健康状况的反映,集中在一起,有利与管理。
2、故障征兆库
把所有的检测方式的数据都与规则比较或用专家经验,得出被测参数是否合格的结论。参数不合格,设备可能有故障,才考虑进行故障诊断。所以说,故障征兆库是故障诊断的基础。把所有的征兆判断结果放到一个库里,有利于综合判断。设备故障往往是一个故障对应着若干个征兆,一个征兆可能是由若干个故障引起的,利用故障征兆库对设备进行综合判断。
3、故障诊断的结果库
故障判断结果库分单一诊断结果库和综合诊断结果库。单一诊断结果分为明确定位故障、参数正常,不存在与此参数有关的故障、不确定故障是否存在,故障确实存在,但不能定位四种。综合诊断库存放将多个试验单一诊断的结果综合起来、用判决树原理进行诊断的最后诊断结果。
四、功能组成
1、数据综合管理模块
该模块实现变电气管理、设备技术参数管理、设备变更管理、设备在线监测管理、设备试验管理、设备缺陷管理、设备检修计划管理、设备历史检修记录管理,从相关系统从采集其他静态数据、动态数据和历史数据,并进行数据的准确性检验、冗余检验和逻辑检验,检查数据是否合理,形成设备检修综合数据库,实现数据库和分析系统的有机结合。
2、专家系统诊断模块
该模块采用神经网络法、色谱的电研法、三比值法,TD图法等人工智能方法实现设备状态诊断。既能对单一试验数据进行故障诊断,也能对多种试验数据进行综合诊断。将规程规定和专家知识存储在知识库,可以随时更新、修改。单一诊断用产生式专家系统,综合诊断用判决树,整个诊断过程就是按照隐含在规则库中的故障判决树自上而下的推理过程。该系统采用数据分层的处理方式,功能模块之间用状态驱动。每一个层次的数据可以维护,查询,有利于程序的模块化设计。此外还具有仿真培训的功能。
3、检修智能决策模块
本模块的主要功能是根据故障征兆,判断设备的故障;根据历史情况,设备当前运行的工况,预测设备未来的故障,评价设备的寿命;生成设备状态诊断报告,以备存档和查询;提出检修方案,即检修的时间、检修的设备、检修的项目,生成检修方案报告。
五、结束语
随着社会的发展以及技术水平的提高,技术人员在对供电设备进行状态检修的过程中会不断引入各种先进的技术、设备。智能化供电设备状态检修技术支持系统必然会将大量检修信息通过自学习能力而对其运行状态进行维修,然后通过其运行参数来对其运行故障进行检测,并制定合适的方案,保证供电设备运行的可靠性,提高供电设备的社会经济效益。
参考文献
智能化系统研究范文3
关键字:物联网应用;粮食仓储;粮库监管系统;传感器
中图分类号:TP393 文献标识码:A 文章编号:2095-1302(2014)01-0071-02
0 引 言
粮食是关系国家稳定的战略性商品,是国民经济的命脉。确保国家储备粮食数量真实、质量完好,确保在需要时调得动、用得上,是国家储备粮管理的基本要求[1]。为此,粮食仓储过程中已经应用了一些物联网技术,比如:温湿度传感器以及在此基础上构建的粮情检测系统已经得到较大范围地应用;虫害传感器及虫害自动检测系统、霉菌(二氧化碳)传感器及粮食质量实时检测系统、氮气传感器及自动气调系统、磷化氢浓度在线传感器及自动熏蒸系统、压力传感器及粮食数量实时监测系统、在线水分传感器及烘干水分在线自动控制系统等已经得到初步应用;粮食体积传感器、密度传感器等,以及相应的清仓查库设备和系统研发也已经取得重要进展[2]。
目前粮库普遍使用的温湿度采集系统,通常采用有线的方式接入各类型传感器,这种方式存在着布线及测算困难、传感器重复利用性差、故障排查困难、采集系统扩展能力差、传感器缺少统一管理等问题;同样,其他正在示范应用的系统都是单独部署通信线路,系统部署成本较高、维护困难;另外,目前粮食仓储企业的整体信息化水平较低,一些有信息化基础的企业也仅仅局限于粮情测控系统、出入库管理系统、办公自动化、财务等系统,单个应用系统没有集成,是一个个信息孤岛[3],没有给粮库管理带来信息集成共享效益。
在这种情况下,采用统一的集成终端对各类传感器进行统一数据预处理、通信和控制,降低系统成本,提高易用性,是粮食仓储环节物联网技术发展的必然趋势和提高传感器应用效率的必然选择。基于统一的集成终端设计的智能化数字粮库监管系统已经在江苏省十几家粮库进行了建设实践,并取得了良好的应用效果。
1 总体架构
本文提供了一种基于物联网的智能化数字粮库监管系统,以实现对粮库中的通风控制、熏蒸作业和库容计算等作业进行自动管理控制。系统的总体架构如图1所示.
