纳米复合材料范例6篇

前言:中文期刊网精心挑选了纳米复合材料范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

纳米复合材料

纳米复合材料范文1

[关键词]碳纳米管;复合材料;结构;性能

自从 1991 年日本筑波 nec 实验室的物理学家饭岛澄男(sumio iijima)[1]首次报道了碳纳米管以来,其独特的原子结构与性能引起了科学工作者的极大兴趣。按石墨层数的不同碳纳米管可以 分 为单壁碳 纳 米管(swnts) 和多壁碳 纳 米管(mwnts)。碳纳米管具有极高的比表面积、力学性能(碳纳米管理论上的轴向弹性模量与抗张强度分别为 1~2 tpa 和 200gpa)、卓越的热性能与电性能(碳纳米管在真空下的耐热温度可达 2800 ℃,导热率是金刚石的 2 倍,电子载流容量是铜导线的 1000 倍)[2-7]。碳纳米管的这些特性使其在复合材料领域成为理想的填料。聚合物容易加工并可制造成结构复杂的构件,采用传统的加工方法即可将聚合物/碳纳米管复合材料加工及制造成结构复杂的构件,并且在加工过程中不会破坏碳纳米管的结构,从而降低生产成本。因此,聚合物/碳纳米管复合材料被广泛地研究。

根据不同的应用目的,聚合物/碳纳米管复合材料可相应地分为结构复合材料和功能复合材料两大类。近几年,人们已经制备了各种各样的聚合物/碳纳米管复合材料,并对所制备的复合材料的力学性能、电性能、热性能、光性能等其它各种性能进行了广泛地研究,对这些研究结果分析表明:聚合物/碳纳米管复合材料的性能取决于多种因素,如碳纳米管的类型(单壁碳纳米管或多壁碳纳米管),形态和结构(直径、长度和手性)等。文章主要对聚合物/碳纳米管复合材料的研究现状进行综述,并对其所面临的挑战进行讨论。

1 聚合物/碳纳米管复合材料的制备

聚合物/碳纳米管复合材料的制备方法主要有三种:液相共混、固相共融和原位聚合方法,其中以共混法较为普遍。

1.1 溶液共混复合法

溶液法是利用机械搅拌、磁力搅拌或高能超声将团聚的碳纳米管剥离开来,均匀分散在聚合物溶液中,再将多余的溶剂除去后即可获得聚合物/碳纳米管复合材料。这种方法的优点是操作简单、方便快捷,主要用来制备膜材料。xu et al[8]和lau et al.[9]采用这种方法制备了cnt/环氧树脂复合材料,并报道了复合材料的性能。除了环氧树脂,其它聚合物(如聚苯乙烯、聚乙烯醇和聚氯乙烯等)也可采用这种方法制备复合材料。

1.2 熔融共混复合法

熔融共混法是通过转子施加的剪切力将碳纳米管分散在聚合物熔体中。这种方法尤其适用于制备热塑性聚合物/碳纳米管复合材料。该方法的优点主要是可以避免溶剂或表面活性剂对复合材料的污染,复合物没有发现断裂和破损,但仅适用于耐高温、不易分解的聚合物中。jin et al.[10]采用这种方法制备了 pmma/ mwnt 复合材料,并研究其性能。结果表明碳纳米管均匀分散在聚合物基体中,没有明显的损坏。复合材料的储能模量显著提高。

1.3 原位复合法

将碳纳米管分散在聚合物单体,加入引发剂,引发单体原位聚合生成高分子,得到聚合物/碳纳米管复合材料。这种方法被认为是提高碳纳米管分散及加强其与聚合物基体相互作用的最行之有效的方法。jia et al.[11]采用原位聚合法制备了pmma/swnt 复合材料。结果表明碳纳米管与聚合物基体间存在强烈的黏结作用。这主要是因为 aibn 在引发过程中打开碳纳米管的 π 键使之参与到 pmma 的聚合反应中。采用经表面修饰的碳纳米管制备 pmma/碳纳米管复合材料,不但可以提高碳纳米管在聚合物基体中的分散比例,复合材料的机械力学性能也可得到巨大的提高。

2 聚合物/碳纳米管复合材料的研究现状

2.1 聚合物/碳纳米管结构复合材料

碳纳米管因其超乎寻常的强度和刚度而被认为是制备新一代高性能结构复合材料的理想填料。近几年,科研人员针对聚合物/碳纳米管复合材料的机械力学性能展开了多方面的研究,其中,最令人印象深刻的是随着碳纳米管的加入,复合材料的弹性模量、抗张强度及断裂韧性的提高。

提高聚合物机械性能的主要问题是它们在聚合物基体内必须有良好的分散和分布,并增加它们与聚合物链的相互作用。通过优化加工条件和碳纳米管的表面化学性质,少许的添加量已经能够使性能获得显著的提升。预计在定向结构(如薄膜和纤维)中的效率最高,足以让其轴向性能发挥到极致。在连续纤维中的添加量,单壁碳纳米管已经达到 60 %以上,而且测定出的韧度相当突出。另外,只添加了少量多壁或单壁纳米管的工程纤维,其强度呈现出了较大的提升。普通纤维的直径仅有几微米,因此只能用纳米尺度的添加剂来对其进行增强。孙艳妮等[12]将碳纳米管羧化处理后再与高密度聚乙烯(hdpe)复合,采用熔融共混法制备了碳纳米管/高密度聚乙烯复合材料,并对其力学性能进行了研究。结果表明:碳纳米管的加入,提高了复合材料的屈服强度和拉伸模量,但同时却降低了材料的断裂强度和断裂伸长率。liu 等[13]采用熔融混合法制得了 mwnt/pa6(尼龙 6)复合材料,结果表明,cnts 在 pa6基体中得到了非常均匀的分散,且 cnts 和聚合物基体间有非常强的界面粘接作用,加入 2 wt%(质量分数)的 mwnts 时,pa6 的弹性模量和屈服强度分别提高了 214 %和 162 %。总之,碳纳米管对复合材料的机械性能的影响,在很大程度上取决于其质量分数、分散状况以及碳纳米管与基质之间的相互作用。其他因素,比如碳纳米管在复合材料中的取向,纤维在片层中的取向,以及官能团对碳纳米管表面改性的不均匀性,也可能有助于改善复合材料的最终机械性能。