基于物联网的智能化数字粮库监管系统包括以下单元:
(1)硬件设备单元,包括:温度传感器、湿度传感器、通风设备、熏蒸设备、气体采集设备、虫害检测设备。用于采集粮库的各种具体服务的业务数据,将该业务数据发送给智能传感器集成终端,所述业务数据包括温度数据、湿度数据、虫害数据、气体浓度数据;
(2)智能传感器集成终端,用于通过异构整合技术将所述硬件设备单元上报的各种不同消息格式的业务数据进行消息解析后,转换为具有统一的消息协议格式的业务数据,并对所述业务数据进行加工处理,形成具有业务特性的数据并发送给粮库集成管理平台;接收粮库集成管理平台下发的智能传感器集成终端和硬件设备单元的控制命令,向硬件设备单元下发来自粮库集成管理平台的控制命令;
(3)粮库集成管理平台,用于接收和存储智能传感器集成终端发送的具有业务特性的数据,根据所述具有业务特性的数据和设定的控制算法在所述粮库中进行库容监测、熏蒸控制、通风控制、温湿度监测和/或气体浓度监测。
2 功能简介
2.1 粮库集成管理平台的系统功能
(1)库容监测,查看各个仓库存粮概况。仓库状态通过颜色标识淡绿色表示空仓,浅绿色表示有存粮,并通过色块大小标识存量多少,鼠标放在仓库时显示仓库存粮信息。
(2)熏蒸管理,包括熏蒸计划和熏蒸记录功能。其中熏蒸计划就是根据仓库的虫情信息制定熏蒸计划,熏蒸计划能做的操作以及当前所处的状态紧密相关;而熏蒸记录则是根据通风计划对仓库进行熏蒸操作,并登记熏蒸信息。
(3)通风管理,包括通风计划和通风记录功能。其中通风计划是根据仓库的粮情信息制定的通风计划,通风计划能做的操作以及当前所处的状态紧密相关;而通风记录是根据通风计划对仓房进行通风,并将通风方式、通风具体操作等信息登记下来。
(4)温湿度监测,通过列表和图表等不同的展现方式查看仓库粮食温度。其中列表方式可显示采集时间、仓内温、仓内湿、仓外温、仓外湿、最高温、最低温、平均温、最高湿、最低湿、平均湿等内容;折线图可显示粮食的温度趋势变化;另外,三维展示图可显示粮食的3D粮温图。
(5)气体浓度监测,是对于安装气体传感器的粮仓,可以设定气体浓度报警功能,对气体浓度大于或小于某个阈值时,进行气体浓度报警提示,报警的阈值可以根据粮仓的实际情况进行设定,如对于氧气浓度报警,《缺氧危险作业安全规程GB8958-2006》中规定“当氧气浓度为19.5%时,即为缺氧危险作业”[4], 考虑到氧气传感器的精确度,可考虑当氧气浓度小于20%时,弹出报警页面。
(6)虫情监测就是登记和查看害虫情况。点击要查看的仓库,进入该仓库虫情记录页面,记录的属性包括主要害虫、虫害密度(头/公斤)、霉变情况等[5]。
2.2 智能传感器终端功能
(1)数据采集
对于各种异构传感器的接入和数据采集是智能传感器集成终端设备的一个核心功能。传感器可以通过设备上的串口、I/O等接口以有线的方式接入,也可以通过ZigBee无线传感网络、无线路由节点以无线的方式接入。设备支持多样的接入形式和庞大的接入数量,可以满足粮食监管中所需的温湿度、气体、水分等各类传感器的接入需求[6]。
(2)数据整合加工
不同的传感器采集到的数据格式各不相同,如果不作处理将大大增加监管中心的数据分析和管理难度。通过智能传感器集成终端设备的数据整合能力,能够将不同格式的采集数据进行翻译,转换为统一的协议形式,方便统一分析处理。此外,也可以过滤掉由各种原因造成的噪音数据,提高数据的有效性、准确性。
(3)数据警情上报
智能传感器集成终端设备作为安置在粮库前端的数据采集设备,最终要将有效的数据通过有线网或无线网络传送到监管中心,对于重要的数据,要尤其保证数据发送的完整性、实时性,防止丢失。此外,前端传感器等各种设备出现损坏、丢失等意外情况时,终端设备也能将相应的报警信息及时反馈给监管中心,以便迅速作出应对措施。
(4)设备远程控制
除了能够接入传感器外,智能传感器集成终端还能通过串口、I/O等方式接入各类控制设备,如通风设备、熏蒸设备、充氮设备等。通过消息协议转换,可以在监管中心方便地控制各粮库的这些前端设备,实现设备远程控制。
(5)数据存储
对于重要的传感器数据或监控录像,智能传感器集成终端提供了本地存储的能力,使得当出现网络异常等情况,集成终端无法与监管中心通信时,重要数据不至于丢失,也可在出现特殊情况时调用本地录像,重现事件经过。
2.3 传感器及控制设备功能
智能传感器集成终端设备将以统一的数据标准、开放的公共接口,成功接入或兼容现有主流测温设备、测虫设备、智能通风设备、视频监控设备等,可以实现仓储管理相关设备、数据以及作业情况的信息整合。
3 应用验证
本文提出的基于物联网的智能化数字粮库监管系统已经在江苏省十几个大中型粮库进行了应用示范,取得了良好的效果,具体如下:
粮库物联网应用系统的部署复杂度和建设成本比以往多传感器分别部署的情况有了很大改观;
库容检测可以使用户对仓库粮食的存量信息一目了然,为清仓查库提供了动态的、精确的数据基础;
实时的虫情检测为熏蒸计划的制定提供了可靠的依据,并为有效评估熏蒸效果提供了有力的信息支持。气体浓度监测为熏蒸人员的作业安全保驾护航;
生动展示的温湿度信息为通风计划的制定和变化提供了直观的依据,并为通风效果的评估提供了支撑条件。
4 结 语
试验证明,该系统能够广泛集成已有粮食流通物联网传感器,使得粮食流通物联网应用系统部署复杂度降低、建设成本降低、传感器的联动使用的效果更加丰富,能够有力地提高粮食流通物联网规模应用水平。
参 考 文 献
[1]于滨.以多元化信息安全全力服务“新四化”[N].中国航天报,2013-01-06.
[2]臧传真,李其均.粮食流通动态跟踪关键技术研究[J].物流技术,2009,28(2):109- 112.
[3]臧传真.现代粮食流通体系与技术支撑系统研究[J].物流技术,2010,29(1):1-3.
[4]国家粮食局人事司.粮油保管员[S].2008.