2.2 聚合物/碳纳米管功能复合材料

2.2.1 导电复合材料

聚合物/碳纳米管导电复合材料是静电喷涂、静电消除、磁盘制造及洁净空间等领域的理想材料。ge 公司[14]用碳纳米管制备导电复合材料,碳纳米管质量分数为 10 %的各种工程塑料如聚碳酸酯、聚酰胺和聚苯醚等的导电率均比用炭黑和金属纤维作填料时高,这种导电复合材料既有抗冲击的韧性,又方便操作,在汽车车体上得到广泛应用。lnp 公司成功制备了静电消散材料,即在 peek 和 pei 中添加碳纳米管,用以生产晶片盒和磁盘驱动元件。它的离子污染比碳纤维材料要低65 %~90 %。日本三菱化学公司也成功地用直接分散法生产出了含少量碳纳米管的 pc 复合材料,其表面极光洁,物理性能优异,是理想的抗静电材料[15]。另外,聚合物/碳纳米管导电复合材料的电阻可以随外力的变化而实现通-断动作,可用于压力传感器以及触摸控制开关[16];利用该材料的电阻对各种化学气体的性质和浓度的敏感性,可制成各种气敏探测器,对各种气体及其混合物进行分类,或定量化检测和监控[17];利用该材料的正温度效应,即当温度升至结晶聚合物熔点附近时,电阻迅速增大几个数量级,而当温度降回室温后,电阻值又回复至初始值,可应用于电路中自动调节输出功率,实现温度自控开关[18]。

2.2.2 导热复合材料

许多研究工作证明,碳纳米管是迄今为止人们所知的最好的导热材料。科学工作者预测,单壁碳纳米管在室温下的导热系数可高达 6600 w/mk[19],而经分离后的多壁碳纳米管在室温下的导热系数是 3000~6600 w/mk。由此可以想象,碳纳米管可显著提高复合材料的导热系数及在高温下的热稳定性[20]。wu 等[21]制 备 了 多 壁 碳 纳 米 管 / 高 密 度 聚 乙 烯(mwnts/hdpe)复合材料,并对其热性能进行了深入的研究,实验结果表明:导热系数随着 mwnts 含量的增加而升高。当mwnts 的质量分数达到 38 h,混合材料的导热系数比纯hdpe 的高三倍多。徐化明等[22]采用原位聚合法制备的阵列碳纳米管/聚甲基丙烯酸甲酯纳米复合材料,在氮气和空气气氛下,复合材料的热分解温度比基体材料分别提高了约 100 和60 ℃。在导热性能上,阵列碳纳米管的加人使得复合材料的导热系数达到 3.0 w/mk,比纯 pmma 提高了将近 13 倍。

2.2.3 其它功能复合材料

在碳纳米管/聚合物功能复合材料方面最近有南昌大学纳米技术工程研究中心[23]研制的一种多壁碳纳米管/环氧树脂吸波隐身复合材料。通过对多壁碳纳米管进行高温 naoh 处理,使碳管在其表面产生较多的孔洞,提高碳纳米管的表面活性;制备的吸波隐身复合材料具有良好的雷达吸波效果和可控吸收频段,这种吸波复合材料的体积电阻率在 106~107 ·cm 数量级,具有优良的抗静电能力,这对于调整雷达吸波材料的吸波频段和拓宽吸波频宽有着重要意义。美国克莱姆森大学rajoriat[24]用多壁碳纳米管对环氧树脂的阻尼性能进行了研究,发现碳纳米管树脂基复合材料比纯环氧树脂的阻尼比增加了大约 140 %。

3 制备碳纳米管聚合物复合材料中存在的问题

3.1 碳纳米管在基体中的分散问题

碳纳米管的长径比大,表面能高,容易发生团聚,使它在聚合物中难以均匀分散。如何让碳纳米管在聚合物基体中实现均匀分散是当前需要解决的首要难题。经表面改性的碳纳米管可均匀分散在聚合物基体中,可以利用化学试剂或高能量放电、紫外线照射等方法处理碳纳米管,引入某些特定的官能团。liu j 等[25]首先采用体积比为 3∶1 的浓硫酸和浓硝酸对単壁碳纳米管进行氧化处理,得到了端部含羧基的碳纳米管,提高其在多种溶剂中的分散性。chenqd[26]将碳纳米管用等离子射线处理后引入了多糖链。还可运用机械应力激活碳纳米管表面进行改性,通过粉碎、摩擦、超声等手段实现。

3.2 碳纳米管的取向问题

碳纳米管在聚合物中的取向应符合材料受力的要求,研究表明,通过一定的加工例如机械共混剪切可以改善碳纳米管在聚合物中的取向,从而进一步改善复合材料的性能。jin l[27]将多壁碳纳米管溶解于一种热塑性聚合物溶液中,蒸发干燥制备出碳纳米管呈无序分散状态的薄膜,然后在其软化温度之上加热并用恒定负荷进行机械拉伸,使其在负荷下冷却至室温,发现通过机械拉伸复合物可以实现碳纳米管在复合物中的定向排列。

3.3 复合材料成型问题

当前碳纳米管/聚合物复合材料的成型一般采取模压、溶液浇铸等手段,模压操作简单、易于工业化,但在降温过程中,样品由于内外温差较大会发生表面开裂等问题;溶液浇铸形成的样品不受外界应力等因素的影响,但除去溶剂过程较长,碳纳米管易发生团聚。

此外,聚合物进行增强改性所用的填料由原来微米级的玻璃纤维、有机纤维等发展到如今的碳纳米管,填料尺寸上的变化使复合物材料原有的加工技术和表征手段都面临着新的挑战,需要在今后大力发展原子水平的新型加工技术和表征手段,以适应碳纳米管聚合物复合材料发展的需要。

4 结语

碳纳米管以其独特的性能正在越来越多领域得到应用,随着科学技术的进步当前碳纳米管复合材料制备过程中存在的各种问题会逐渐得到解决,总有一天纳米技术会真正走到人们的现实生活当来,给人们的生活带来翻天覆地的改变。

参考文献

[1]iijima s.heical microtubules of graphitic carbon[j].nature,1991,354:56-58.