智能化系统研究范文4
关键词:智能化;安全检测系统;必要性;研究现状
引言:随着社会经济的迅速发展及互联网的普及,传统消防安全体系问题越来越突出,且不能很好地保障人民生命安全,将消防安全检测系统进行智能化改造成为确保社会消防安全发展的必然趋势。智能化消防安全检测系统是指由现代通信技术与信息技术、计算机网络技术、消防安全检测技术、智能控制技术汇集而成的针对消防安全检测的智能集合系统。
一、智能化消防安全检测系统的必要性研究
(一)火灾事故频发
生活用火的不小心是导致火灾频发的最主要原因,另外还有电气、生活作业、故意纵火等。另外,城市的新型住宅、商厦、写字楼林立,建筑本身就内部装修装饰过程中大量使用易燃可燃材料,也为火灾的发生埋下了种子,同时,人们对用电用火的重视度不够,过度使用电器设备、电子产品等,使得城市火灾发生更为普遍,公路交通也会引发火灾。据统计,2011年全年,全国共接报火灾125402起,死亡1106人,受伤572人,直接财产损失18.8亿元。与2010年相比,虽然起灾次数和死亡人数比例都有所下降,但是火灾仍然威胁着人类安全。而且随着社会经济的快速发展,各类致灾因素增加,火灾发生的几率和防控难度也逐年增大,如何更好的防火和灭火是一项重要的
工作。
(二)传统消防安全检测系统的滞后性
传统的消防安全系统比较落后,通常是居民电话报警,然后由接线员将火灾信息传达到消防队伍,再派出消防员前往火灾点灭火,这样的方式耗时较长,在时间上严重滞后,延误了抢救的有利时机;或者就是用户在发生火灾后用自备的灭火设备灭火,然而很多人不懂如何使用灭火设备。上述两种传统的消防安全措施都不能及时进行救灾,延误了逃生和救援的最佳时机。而且,很多传统的建筑,没有火灾自动检测设备,不能识别火情并进行报警,逃生自救的设施也不
齐全。
(三)“智能化”的优势
“智能化”已经进入社会生活的各个领域,基于此,使得很多设备、系统都可以进行远程控制、实时监控和精确检测,既顺应了社会发展的趋势,也增加了安全性。但消防安全检测系统所采用的技术必须足够可靠、先进,减少误报,提高其灵活性和灵敏度,能够保证随时随地且在无人为干预的情况下,都能进行智能化的检测。
二、智能化消防安全检测系统的研究现状
目前学术界关于智能化消防安全检测系统的研究相对较少,但我们相信,随着“智能化”时代更进一步的发展,这一项研究将会得到更多人的关注和重视。火灾安全作为一个不可回避且时刻摆在我们面前的现实问题,我们需要充分利用新技术进行改造,给人们构建一个更好安全的社会环境。
美国NOTIFIER公司研发了一套“智能化报警及联动控制系统”,它是由智能火灾控制器、智能探测器、智能模块、智能火灾报警网络、消防广播报警系统等组成,与其他的设备集成实行联动控制,且非常智能化,针对不同设备能够启用不同的灭火方式,这套将通信技术和设备结合起来的消防系统,对现代化建筑物性能具有很强的适应性,得以广泛借鉴和运用。
同时,研究者或设计者也都意识到消防检测关系到消防安全功能的实现,而且消防检测作为一项技术性工作,具有系统性和复杂性的特征,确保消防安全检测系统的正常运行是非常必要的。消防设施检测过程中通常会出现一些问题,比如检测标准不一致、检测手段不符合规范等,这都会埋下安全隐患。那么,针对这个问题,首先则要加强对消防安全设施的管理和检测,更重要的是要规范消防安全系统的检测手段。
另外,“武汉市科技攻关”项目的一个研究课题是关于公路隧道火灾安全监控系统的研究,这一研究旨在针对隧道这一特殊环境的突发事件的应对处理寻找出路。通过对公路隧道火灾检测系统的研究现状进行分析之后,设计出了一套更加完备的智能化火灾安全监控系统,这一设计虽然还未被采用,却是智能化消防安全检测系统运用的一个大胆尝试。
三、智能化消防安全检测系统的研究前景
(一)智能化改造,防范于未然
大型变电站的智能化改造。目前,国内很多的变电站都采取了电脑监控,或者基本无人值班模式,但是这样的话容易导致无法及时发现火灾和灭火,很容易造成巨大的损失。通过采用现代技术,将变电站已有的消防报警、监控、照明、探测及灭火装置等设备进行整合,形成一套智能化的集成系统,这既可以满足变电站无人值班的安全管理需要,又能及时监测火灾隐患。
消防设备的智能化改造。随着城市生活水平的不断提升,商场、学校、社区、公共娱乐场所等大型公共建筑、民用建筑和工业建筑的不断增多,将这些场所的消防设备进行智能化改造更是刻不容缓,消防安全检测系统的智能化,能够更好的检测出设备的故障和损坏,以便及时维修护,防范于未然。
(二)特殊领域智能化系统的运用
智能化系统已在国内的石油化工、电力、建筑、交通、冶金等领域有较为广泛的采用,而且这个系统能够适用于很多人为无法操作的特殊环境,比如隧道的火灾检测。将隧道消防安全检测系统、视频监控系统与消防灭火设备等进行联动,能够有效检测与处理隧道火情的发生。
四、结语
远程控制、实时监控和精确检测是在“智能化”的基础上得以实现的,智能化是社会发展的高级阶段,已经深入社会生活的各个领域。消防安全检测系统智能化能够更好的保障人民的生命财产安全,是大势所趋。
参考文献
[1]黄友诚.智能化消防控制系统[J].电工技术,2006(12):6-8.
[2]周劲,李仕龙,黄铭生.关于建筑消防设施检测问题的几点思考[J].2012,(2):65-67.
[3]张润华.浅谈消防设施检测与消防安全[J].科技向导,2013(05):120.