[2]wong e w,sheehan p e,lieber c m.nanobeam mechanics:elasticity,strength,and toughness of nanorods and nanotubes[j].science,1997,277:1971-1975.

[3]kim p,shi l,majumdar a,et al.thermal transport measurements ofindividual multiwalled nanotubes[j].physical review letters,2001,87:215-221.

[4]cornwell c f,wille l t.elastic properties of single-walled carbonnanotubes in compression[j].solid state communications,1997,101:555-558.

[5]robertson d h,brenner d w,mintmire j w.energetics of nanoscalegraphitic tubules[j].physical review,1992,b45:12592-12595.

[6]lu j p.elastic properties of carbon nanotubes and nanoropes[j].physicalreview letters,1997,79:1297-1300.

[7]yakobson b i,brabec c j,bernholc j.nanomechanics of carbon tubes:instabilities beyond linear response[j].physical review letters,1996,76:2511-2514.

[8]xu x j,thwe m m,shearwood c,liao k.mechanical properties andinterfacial characteristics of carbon-nanotube-reinforced epoxy thinfilms[j].applied physics letters,2002,81:2833-2835.

纳米复合材料范文2

2016年12月27日,由中国科协科学技术传播中心及北京市科协共同主办,中关村天合科技转化促进中心、中国循环经济科技成果转化促进中心、北京博雅合众环保科技有限公司、石景山区科学技术委员会联合承办的“产业前沿技术大讲堂”第12讲――微纳米复合材料与产业应用专场隆重启幕,大讲堂邀请了业内领衔专家对矿物-TiO2微纳米复合颗粒材料与产业化应用进行解读,并深入阐述了微纳米复合材料与产业应用前景和优势。

矿物与二氧化钛(TiO2)微纳米颗粒复合是将特定组分、特定物相的无机矿物与晶相TiO2实现界面有序复合,并实现复合产物功能化的技术,所形成的新功能材料主要包括矿物-TiO2复合颜料、复合乳浊剂和复合光催化剂等。其中,矿物-TiO2复合颜料具有和钛白粉(二氧化钛颜料)相当的颜料性能,用于涂料、塑料、造纸、油墨、橡胶等材料中,可缓解钛白粉生产与消费中存在的资源、环境、成本、价格等制约问题;矿物-TiO2复合乳浊剂消除了长期以来直接使用含钛乳浊剂导致的陶瓷釉面黄变现象,消除了传统硅酸锆乳浊剂放射性超标、原料加工y、价格高和依赖进口等严重问题。

本期“产业前沿技术大讲堂”深入浅出地讲解了微纳米复合材料在环保方面的优势。矿物-TiO2微纳米复合颗粒材料对缓解我国钛、锆产业资源紧缺、生产过程环境污染和传统建材产业升级、绿色化产品制造、降低成本和提高竞争力有着积极意义。同时,还可充分发挥非金属矿物的优异性能,提升矿产资源的利用价值。

本期活动中,中国地质大学(北京)教授、博士生导师、材料工程学科负责人丁浩作专题报告,中国化工集团公司副总工程师兼军工部、科技部主任,教授级高工,中国氟硅有机材料工业协会专家委员会主任富志侠,环境保护部污染防治司原巡视员李新民,星火金融副总经理杨景芝,上海宥纳新材料科技有限公司董事长兼首席科学家栾玉成等业内专家共同围绕矿物-TiO2微纳米复合颗粒材料在产业升级、环境保护方面的优势进行全方位探讨。

2016年,“产业前沿技术大讲堂”活动聚焦科技成果转化和产业转型升级,搭建科技工作者、地方政府、投资机构、产业园区之间的沟通交流平台。大讲堂系列主题涵盖石墨烯技术及产业化前景、5G通信技术、生物营养增强技术、3D打印技术、北斗技术、量子通信技术等12个专题。活动开展受到了社会各界的热切关注,多家主流媒体参与报道,由腾讯视频进行大讲堂在线同步直播,累计在线点击量破2万。

纳米复合材料范文3

【关键词】 磁性纳米多孔复合材料;致突变试验

DOI:10.14163/ki.11-5547/r.2015.17.017

Research of mutagenicity test for magnetic nanometer perforated composite materials HUANG Yi-hong, ZHU Wei-min, WANG Da-ping. Department of Rheumatology, Shenzhen City the Second People’s Hospital, Shenzhen 518035, China

【Abstract】 Objective To understand and evaluate the biocompatibility of magnetic nanometer perforated composite materials (Nano-HA/PLLA/Fe2O3) by genetic toxicology, in order to provide reference for its clinical application in tendon transplantion fixation. Methods Suspension was made by Nano-HA/PLLA/Fe2O3 magnetic nanometer composite interface fixation material for Ames mutagenicity test, in order to detect its mutagenicity ratio (number of revertant bacterial colony in research group/number of revertant bacterial colony in negative control group) for salmonella typhimurium. Results All the 4 strains in different tested concentrations with or without S9 had mutagenicity ratio as number of revertant bacterial colony in experimental group/number of revertant bacterial colony in control group (Rt/Rc) 2.0. Conclusion Nano-HA/PLLA/Fe2O3 magnetic nanometer composite interface fixation material will not induce increasing number of revertant mutation, which suggests this material contains no mutagenicity.

【Key words】 Magnetic nanometer perforated composite material; Mutagenicity test

本研究通过低温快速成型仪将Nano-HA、PLLA、Fe2O3这三种材料复合制备得到Nano-HA/PLLA/Fe2O3支架材料, 并参照国内外对生物材料评价方面的有关标准, 拟通过Ames 试验从遗传毒理性方面来评价此Nano-HA/PLLA/Fe2O3磁性纳米复合界面固定材料的生物相容性, 从而为其运用于前交叉韧带重建术中移植肌腱界面固定的临床应用提供安全性依据。现报告如下。

1 材料与方法

1. 1 材料 本实验所用的Nano-HA/PLLA/Fe2O3磁性纳米复合界面固定材料由深圳市第二人民医院组织工程重点实验室与中国科学院深圳先进技术研究院联合研制, 立方体(25 mm× 25 mm×25 mm)。Nano-HA/PLLA/Fe2O3材料先用紫外线照射30 min, 经磷酸盐缓冲液(PBS液)浸泡、清洗, 75%乙醇浸泡消毒后干燥备用。

1. 2 实验方法 取Nano-HA/PLLA/Fe2O3磁性纳米复合界面固定材料, 按重量比以2.5%羟甲基纤维素钠溶液配成5 mg/ml, 0.5 mg/ml及0.01 mg/ml三种不同浓度的混悬液受试。菌种采用由美国Ames实验室提供并由湖南省疾病控制中心繁殖保存的鼠伤寒沙门菌组氨酸缺陷型菌株(TA-97、TA-98、TA-100和TA-102), 经性状鉴定合格后进行实验。由于Nano-HA/PLLA/Fe2O3磁性纳米复合界面固定材料是用于人体内植入的, 植入人体后肝细胞微粒体酶系(S9)就有可能诱变HA(假如HA有诱变作用), 而细胞体内无此酶, 为了使实验条件更接近体内环境, 将培养板分为活化实验组(加S9溶液)和非活化实验组(不加S9溶液)。大鼠肝脏微粒体酶系(S9)由多氨联苯诱导, 制成肝匀浆后-80℃冰箱内保存, 使用时用2-氨基芴测定其活力。实验用柔毛霉素(浓度为25 μg/0.1 ml)作为菌株培养时的直接致突变活性指示(不加S9), 2-氨基芴(50 μg/0.1 ml)作为菌株的间接致突变活性指示(加S9);以叠氮化钠(5 μg/0.1 ml)作为阳性对照, 以同样体积生理盐水作为阴性对照。每个菌种的各个剂量组均各设3个平行皿。

通过平板渗入法将不同浓度组混悬液与菌株在最低营养板上混合培养, 经37℃培养48 h后, 分别进行观察菌落数结果。每组取其3个平行培养皿的平均菌落数, 依据出现的致突变比值(如下式计算)检测Nano-HA材料制品中是否存在诱变物质。

致突变比值(MR)= 实验组菌落数(Rt)/ 阴性对照组菌落数(Rc)

2 结果

4个菌株在各个受试浓度待测液在加S9与不加S9的情况下, 致突变比值即实验组菌落数与阴性对照组菌落数的比值(Rt/Rc)均2.0, 据此可以认为Nano-HA/PLLA/Fe2O3磁性纳米复合界面固定材料在Ames试验中无致突变性。

3 讨论

生物相容性是指材料与人体之间相互作用产生各种复杂的生物、物理、化学反应, 以及人体对这些反应的忍受程度[1, 2]。根据ISO10993标准的要求, 生物医学材料长期接触人体或植入人体内组织、血液应进行潜在的遗传毒性方面的生物学评价试验。Ames试验是由美国的B.N.Ames在1975年建立的鼠伤寒沙门菌回复突变试验, 是一种已被公认并广泛开展的致突变鉴定方法。此方法能够在短期内检测医用材料有无致突变性。

本实验将Nano-HA/PLLA/Fe2O3磁性纳米复合界面固定材料浸提液与各标准菌液混合后在最低营养板上培养, 依据出现的菌落数及致突变比值来判断复合人工骨是否存在诱变物质。考虑到材料是用于植入人体的, 为使实验条件更接近体内环境, 以排除人体肝细胞微粒体酶系(S9)可能造成的激活诱变作用(间接诱变), 使得实验更具可信度, 作者在实验中对把材料浸提液的检测分为S9(+)组和S9(-)组, 观察用S9诱发后菌落数有无增加。另外, 在操作及观察结果过程中注意严格无菌操作以排除杂菌污染, 进而保证本试验结果的可靠性。

本试验结果显示, 各菌株在各浓度待测液组中菌落平均数均未超过其相应阴性对照组菌落平均数的2倍(MR2), 证实鼠伤寒沙门菌的组氨酸营养缺陷型突变菌株对受试物的检测有效。本实验说明此Nano-HA人工骨材料无遗传毒性作用, 其用于体内植入是安全的, 这为进一步动物实验及临床应用提供了依据。

参考文献

[1] 郝和平. 医疗器械生物学评价标准实施指南. 北京:中国标准出版社, 2002:81-135.

纳米复合材料范文4

关键词:改性方法 碳纳米管 复合材料 研究进展

中图分类号:TB383

文献标识码:A

文章编号:1007-3973(2012)005-118-03

1 前言

自从1991年碳纳米管被Iijima发现以来,其凭借出众的力学、电学、热学、化学性能、极高的长径比(100—1000)以及纳米尺寸上独特的准一维管状分子结构,表现出运用在未来科技领域里所具有的巨大潜在价值,迅速成为物理、化学、材料科学领域里的研究热点。碳纳米管是由很多碳原子组合在一起形成的石墨片层卷成的中空管体,根据其石墨片层数的不同,可分为单壁碳纳米管(SWNTs)和多壁碳纳米管(MWNTs)。由于碳纳米管主要由碳元素组成,与聚合物的成分相似,所以可以使用CNT来增强聚合物纳米复合材料。随着的生产CNT方法越来越简便,其价格也越来越便宜,这种方法相对于在聚合物中添加含碳填料来改善聚合物性能等传统方法,改性效果更好,市场需求更广,经济前景更乐观。可以预见,在不久的将来CNT将会成为制备聚合物基复合材料的主要原料。

2 碳纳米管的处理

由于其自身固有缺陷,碳纳米管从合成到被应用到复合材料中,需要经过纯化和表面改性两个过程。

2.1 碳纳米管的纯化

目前合成碳纳米管的方法很多,但无论是经典的电弧放电法,还是新兴的水热法、火焰法、固相复分解反应制备法、超临界流体技术法制备成的碳纳米管都不可避免的被各种无定形碳颗粒、无定形碳纤维和石墨微粒等杂质附着,混杂在一起,影响其纳米粒子独有的小尺寸效应、界面效应、量子效应。它们的化学性质也相似,不但给后续制备复合材料带来困难,而且使其性能的发挥受到很大的影响,所以必须进行纯化处理。主要的方法是依靠碳纳米管和杂质对强氧化剂的敏感程度不一样,通过控制氧化剂的用量和氧化反应的时间来达到纯化的目的。目前主要的氧化方法有:气相氧化法、液相氧化法、固相氧化法和电化学氧化法。