智能化系统研究范文5
[关键词] 宁夏;智能旅游;信息系统;设计;VB
doi:10.3969/j.issn.1673-0194.2015.02.136
[中图分类号]F59 [文献标识码]A [文章编号]1673-0194(2015)02-0184-04
国务院于2009年12月颁布《关于加快发展旅游业的意见》(国发[2009]41号),将旅游业定位为国民经济的战略性支柱产业和人民群众更加满意的现代服务业,进一步提升了旅游业在国民经济中的战略性地位。宁夏回族自治区党委、政府将旅游业定为新的经济增长点和特色产业来培育,确立了以打造“西部独具特色旅游目的地”和“面向阿拉伯国家和穆斯林地区的国际旅游目的地”为目标的宏伟蓝图,目前已经形成了以两山一河(贺兰山、六盘山、黄河)、两沙一陵(沙坡头、沙湖、西夏陵)、两文一景(回族文化、西夏文化、塞上江南特色景观)为核心的A级以上景区31家,其中4A级及以上景区11家,在中国西北旅游圈发展格局中占有了一席之地,旅游业的快速发展取得了极好的业绩和经济效益,2010年接待国内游客就已经突破1000万人次,入境游客1.79万人次,实现旅游总收入67.8亿元,相当于全区GDP的4.12%。但宁夏传统的旅游管理方式已远远不能满足游客多层次的需求和旅游资源的动态变化趋势,信息技术在旅游行业里的应用范围窄、深度浅,成为旅游行业快速稳步发展的“瓶颈”,其中信息化和智能化管理是亟待解决的关键技术问题之一,迫切需要借助以空间信息处理为核心的地理信息系统(GIS)技术支撑,构建具有内容丰富,功能强大的空间信息管理系统、空间信息分析系统、空间信息查询系统及三维影像显示系统等功能的智能化旅游管理信息系统。因此,本文将地理信息系统技术和多媒体制作技术引入到宁夏回族自治区的旅游系统中来,开发具有编辑测量、精确定位、信息查询、资源动态管理和路径优化决策模块的宁夏智能化旅游信息系统,实现空间数据与属性数据关联的多媒体地图和全区旅游资源的高效利用与管理,以此整合宁夏全省现有旅游资源,进一步缩小与其他省份之间的信息化水平差距,为实现宁夏旅游产业跨越式发展提供信息管理技术体系保障,同时为游客带来前所未有的便利和全新的服务。
该旅游信息系统旨在实现以下几个具体目标:一是结合宁夏典型旅游景区及周边进行旅游资源的实地勘察与调研,构建宁夏智能旅游信息管理系统的理论基础和模型体系架构;二是旅游资源普查及数据库关联构建:在各县区旅游资源及旅游支撑系统普查的基础上,经宏观分析、计算、提炼、研究,完成空间数据库设计和属性数据库设计及关联关系创建;三是在统计分析宁夏旅游综合资源与旅游行业属性数据和景区及周边空间数据的基础上,通过系统分析、系统总体设计和数据库设计,使用现今流行的GIS软件如MapX、Supermap等,程序设计语言使用主流的开发语言进行混合编程如、JAVA等,以及使用Authorware、Flash等多媒体制作软件作为动态交互部分的开发平台,开发出包含景区及周边旅游资源分析、景区及周边发展条件分析、游客源市场分析、景区及周边环境的空间分析和景区及周边经营管理中的静态与动态的空间分配和利用率分析等功能,实现空间数据与属性数据关联,以及多媒体图形化显示目标的宁夏智能化旅游信息系统。
1 国内外研究及技术现状
现代旅游业的快速发展,旅游需求更加趋向多样化,游客对获取旅游信息的要求更高,旅游资源管理面临复杂化变化趋势,对旅游信息化技术的发展与应用也提出了更高的要求。纵观国外对旅游信息管理系统的研究[1-6],国外旅游信息管理系统主要有三种空间尺度的系统形式:第一种是以国家空间尺度信息系统,通过核心计算机数据库及其服务器的转换和连接,使各个终端进入系统数据库,以此整合、协调和运行全国范围内的旅游信息,如丹麦的国家旅游目的地信息系统;第二种是区域空间尺度的信息系统,该类系统主要面向区域性游客出行、酒店、门票预订和游线的信息和查询为目的,其数据库信息的更新快捷和针对性更加贴近游客,如奥地利罗尔旅游管理信息系统和瑞士阿彭策尔旅游管理信息系统,该方式以用户电脑终端为基础,由景区的旅游资源、旅游设施、地理环境等方面的详细的信息数据库组成,单体用户终端通过专用软件与地区性信息系统实现联网;第三种是跨区协作旅游信息系统,该类系统主要是为了满足跨地区和国际之间的旅游信息沟通与共享,采用视频传输系统,通过视频传输技术连接信息系统数据库和用户,直接实现图像之间的传输,用户就可以获取旅游地景观图像,与旅游景区保持联系,这就极大地丰富了旅游管理信息系统数据库的内容。以此大大提高了经济效益、工作效率、服务质量;同时,提高了智能化管理旅游资源和提高旅游系统效率的途径,同时也是成为强化国际旅游市场竞争的重要手段。
国内相关研究远远迟于欧美国家,从20世纪80年代初期才开始进行的。通过引进、借鉴、消化吸收国外技术经验,在理论和实践方面均取得了长足的进步,主要表现在三个方面国:第一,理论研究方面,着眼于面向管理者和旅游者的旅游信息系统查询、资源管理、游前体验目的[7-9],在GIS软件组件式和模块构成的集成、整合和多空间尺度的旅游信息多媒体表达方面[10-13],形成和发表了一系列专著和论文。初步形成了以旅游信息科学为载体的学科体系[14];第二,旅游信息系统实践应用方面,在吸纳整合国内外组件式GIS软件公司MapX、SuperMap的技术性挂件的基础上,中科院遥感所、湖南地质遥感所、青海省由中国科学院青海盐湖研究所与青海师范大学、中科院遥感应用研究所和中国科学院成都山地与环境灾害研究所等科研院所及高校陆陆续续建立了面向管理层的由地理信息基础库[15-17]、旅游资源库、服务设施库、游客统计库、资料库组成的旅游资源信息系统[18-25],和面向游客的区域旅游信息系统(Tourist-oriented Regional Tourism Information System,TORTIS ),后期系统在模块构建方面做了进一步的优化提升,增加了数据输入模块、查询检索模块、路线选择模块、显示输出模块、系统界面模块等,提高了用户需求的满足和可操作性;第三,由于大数据和云计算的兴起,引发了对智慧旅游系统的关注和构建[26-31],在2011年1月在全国旅游工作会议上,邵琪伟局长在报告中提出了开展“智慧旅游城市”试点建设。北京市、南京市、吉林省、四川省、大连市、苏州市、黄山市、温州市、武夷山、镇江等两省八市成为首批试点地区。2012年5月国家旅游局又公布了第二批“智慧旅游城市”试点名单,增加了无锡市、常州市、扬州市、南通市、武汉市、成都市、福州市、厦门市、烟台市、洛阳市等十个城市。九寨沟等景区作为智慧旅游系统的先行者和实践者在众多院士和区域学者的引领下,做了积极有效的尝试和构建,取得了一定的效率提升和综合效益。