2.2 碳纳米管的改性

经过纯化处理的碳纳米管仍然不能直接用来制备复合材料,由于它的惰性表面、管与管之间固有的范德华力、极大的比表面积和长径比,会使其在复合材料基体和溶液体系中产生非常严重的团聚与缠结,不利于创造良好的界面和在聚合物中的均匀分散及其优异性能的发挥。因此为了增加碳纳米管与聚合物基体间的界面粘结力,防止界面发生滑移,需要对碳纳米管实施表面改性。

目前从本质上来说,CNT改性方法主要有2种:共价键改性(化学改性)和非共价改性(物理改性)。

2.2.1 共价键改性

共价键改性是利用接枝、氧化等手段直接在CNT的侧壁上引入小分子化合物、活性官能基团(如-COOH、-OH和-NH2)等,提高CNT的活性,从而来达到增加其在溶液和聚合物中的分散度和相容性的目的。但是这种方法将SP2杂化的碳原子改变成了SP3杂化,使长径比大大下降,削弱了碳管的力学和电学性能,破坏了碳纳米管的结构,所以一般较少使用这类方法对CNT进行改性。近几年通过不断改良,发现浓硝酸常温处理法和重氮化技术处理法是其中两种较为成熟且对碳管结构损伤较小的优良改性方法。

2.2.2 非共价键改性

非共价键改性方法最大的优点是它在不破坏CNT结构的同时,也能克服自身固有缺陷提高其与聚合物的相容性和制备复合材料时的加工性。一般方法是通过加入阴离子、阳离子或非离子型表面活性剂(如十二烷基硫酸钠(SDS)和十二烷基苯磺酸钠(NaDDBS))使碳纳米管吸附在聚合物上而不发生团聚或者是加入生物大分子(如蛋白质、DNA或多糖类高分子)使聚合物分子中的%i键和CNT上的离域%i键发生相互作用来实现非共价键改性。为此本文还将介绍芳香二羧酸酰胺类%[成核剂(%[-NA)改性和离子液体改性两种改性方法。此外还可以对CNT实行包覆改性,但其缺点是包覆分子与CNT之间的范德华力较弱,使得CNT在复合材料中传递有效载荷的能力较低,改性效果较差,应用较少。

3 碳纳米管复合材料的制备

当碳纳米管经过纯化和表面改性处理后,会表现出某些优异的性能(因改性方法的不同而各具特点),将其应用到复合材料的制备中,可以进一步提高复合材料的力学、电学、化学、和生物特性等等。下文将以实验实例介绍。

3.1 浓硝酸常温处理CNT、水相沉淀聚合法制备聚丙烯腈基碳纳米管复合材料

把一定量的碳纳米管经过超声分散后,室温下浸泡在浓硝酸中,并每隔大约2h更换一次浓硝酸。24h后取出碳纳米管,经去离子水反复洗涤、抽滤直至呈中性,再加入到去离子水中,加水溶性引发剂APS,溶解后超声分散2h。然后将聚合单体AN、共聚单体IA按一定比例混合均匀溶入其中,以水相沉淀法制备聚合物基复合材料,整个过程需通N2保护防止CNT被氧化。实验测试表明,碳纳米管经浓硝酸常温处理后,不仅给碳管接枝上羧基,而且还保持了本身稳定的结构,使制备的复合材料预氧化温度提前,放热量和放热速率均降低,避免了集中放热;虽然结晶程度稍稍有所减弱,但并没有改变聚合物的结晶晶型和结构,但是却大大提高了导电性能。

3.2 重氮化技术处理CNT、原位氧化聚合法合成磺化碳纳米管改性聚苯胺复合材料

聚苯胺(PANI),作为制作超级电容器的绝佳材料,具有价格低廉,良好的导电性,较高的比电容,独特的掺杂/脱掺杂机理和优异的氧化/还原特性等优点,然而PANI的循环稳定性差,却限制了它在电子行业里的广泛应用。CNT的稳定性好,同时也有高导电率和大比表面积的特点,采用重氮化技术处理,合成水溶性的磺化CNT,作为原位氧化聚合的载体与PANI复合,可降低PANI的内阻,提高其循环稳定性,赋予PANI碳纳米管复合材料极高的比电容(>300 F/g)。经红外和紫外-可见光谱分析表明,PANI与磺化CNT之间存在着%i电子间的相互作用,并形成了电荷转移复合物,在一定范围内碳纳米管直径的越小,电荷转移复合物越多。循环伏安实验结果显示,与单一的PANI纳米棒相比(271 F/g),PANI碳纳米管复合材料拥有更高的比电容(309~457F/g),呈现出更高的比电容和更快速的充放电特性。

3.3 溶液法制备聚丙烯(PP)/%[-NA-MWCNT复合材料

此法选用带有共轭苯环结构的芳香二羧酸酰胺类%[成核剂(%[-NA) 和MWCNT在冰水浴中混合,超声分散一段时间后使%[-NA吸附在MWCNT上,通过%i-%i共轭作用来提高碳纳米管的分散性,低温抽滤即可得到稳定性良好的%[成核剂改性的碳纳米管(%[-NA-MWCNT),再通过溶液法使之与pp复合,得到聚丙烯/%[-NA-MWCNT纳米复合材料。通过广角X射线衍射(WAXD)分析了复合材料的结晶形态,结果表明%[-NA-MWCNT诱导聚丙烯在短时间内生成大量尺寸较小的%[球晶,增加了复合材料的结晶度,使得晶粒大小分布更窄,进一步提高了复合材料的电学和力学性能。

3.4 离子液体中碳纳米管复合材料制备

与传统的溶剂相比,离子液体(ionic liquids,ILs)作为一种新型的绿色环保溶剂及优良电解质,近几年来在碳纳米管复合材料制备中得到了广泛的应用。离子液体是一种主要由有机阳离子和各类阴离子组成的盐类,在室温下呈现为液态。作为“绿色”溶剂,离子液体拥有许多特异的性能:极高的热稳定性和化学稳定性;很宽的液态温度范围(-96℃到300-400℃)可以满足在恶劣环境下工作的需要;离子电导率强,电化学窗口宽;对许多物质表现出良好的溶解能力等。经试验测试表明:CNT能够均匀地分散在ILs中,而且ILs独特表面修饰作用,可以通过形成细束网格结构来实现CNT的表面功能化,赋予CNT复合材料更加优异的性能(因各种离子所带的官能基团不同而异)。目前,Zhang已经在ILs中采用电沉积法合成出了CNT/纳米AuPt/IL复合电极,ILs作为模板和活性剂提高了纳米AuPt在CNT膜上的分布密度,降低了电极的电子转移电阻。而且ILs还可以依靠其阴离子与纤维素中羟基的作用,破坏纤维素分子间的氢键,有效地提高CNT在纤维素中的溶解度,采用湿纺丝干喷法制备CNT复合纤维,大大提高纤维的储能模量和机械性能。

4 结语

近几年来,在材料领域里不断涌现出各种利用改性CNT与金属、聚合物复合的新型纳米复合材料,这些材料由于本身特殊复杂的纳米结构在物理、化学、生物上表现出优异的性能。而取得这些科技成果的重大挑战就是如何提高CNT分散度和改善界面性能,达到CNT的最佳改性。本文较全面的综述了目前关于碳纳米管改性及其复合材料的制备方法,其中包括技术较为成熟的浓硝酸常温处理法、效果显著的重氮化技术处理法和芳香二羧酸酰胺类%[成核剂(%[-NA)改性法、绿色环保的离子液体改性方法,以及相关的复合材料制备实例。总的来说,随着科技的不断发展,新方法的不断涌现,CNT的改性必将变得越来越高效,高性能的CNT复合材料的开发和应用势必会越来越广。

参考文献:

[1] IIjima S.Helical microtubes of graphitic carbon[J].Nature,1991,354:56-58.

[2] Tang B Z,Xu H Y.Macromolecules,1999,32.

[3] Fan J H,Wan M X,Zhu D B,Chang B H,Pan Z W,Xie S S.J Appl Polym Sci,1999,74:2605-2610.

[4] Ajayan P M,Schadler L S,Giannaris C,Rubio A.Adv Mater,2000,12:750-753.

[5] Haggenmueller R,Gommans H H,Rinzler A G,Fischer J E,Winey K I.Chem Phys Lett,2000,330:219-225.

[6] 徐国才.纳米科技导论[M].高等教育出版社,2005:86-87.

[7] 杨占红,李新海,等.碳纳米管的纯化[J],化工新型材料,1999,27(2):22-24.

[8] 辛菲,许国志.碳纳米管增强聚合物纳米复合材料研究进展[J].中国塑料,Vol.25, No.8,Aug.2011.

[9] Kim W,Nair N,Lee C Y.J Phys Chem C,2008,112:7326-7331.

[10] Manuel G R,Fiona F,John E O,Andrew I M,Werner J B,Johannes G V,Marcinhet P.J Phys Chem B,2004,108:9665-9668.

[11] 刘玉兰,王延相,周海萍,等.聚丙烯腈基碳纳米管复合材料的制备及其表征[J].材料科学与工程学报,132,Aug.2011.

[12] 孙敏强,朱忠泽,李星玮,等.磺化碳纳米管改性聚苯胺复合材料的合成与超级电容特性[J].高分子学报,2006,(6).

[13] Wang K,Huang J Y,Wei Z X.J Phys Chem C,2010,114(17):8062-8067.

[14] Dhawale D S,Dubal D P,Jamadade V S,Salunkhe R R,Lokhande C D.Synth Met,2010,160(5-6):519-522.

[15] Xu G C,Wang W,Qu X F,Yin Y S,Chu L,He B L,Wu H K,Fang J R,Bao Y S,Liang L.Eur Polym J,2009,45(9):2701-2707.

[16] Cho S I,Lee S B.Acc Chem Res,2008,41(6):699-707.

[17] Yang Hongsheng(杨红生),Zhou Xiao(周啸),Zhang Qingwu(张庆武).Acta Phys-Chim Sin(物理化学学报),2005,21(4):414-418.

[18] Jin Junpin(金俊平),Li Xin(李昕),ZhangDequan(张德权),Zhao Li(赵莉).Acta Polymerica Sinica(高分子学报),2010,(2):192-198.

[19] Xiao M M,Tong B,Zhao W,Shi J B,Pan Y X,Shen J B,Zhi J G,Dong Y P.Chinese J Polym Sci,2010,28(3):331-336.

[20] Ma Li(马利),Lu Wei(卢苇),Gan Mengyu(甘孟瑜),Chen Chao(陈超),Yan Jun(严俊),Chen Fengqiang(陈奉强).Acta Polymerica Sinica(高分子学报),2008,(12):1185-1191.

[21] Frackowiak E,Khomenko V,Jurewicz K,Lota K,B間uin F.J Power Sources,2006,153(2):413-418.

[22] Meng C Z,Liu C H,Fan S S.Electrochem Commun,2009,11(1):186-189.

[23] Yan J,Wei T,Shao B,Fan Z,Qian W,Zhang M,Wei F.Carbon,2010,48(2):487-493.

[24] 张玲,胡斌,李春忠.%[成核剂修饰多壁碳纳米管增强聚丙烯纳米复合材料的分散及结晶行为[J].高分子学报,2011,12(12).

[25] 张锁江,吕兴梅.离子液体:从基础研究到工业应用[M].北京:科学出版社,2006.

[26] 林香萍,管萍,胡小玲,等.离子液体中制备碳纳米管复合材料的研究[J].现代化工,第2011(9),31(9).

[27] Zhang Y F,Guo G P,Zhao F Q,et al.A novel glucose biosensor based on glucose oxidase immobilized on AuPt nanoparticle-carbonnanotube-ionic liquid hybrid coated electrode[J].Electroanal,2010,22(2):223-228.

纳米复合材料范文5

Abstract:A polyaniline fibers (PANIF)/ reduced graphene oxide (rGO) composite was synthesized by using selfassembly of PANIF and GO followed by hydrothermal reaction. The morphology and structure of samples were characterized with scanning electron microscopy (SEM), Fourier transform infrared spectrometer (FTIR)and Xray diffraction (XRD).The electrochemical properties were characterized with cyclic voltammetry (CV), galvanostatic charge/discharge(GCD) and electrochemical impedance spectrum(EIS). It showed that the rGO was homogeneously coated on the surfaces of PANIF, and a high specific capacitance of 517 F/g (based on PAGO10 composite) was obtained at a current density of 1 A/g, compared with 378 F/g for PANIF. Most of all, a high specific capacitance of 356 F/g was obtained at a current density of 10 A/g, compared with 107 F/g for PANIF.