综上所述,国内外旅游信息系统的研究和实践方面均取得了较大的成绩,但依然存在针对游客实际需求和期望信息采集、处理和分析技术系统研究的缺失和不足,主要表现为比较重视硬件投资而忽视了针对具体区域的软件信息技术的独立研发和整合应用,由此限制了旅游资源信息系统的功能和吸引力。迅速膨胀的技术经济和知识经济已经将宁夏等边远省份远远抛在后面,主要在信息系统的空间信息的表达和分析功能非常缺乏,信息系统中的信息相当贫乏等,这对于对接国线旅游市场和满足日新月异的旅游者需求方面已经存在较大短板,显然不能适应当今信息时代的旅游业发展要求和智慧旅游的发展潮流。因此,有必要以宁夏典型旅游景区为依托展开理论和实践研究。
2 系统设计内容及技术构架
2.1 系统设计内容
2.1.1 理论基础对比研究与技术可行性分析
结合宁夏典型旅游景区及资源的实地调查,宁夏智能化旅游信息管理平台(以下简称旅游平台)的构建是对传统的旅游行业的管理与发展进行深入研究和探讨,分析了存在的行业短板,提出了行业解决方案,对旅游平台所采用的方法、技术进行探索与可行性论证。
2.1.2 基础旅游资源普查、分类与评价模型构建
对宁夏各县市典型景区旅游资源及周边旅游支撑系统调研的基础上,采用基于景观生态学的景观评估模型的综合评价法和基于时间序列分析方法的三次指数平滑法建立旅游信息系统的评价及预测模型。经宏观分析、计算、提炼、研究,完成空间数据库设计和属性数据库设计及关联关系创建,并进行数据的优化分析和统计,实现对景区的评价和预测,将结果以图形、图表等直观可视化形式表现出来。
2.1.3 空间数据库及属性数据库的设计与关联构建
空间数据主要由基础地理信息数据和专题地理信息数据组成,各空间数据按其特征以图层的方式分层存储。其中基础地理信息数据划分为一些最基本的地图图层,如省界、市界、区界、道路、水系等,专题地理信息数据则由景区、景点、周边娱乐、购物、交通等组成。按照数据分类编码体系规范化分类编码,采用分层存储,并且赋予各层地理数据属性,每个图层包括整个地图的一个方面,图上所有要素均按点、线、面要素分层。
专题地理信息数据库由旅游资源数据库和旅游服务设施数据库组成。主要包括景区、景点、娱乐、购物、宾馆、饭店、医院等的配套服务及设施的分布数据。本系统利用电子地图工具里的分层技术,将专题地理信息数据库中涉及到的景区景点及相关信息按照一定的标准分类,分别组织到不同的图层,每一个属性图层里的内容都使用特定的图符表示并对应不同的数据源,即每一个图层都是空间地图与属性地图的相互配合的分层数据。
属性数据库的数据通过两种图形对照法和预先建立属性表格法输入宁夏典型景区旅游资源、旅游设施等方面的主要属性,然后根据标示关键词和图形之间的链接,建立数据库与关系数据库的关联。
2.2 系统构架
通过对宁夏旅游业现状的分析该平台以分单元的形式(即:管理系统单元、全景虚拟体验系统单元、客流统计系统单元和电子导游系统单元等四个单元)(见图1),将各单元功能有效的组合,通过管理系统单元统一各单元的数据标准和接口,以实现有效数据的采集和分析实现建设目标。
第一单元:管理系统单元主要分为内网和外网部分,内网以数据统计分析及各项报表功能为主,外网以信息、景点展示、旅游产品、纪念品等电子商务的功能为主,旨在智能便捷的为游客提服务,在使用GIS技术的同时,引入了景观评估模型。使得原本抽象的模型变得更加直观,方便了管理部门决策;同时也为游客提供了更好的出行参考。
第二单元:全景虚拟体验系统单元主要是景点展示、说明、虚拟体验为主与管理系统单元的外网部分相结合,利用现今流行的全景拍摄技术与Web技术相结合,对景区的景点实现街景地图的效果,使用户如身临其境的感官体验,并能更多的了解自己感兴趣的景区景点。
第三单元:客流统计系统单元主要以客流数据的采集、统计、分析为主,通过客流统计与预警系统,可以做到人流预警,解决人员密集时段的预知,并为场所经营者提供准确的客流信息,及时发现重大的客流安全隐患,帮助场所管理人员在客流高峰时期采取适当的措施,正确引导客流,避免事故的发生。该单元与管理系统单元的内网系统相结合。
第四单元:电子导游系统单元是通过多媒体技术开发适用于手机操作系统和专用数据终端的应用软件,即能自动通过语音导览终端机进行讲解;同时,同步显示讲解点图片信息,实现走到哪,对应讲解到哪。该单元与管理系统单元的内网相结合。
3 系统设计与开发
3.1 系统设计程序
根据宁夏旅游行业需求分析和实际应用分析,宁夏智能化旅游信息平台(以下简称旅游平台)通过四个单元的内容组成结构,基于B/S架构以Web GIS技术为支撑,借助Ajax异步交互及GIS空间分析功能等技术,使用JAVA、、C#.net、等开发语言和SQL Server数据库进行混合编程,分为以下几个子系统。
3.1.1 景区评估规划
建立评估模型,通过专家评测,游客评价,对景区的合理规划提供技术参考和建议意见,保证景区的最佳景观效果和管理模式,通过旅游区热度统计,区域吸引力评价,规划热门景区线路和主题线路。
3.1.2 旅游门户网站
以电子地图、三维模拟和实景体验等形式,基于手机、PAD、浏览器多个终端,为游客提供信息浏览、查询、导航等人性化的服务,并对景区所在地的各项基础地理信息、旅游资源及周边设施进行统一管理。