Key words:selfassembly process; polyaniline fiber; graphene oxide; hydrothermal reaction; supercapacitors

石墨烯是一种二维单原子层碳原子SP2杂化形成的新型碳材料,因其非凡的导电性和导热性[1-2]、极好的机械强度、较大的比表面积[3]等特性,引起了国内外研究者极大的关注.石墨烯已经被探索应用在电子和能源储存器件[4]、传感器[5]、透明导电电极[6]、超分子组装[7]以及纳米复合物[8]等领域中.而rGO因易聚集或堆叠而导致电容量较低(101 F/g)[9],这限制了其在超级电容器电极材料领域的应用.

另一方面,PANI作为典型的导电高分子之一,由于合成容易,环境稳定性好和导电性能可调等特性备受关注.具有纳米结构的导电材料,由于纳米效应不但能提高材料固有性能,并开创新的应用领域.PANI纳米结构的合成取得了许多的成果.PANI作为超级电容器电极材料因具有高的赝电容,其电容量甚至可高达3 407 F/g[10];然而,当经过多次充放电时PANI链因多次膨胀和收缩而降解导致其电容损失较大.碳材料具有高的导电性能和稳定的电化学性能,为了提高碳材料的电化学电容和PANI电化学性能的稳定性,人们把纳米结构的PANI与碳材料复合以期获得电容较高且稳定的超级电容器电极材料[11].

作为新型碳材料的石墨烯和PANI的复合引起了极大的关注[12].但是用Hummers法合成的GO直接与PANI复合构建PANI/GO复合电极因导电率低而必须还原GO,化学还原剂的加入虽然还原了部分GO而提高了导电性能,但也在一定程度上钝化了PANI [13],另外排除还原剂又对环境造成一定程度的污染.因而开拓一条简单且环境友好的制备PANI/rGO复合材料作为超级电容器的电极路线仍然是一个难题.

基于以上分析,首先使PANI和GO相互分散和组装,借助水热反应这一绿色环境友好的还原方法制备PANI/rGO复合材料,以期获得高性能的超级电容器电极材料.

1实验部分

1.1原材料

苯胺(AR, 国药集团),经减压蒸馏后使用;氧化石墨烯(自制);过硫酸铵(APS, AR, 湖南汇虹试剂);草酸(OX, AR, 天津市永大化学试剂);十六烷基三甲基溴化铵(CTAB, AR, 天津市光复精细化工研究所).

1.2PANIF的制备

PANIF的制备按我们先前提出的方法 [14],制备过程如下:把250 mL去离子水加入三口烧瓶后,依次加入1.82 g CTAB,0.63 g 草酸以及0.9 mL苯胺,在12 ℃水浴上搅拌8 h;随后,往上述溶液中一次性加入20 mL含苯胺等量的过硫酸铵水溶液,同样条件下使反应保持7 h.所制备的样品用大量去离子水洗涤至滤液为中性,随后30 ℃真空干燥24 h.

1.3GO的制备

采用Hummers法制备GO,具体过程如下:向干燥的2 000 mL三口烧瓶(冰水浴)中加入10 g天然鳞片石墨(325目),加入5 g硝酸钠固体,搅拌下加入220 mL浓硫酸,10 min后边搅拌边加入30 g高锰酸钾,在冰水浴下搅拌120 min,再将三口烧瓶移至35 ℃水浴中搅拌180 min,然后向瓶中滴加460 mL去离子水,同时将水浴温度升至95 ℃,保持95 ℃搅拌60 min,再向瓶中快速滴加720 mL去离子水,10 min后加入80 mL双氧水,过10 min后趁热抽滤.将抽干的滤饼转移到烧杯中,加大约800 mL热水及200 mL浓盐酸,趁热抽滤,随后用大量去离子水洗涤直至中性.所得产品边搅拌边超声12 h后5 000 r/min下离心10 min,得氧化石墨烯溶液.

1.4PANIF/rGO复合材料制备

按照一定比例将含一定量的PANIF液与一定量的6.8 mg/mL 的GO溶液混合,使混合液总体积为30 mL, GO在混合液中的最终浓度为0.5 mg/ mL,磁力搅拌10 min后,将混合液转移到含50 mL聚四氟乙烯内衬的反应釜中进行水热反应,在180 ℃保温3 h;待反应釜自然冷却至室温后取出,用去离子水洗涤产物直至洗液无色后,于60 ℃真空干燥24 h,待用.按照上述步骤制备的PANIF与GO的质量比分别为5,10以及15,相应命名为PAGO5,PAGO10和PAGO15,对应的PANIF质量为75 mg,150 mg和225 mg.

1.5仪器与表征

用日本日立公司S4800场发射扫描电镜(SEM)分析样品的形貌;样品经与KBr混合压片后,用Nicolet 5700傅立叶红外光谱仪进行红外分析;用德国Siemens公司Xray衍射仪进行XRD分析;电化学性能测试使用上海辰华CHI660c电化学工作站.

电极制备和电化学性能测试:将活性物质(PANIF或PANIF/rGO)、乙炔黑以及PTFE按照质量比85∶10∶5混合形成乳液,将其均匀地涂在不锈钢集流体上,在10 MPa压力下压片,之后烘干得工作电极.在电化学性能测试过程中,使用饱和甘汞电极(SCE)作为参比电极,铂片(Pt)作为对电极,在三电极测试体系中使用1 M H2SO4作为电解液进行电化学测试,电势窗为-0.2~0.8V.

比电容计算依据充放电曲线,按式(1)[15]计算:

Cs=iΔtΔVm.(1)

式中:i代表电流,A;Δt代表放电时间,s;ΔV代表电势窗,V;m代表活性物质质量,g.