如以吃为主的饭馆、酒店、特色农家乐等,以住为主的宾馆、旅馆等,以行为主的旅游社团等,以及涉外机关、交通、邮电、银行、医疗等配套服务设施的相关信息、天气实时信息的查询等相关旅游服务的管理。
3.1.3 客流统计分析
采用视频式客流统计,对客流数据进行统计分析和挖掘,通过采集到的流量数据,用跟踪层的方式,动态的显示在地图上,可做到每天24小时的流量动态显示,这种基于模型的机器视觉技术,能准确地统计通道口出入人数和提供人群流动方向等信息,为科学决策提供数据支持。
3.1.4 移动智能导览
基于手机终端APP,在景区内建立布局合理的wifi热点,游客可用手机扫描二维码,安装手机导览系统,为游客提供景区导游和位置服务;同时,可接入景区的人流统计疏导系统,为游客提供导游、查询和实时客流疏导提醒等服务。
3.2 关键技术突破
3.2.1 景区评估和游客评价模型的建立
通过引入基于景观生态学的景观评估模型和基于景区地图应用服务的游客评价系统,实现景区管理部门对旅游资源的开发应用和保护,更具科学性和可持续发展性。
3.2.2 客流采集分析
采用基于模型的机器视觉技术,将统计的人数和人群流动方向等信息,与电子地图的跟踪层方式相结合,实现动态实时的流量数据。
3.2.3 无线定位算法
基于WiFi射频信号强度的权重值选择的定位算法。该算法是基于WiFi射频指纹的空间定位法,移动终端通过获得WiFi有效范围内的射频指纹特征,为每个扫描到的WiFi射频指纹设定了选择区间,指纹库中落在此区间的所有位置点设平均权值,最后选取权重值最大的WiFi射频信号为待定位点,如有相同权重值的WiFi射频信号,则比较信号强度距离取最小值,通过这种算法在一定程度上克服了WiFi射频指纹信号随机抖动对定位的影响,提高了定位的稳定性和精度。定位算法运行于服务端,客户端为配备WiFi模块的Android手机。借助该定位系统,解决了当卫星信号受到各种障碍物遮挡或干扰时,无法定位或误差较大的问题。
3.3 主要模块与特色功能
3.3.1 主要模块
地图操作:平移、拉框放大、拉框缩小、全副显示、距离量算、面积量算、清除高亮、鹰眼图、比例尺、指北针等辅助操作工具。
空间查询:提供中心点查询、多边形查询、拉框查询等空间查询操作。
属性查询:用户以感兴趣的分类别(历史景观、自然景观、人文景观、其他)景点为中心,可进行属性查询和简单空间查询。
路径分析:通过一个站点列表,将在地图上拾取的若干路径站点包含进来,对他们按照自己的需求进行增删、调序之后,进行路径分析。
景观评估:相关专家通过登录景观评估平台,根据评估模型进行判断评分。平台通过统计分析算法将评分结果自动生成图表和地图。管理员可以登录平台进行评分模型的权重进行增加、删除或修改。
地图自助服务:游客可以在景区地图上自助标注、发表意见、并查看,管理员通过后台管理系统可回复和删除游客自助的标签和发表的意见。
游客评价:游客在前台根据管理员设置的评价说明选项进行评价。管理员后台登录编辑评价选项。
流量变化查看:打开流量查看,出现流量图例页面,选择时间,通过点击控制轴上两边的箭头来丝24小时内的流量变化情况,并且在控制轴的右侧会显示当前丝吹氖奔涞恪
出租计价:选择起始点和终止点下拉列表框中的选择项,进行简单的出租线路总长度和费用的计算。
移动导览:将手机APP应用安装在手机终端上,根据景点位置信息找到地图上的景点,并标记出来,当靠近该景点或点击景点,便可以转到景点的介绍界面,可看到景点的图片、文字说明,同时还有语音讲解。在游览的同时,还可见自己的见闻分享到微信中,并有方便的景区周边资源的查找功能和语言设置。
3.3.2 特色功能
第一,使用目前流行的JAVA与.NET混合编程的技术,界面设计新颖独特,集视频、动画、交互和街景于一体,操作使用便捷,接口灵活,具有多平台兼容等优势。
第二,系统借鉴经典三层架构结合WCF进行开发,代码结构合理,易于维护。
第三,路径分析更具人性化,用户既可点选地图任意点进行多点路径分析,又可将地物查询果加入分析列表进行分析,同时可对列表中的站点进行位置调整、删除等操作。
第四,基于模型的机器视觉技术,对行人进行精确定位、跟踪,统计准确率达95% 以上。
第五,无线定位技术的应用,是对GPS 的有力补充。在移动智能导览系统中,集成了基于权值选择的无线信号强度获取目标位置信息的位置算法,在一定程度上减少了GPS信号由于干扰或漂移引起的定位误差,提高了游客位置信息的精确度。
4 讨论与不足
本文立足解决限制宁夏旅游业进一步稳定快速发展的信息化和智能化的“瓶颈”问题,借助以空间信息处理为核心的地理信息系统(GIS)技术支撑,构建具有强大的空间信息管理、空间信息分析、空间信息查询及三维影像显示等功能的智能化旅游管理信息系统。
通过引入了基于景观生态学的景观评估模型和基于地图服务的互动平台以及游客评价系统,采用基于模型的机器视觉技术和基于WiFi射频信号强度的权重值选择的定位算法。整合管理系统单元、全景虚拟体验系统单元、客流统计系统单元和电子导游系统单元四个单元于一体,强化游客体验和管理者智能动态化管理的动态导向特征,在一定程度上能够缩小宁夏与其他省区在智能化旅游管理技术上的差距。
但随着智慧旅游一词的问世,建设智慧旅游已经在全国范围内蔚然成风,顺应智慧旅游趋势该系统还有进一步优化和扩展的空间。尤其是大数据技术的引入将推动智慧旅游向更广更深的领域发展,其中一个重要趋向是面向游客深度体验和虚拟体验的关注,在借助智慧旅游最大程度地满足游客个性化需求和提供定制化服务,通过社交媒体和手机定位技术发展如现场救援、需求挖掘,需求响应等相关的新兴旅游服务将是智能化旅游管理信息系统的未来方向。
主要参考文献
[1]P Sheldon . Tourism Information Technology[M]//International Handbook on the Economics of Tourism. Cheltenham,UK:Edward Elgar Publishing Ltd,2006.
[2]G Inkpen . Information Technology for Travel and Tourism[M].Harlow,UK: Pearson Professional Education,1994.
[3]H Werthner,S Klein. Information Technology and Tourism:A Challenging Relationship[M]. New York,NY:Springer, 2005.
[4]D Buhalis.Tourism:Information Technology for Strategic Tourism Management[M].Upper Saddle River,NJ:Prentice Hall, 2003.
[5]P O’Connor . Electronic Information Distribution in Tourism and Hospitality[M]. Wallingford,UK: CAB International Publishing, 2004.
[6]D Buhalis .Tourism Distribution Channels: Practices,Issues and Transformations[M].London ,UK: Continuum Publishing, 2001.
[7]罗平,黄耀丽,何素方.基于GIS和多媒体集成的旅游信息系统开发与实践[J].测绘通报,2001(12):25-27.
[8]向华,许晓宏,段刚,等.基于ActiveX技术开发数字化旅游信息系统[J].地理空间信息,2004 ,2 (1):29-31.
[9]李晓黎.张巍.Visual Basic+SQL Server数据库应用系统开发与实例[M].北京:人民邮电出版社,2003.
[10]北京超图地理信息技术有限公司.SuperMap Deskpro用户手册[Z].2001.
[11]北京超图地理信息技术有限公司.理解Supermap GIS[Z].2003.
[12] 北京超图地理信息技术有限公司.理解Supermap IS .NET[Z].2004.
[13]董宏超,周庆龙,唐勤学.一种分布式GIS体系结构的设计与实现[J].后勤工程学院学报,2004(1):30-32.
[14]李君轶,马耀峰.基于GIS的区域旅游规划与管理信息系统设计[J].陕西师范大学学报:自然科学版, 2002, 30 (2) :116-121.
[15]曾思育,傅国伟.地理信息系统技术及其在环境工程领域中的应用[J].遥感信息,1997 (4) :7-10.
[16]陈蔷.基于GIS的福建省旅游信息系统研究[J].经济地理,2002(1):120-123.
[17]沈忠环.基于GIS技术的城市旅游地理信息系统[J].信息技术,2005 (2):18-19.
[18]陈正江,汤国安,任晓东.地理信息系统设计与开发[M].北京:科学出版社.2005.2.
[19]黄怡然.基于INTERNET的旅游信息系统研究[J].计算机应用研究,2000(1):114-117.
[20]刘琴,沙润.旅游规划信息系统的研建[J].地理学与国土研究,2002,18 (3): 30-33.
[21]胡云.我国旅游业的信息化建设与发展[J].城市问题,2004(2):51-52.
[22]刘颂,许世远.GIS在旅游管理和开发中的应用[J].曲阜师范大学学报,2000,26(2):91-93.
[23]郑祖金.基于MapX开发灌区管理信息系统[D].武汉:武汉大学,2005.
[24]张剑平,任福继,叶荣华,等.地理信息系统与MapInfo应用[M].北京:科学出版社,1999.
[25]刘丹,郑坤.组件技术在GIS系统中的研究与应用[J].地球科学,2002(3):263-266.
[26]宋扬,李见为.基于组件式地理信息系统的二次开发[J].重庆大学学报,2000(6):121-123.
[27]唐俊雅,伍世代.旅游管理信息化探析[J].福建师范大学学报:自然科学版,2002,18 (3) :12-15.
[28]丁伯阳,陶海冰.基于VB+MapInfo下GIS软件的开发[J].武汉大学学报:工学版,2003(1):178-181.
[29]齐超,何新华,蔡红柳,等.利用MapX控件构建地图应用[J].电脑与信息技术,2005 (5) : 21-24.