2结果与讨论

2.1形貌表征

图1为PANIF和PAGO10形貌的SEM图.低倍的SEM(图1(a))显示所制备PANIF为大面积的纳米纤维网络;高倍的图1(b)清晰地显现该3D纳米纤维网络结构含许多交联点.PANIF和PAGO10混合液经过水热反应后,从低倍的SEM(图1(c))可以看出,PAGO10复合物具有交联孔状结构;提高观察倍数(图1(d)和图1(e))后可以发现样品中rGO 与PANIF共存;而高倍的图1(d)清晰地显示出了rGO与PANIF紧密结合,且合成的褶皱rGO因层数较少而能观察到其遮盖的PANIF.从图1可知:成功合成了大面积的PANIF以及互相均匀分散的PANIF/rGO复合材料.

2.2FTIR分析

图2为PANIF,GO以及PAGO10 3种样品的FTIR图.图2中a曲线在1 581 cm-1,1 500 cm-1,1 305 cm-1,1 144 cm-1,829 cm-1等波数处展现的尖锐峰为PANI的特征峰,它们分别对应醌式结构中C=C双键伸缩振动、苯环中C=C双键伸缩振动、C-N伸缩振动峰、共轭芳环C=N伸缩振动、对位二取代苯的C-H面外弯曲振动.图2中b曲线为GO的红外谱图,在3 390 cm-1, 1 700 cm-1的峰分别对应-COOH中的O-H,C=O键振动,1 550~1 050 cm-1范围内的吸收峰代表COH/ COC中的C-O振动[16],可以看出,GO中存在大量的含氧官能团.图2中c曲线为PAGO10复合物红外吸收谱图,与GO,PANIF谱图比较, 可以发现PAGO10中的GO特征峰不太明显而PANI的特征峰全部出现,这个结果归结于GO含量少以及GO经水热反应后形成了rGO,另外也表明水热反应对PANI品质无大的影响.

2.4电化学性能分析

图4为样品的CV曲线,其中图4(a)为不同样品在1 mV/s扫描速率下的CV图,可以看出,4个样品均出现明显的氧化还原峰,这归因于PANI掺杂/脱掺杂转变,表明PANIF以及复合物显示出优良的法拉第赝电容特性.图4(b)为PAGO10在不同扫描速率下的CV曲线,由图可知PAGO10电极的比电容随着扫描速率减小而稳步增加,在扫描速率为1 mV/s时,PAGO10电极的比电容为521.2 F/g.

图5为PANI,PAGO5,PAGO10和PAGO15的充放电曲线以及交流阻抗图.图5(a)为电流密度为1 A/g时样品的放电曲线图,由图可知:4种样品均有明显的氧化还原平台,这与前述CV分析中的结果相吻合.根据充放电曲线,借助式(1),计算了4种样品在不同电流密度下的比电容,结果如图5(b)所示,很明显,相同电流密度下PAGO10比电容最大,当电流密度为1 A/g时,其比电容为517 F/g,这个结果表明PAGO10的电化学性能明显优于PANI/石墨烯微球和3D PANI/石墨烯有序纳米材料(电流密度为0.5 A/g时,比电容分别为 261和495 F/g)[18-19], 而PANIF比电容最小,仅为378 F/g;且在10 A/g电流密度下PAGO10的比电容仍保持在356 F/g 左右,这表明PAGO10电极具有优异的倍率性能.该复合材料比电容以及倍率性能得到极大提高源于rGO与PANIF两组分间的协同效应.在充放电过程中连接在PANIF间的rGO为电子转移提供了高导电路径;同时,紧密连接在rGO上的PANIF有效阻止水热还原过程中石墨烯的团聚,增加了电极/电解质接触面积,从而提高了PANIF的利用率而使得容量增加.

为了更清晰地了解所制备材料的电子转移特点以及离子扩散路径,对样品进行了交流阻抗测试,图5(c)为4个样品的Nyquist图.从图5(c)可知:在高频区、低频区均分别具有阻抗弧半圆、频响直线.在高频区,电荷转移电阻Rct大小顺序为RPAGO5

值说明rGO的加入提高了电极材料的导电性.在低频区,直线形状反映了样品电化学过程均受扩散控制,并且PAGO5所展现的直线斜率最大,说明其电容行为最接近理想电容,即频响特性最好,这也是源于rGO的加入提高了材料导电性以及复合物的独特微观结构.

氧化还原反应的发生,导致PANIF具有十分高的赝电容,但由于在大电流充放电过程中高分子链重复膨胀和收缩,导致其循环稳定性差而限制了其实际应用.为此,对ANIF和PAGO10进行循环稳定性分析.图6显示,PAGO10在5 A/g电流密度下经过1 000次充放电后,电容保持率为77%,而不含rGO的PANIF电极在2 A/g电流密度下充放电1 000次电容保持率仅为54.3%,这个结果表明PANIF循环稳定性较差;另外,rGO的加入形成的PANIF/rGO紧密的连接,降低了PANI链在充放电过程中的膨胀与收缩,使得链段不容易脱落或者断裂,从而PAGO10具有出色的循环稳定性.

纳米复合材料范文6

关键词:分子动力学-连续介质耦合模型 热传导 多尺度渐近展开 分子动力学 有限元方法

A Molecular Dynamics-Continuum Coupled Model for Heat Transfer in Composite Materials

Cao Liqun1 Huang Jizu2

(1.Academy of Mathematics and Systems Science; 2.Institute of Software Chinese Academy of Sciences)

Abstract:The heat transfer problem in composite materials has been investigated which contain the nano-scale interface. A molecular dynamics-continuum coupled model is developed to study the heat transport from the macro- to the micro-scales. The model includes four major steps:(1)A reverse non-equilibrium molecular dynamics (RNEMD) is used to calculate some physical parameters such as the thermal conductivities on the interface.(2)The homogenization method is applied to compute the homogenized thermal conductivities of composite materials.(3)the temperature field in the global structure of composite materials is computed with the multiscale asymptotic method for the macroscopic heat transfer equation.(4)A molecular dynamics-continuum coupled model has been developed to reevaluate the temperature field of composite materials, in particular, the local temperature field near the interface. The numerical results in one-, two- and three-dimensional structures of composite materials including the nano-scale interface are given. Good agreement has been achieved between the numerical results of the proposed coupled algorithm and those of the full MD simulation, demonstrating the accuracy of the present method and its potential applications in the thermal engineering of composite materials.