智能化系统研究范文6
关键词:智能浇花系统;微信平台;系统设计;小程序开发;硬件电路;自动浇水模式;远程浇水模式
随着社会和科技的进步,人们更加注重自己的生活品味,花卉植物也因此被更多的人关注,越来越多的人选择在生活中去种植一些喜欢的盆栽植物,但是由于现代人快节奏的生活特点,许多人都面临着经常出差的问题,长时间在外出差导致人们无法对家里的盆栽进行长时间的照料,许多植物因为长时间没有获取水分而枯萎。因此,设计一款智能的浇花系统以解决该问题很有必要[1⁃3]。该系统以Arduino单片机为主控部分,通过传感器对周围环境进行感知,WiFi模块用于数据的发送和接收,通过微信小程序查看植物的生长环境,并发送特定的命令进行调节[4⁃7]。
1系统总体设计
该系统由硬件和软件两个部分构成。硬件部分主要以Arduino开发板为技术核心,利用湿度传感器获取土壤湿度值,并通过ESP8266模块实现信息的发送和接收[8⁃10]。软件部分使用者通过微信小程序观察到小程序界面上显示的植物实时状况后,通过控制小程序发送指令,再利用继电器操控微型水泵对植物进行浇水。系统总体结构如图1所示。图1系系统使用Arduino作为主控芯片,用土壤湿度传感器以及温湿度传感器检测植物周围的生长环境,通过WiFi模块将数据同步到手机客户端并进行调节[11⁃13]。
2系统硬件设计
系统硬件主要包括单片机最小系统、温湿度传感器、土壤湿度传感器、WiFi模块、继电器模块。
2.1单片机最小系统
本系统选用的主控模块是ArduinoUNOR3,该类型号的单片机可以运行Windows、MacintoshOSX、Linux操作系统。该模块由单片机和相关电路组成,正常工作电压为5V,输入电压为6~20V,可以通过USB数据线烧录程序[14⁃15]。
2.2DHT11温湿度传感器
温湿度传感器模块型号为DHT11,其工作电压范围是3.3~5V,其内部设有2个不同的电阻,即湿敏与热敏电阻,可以比较精准地测量出空气中的湿度和温度值。该传感器内部包含有数据存储器,用来把测量到的数值保存进去,在使用者每次测量的过程中,大大节约了时间,不必重复的测量。其特点为需要消耗的功率值较低、体积较小、被测量到的范围较大。
2.3YL⁃69土壤湿度传感器
本设计采用的土壤湿度传感器型号为YL⁃69,土壤湿度阈值的大小依靠电位器调节,小板模拟量的输出引脚AO能够与A/D转换器连接,利用A/D进行改变,进而得到更加准确的土壤湿度值,并经过杜邦线将数据信息传递给Arduino单片机,通过和预先设置的阈值对比,当判断土壤缺水时,土壤湿度检测器的输出值会减小,反之,它的输出值会变大。
2.4ESP8266通信模块
该系统的通信部分主要由WiFi模块ESP8266、CH340烧录器组成。WiFi模块ESP8266用来建立通信,CH340烧录器的功能主要用来给WiFi模块烧录程序。该模块与手机客户端之间通过WiFi模块ESP⁃01建立通信连接。通信模块接收到指令后,就会通过Arduino单片机指挥马达风扇和微型水泵降温、浇水。ESP⁃01电路图如图2所示。
2.5继电器模块
该部分由2个继电器、1个微型水泵和1个马达风扇共同组成。继电器是一种用小电流控制大电流的电控制元器件,通过将高低电平发送到继电器,根据高低电平控制风扇和水泵的工作状态。当植物周围生长环境中的温度高于系统预设值时会被DHT11检测到,然后Arduino将控制马达的信号传递给继电器,以此驱动小风扇工作。
3系统软件设计
基于WiFi的智能浇花系统的软件设计采用的编程环境是ArduinoIDE,服务端采用巴法云平台创建主题,用WiFi模块订阅后,通过微信小程序进行用户与系统之间的信息交互。
3.1主程序设计
该系统软件部分由ArduinoIDE编写和烧录,Arduino核心板连接到自制电路的主控制板的串行端口,数据交互通过软硬件的组合执行。使用ArduinoIDE软件编译主控制代码,并将其上传到Arduino核心板。Arduino将硬件检测部分测得的数据通过服务端实时发送到用户的客户端。用户将实时观测植物的生长环境数据,同时可以使用客户端微信小程序将系统预设指令发送到服务端,再由服务端将接收到的指令发送到主控单元,主控单元对接收到的指令进行数据处理,实现了使用风扇和微型水泵进行降温和浇水的功能,系统软件主程序流程图如图3所示。1)土壤湿度值的设定通过查阅相关资料发现土壤湿度过高,会影响土壤的通气度,也会影响土壤微生物的正常生命活动,导致植物无法正常生长。土壤的湿度越高,土壤湿度检测器测量到的数值也就越大。通常情况下,土壤湿度在17%RH~44%RH范围内为好。因此将土壤湿度的阈值设为40%RH,当湿度小于等于40%RH时,该系统通过继电器控制水泵,实现浇水的功能,每次水泵工作的时间为3s,直到土壤湿度高于40%RH时,水泵停止工作。图3主程序流程图2)判定环境温度参考相关资料信息发现,通常情况下,25~30℃的环境温度范围内适合植物生长,因此,设定温度阈值为30℃。当温度大于等于30℃时,控制风扇转动30s。当通信模块没有接收到指令时,就会处于自动浇水模式,系统对植物周围的环境自动调节。这一模式下的处理过程如图4所示。图4自动浇水模式流程图当通信模块接收到指令时,首先进行指令识别:是否为初期设定指令,如果不是,则工作模式不改变;如果是初期设定指令,则进行相应的浇水工作或降温处理。这一模式下的工作过程如图5所示。
3.2服务端
要实现远程控制的功能,有很多可供选择的云平台,本文选择巴法云平台。巴法云平台的接入主要有以下几个步骤:1)在巴法云控制台创建主题,主题名称采用字母或数字或字母+数字组合的格式。2)让ESP8266模块订阅在该平台创建的主题,这一模块通过修改平台中所提供案例的部分信息完成,最终烧录到单片机上。3)往该主题推送消息:由于此前已设置ESP8266模块订阅了在巴法云创建的主题,因此单片机可以收到消息,然后依据消息执行相应的工作,可以通过APP、控制台以及小程序等推送消息。
3.3客户端
该系统的客户端是手机微信小程序,在微信公众平台注册成功后,填写小程序的基本信息,如:名称、头像、介绍等。完成开发者绑定后,下载开发者工具开发程序,在微信开发者工具中导入项目的AppID。程序上传成功后,小程序界面如图6所示。扫描小程序二维码,点击自动浇水模式,可以看到植物周围的生长环境以及风扇、水泵的工作状态,自动浇水模式小程序界面如图7所示。点击远程浇水模式,除了可以看到植物周围的生长环境以及风扇、水泵的工作状态外,还可以人为发送指令使得风扇、水泵进行工作,远程浇水模式小程序截面图如图8所示。
4结语