生物技术发展前景范例6篇

前言:中文期刊网精心挑选了生物技术发展前景范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

生物技术发展前景

生物技术发展前景范文1

关键词厌氧处理废水;UASB;IC反应器;IC技术热点;IC应用现状;IC发展前景

中图分类号X703文献标识码A文章编号1673-9671-(2010)041-0140-02

以高效、低成本为特征的现代废水处理技术首先当推先进的厌氧生物处理技术,厌氧生物反应器是其中发展最为迅速的一个领域。

1971年荷兰瓦格宁根(Wageningen)农业大学拉丁格(Lettinga)教授通过物理结构设计,利用重力场对不同密度物质作用的差异,发明了三相分离器。使活性污泥停留时间与废水停留时间分离,形成了上流式厌氧污泥床(UASB)反应器的雏型。1974年荷兰CSM公司在其6m3反应器处理甜菜制糖废水时,发现了活性污泥自身固定化机制形成的生物聚体结构,即颗粒污泥(granular sludge)。颗粒污泥的出现,不仅促进了以UASB为代表的第二代厌氧反应器的应用和发展,而且还为第三代厌氧反应器的诞生奠定了基础。

原典型的UASB反应器工作原理概念和工作状态模型存在三方面问题:A、高度问题,污泥床高度对反应区的水流影响较大,如太厚会加大沟流和短流;B、增加截面积的放大方式,在大规模反应器中难以实现均匀布水;C、三相分离器的稳定操作较为困难。

20世纪80年代中后期到90年代,针对上述缺陷,国际上以厌氧膨胀颗粒污泥床(EGSB)、内循环反应器(IC)、升流式厌氧污泥床过滤器(UBF)、厌氧折流板反应器(ABR)为代表的第三代厌氧反应器相继出现。从物理角度来看,第三代厌氧反应器是以颗粒污泥为生化反应的基础,主要考察固体物质在重力场作用下,在流体中形成更为合理的微物理环境,达到固液充分接触,更快传质的这一核心目的。利用固体的流态化技术是其核心技术之一,侧重是解决典型UASB上述的A、C问题。

90年代中后期荷兰Pagues公司的开发了一种内循环(internal circulation)IC反应器,采用了特殊物理结构设计,以ANAMMOX工艺为特征的流化床。反应器的设计,生化反应规律,以Kolliken为主的菌群的微生态环境,现有和可能形成的物理特征,在连续工艺过程中菌群的流体点,设计出合理的物理结构。因此更加具有优势。IC反应器应用于啤酒、发酵、造纸、食品、饮料及化工等行业。取得了不错的效果。使第三代厌氧反应器的应用在我国得到开展,与此相应的研究工作也相继展开。

1IC反应器工作原理

IC反应器基本构造如图1所示,它相似由2层UASB反应器串联而成,具有很大的高径比,一般可达4~8,反应器的高度可达16~25m。

1.1进水

水泵将废水泵入反应器底部的布水系统,颗粒污泥和气液分离器回流的泥水混合物有效地在此充分区混合。

1.2膨胀污泥床

混合区形成的泥水混合物进入该区,在高浓度污泥作用下,大部分有机物转化为沼气。混合液上升流和沼气的剧烈扰动使该反应区内污泥呈膨胀和流化状态,加强了泥水表面接触,污泥由此而保持着高的活性。随着沼气产量的增多,一部分泥水气混合物由底部位分离器收集被沼气提升至顶部的气液分离器。

1.3气液分离器

被提升的混合物中的沼气在此与泥水分离并导出处理系统,泥水混合物则沿着回流管返回到最下端的混合区,与反应器底部的污泥和进水充分混合,实现了混合液的内部循环。

1.4后处理部分

经第处理后的废水,除一部分被沼气提升外,其余的都通过三相分离器进入。该区污泥浓度较低,且废水中大部分有机物已被降解,因此沼气产生量较少。沼气通过沼气管导入气液分离区,扰动很小,这为污泥的停留提供了有利条件。

1.5出水

泥水气混合物由高部位分离器收集被最终分离,上清液经出水堰溢流排出,沉淀的颗粒污泥仍留在后处理部分的污泥床内,在上部产生的沼气沿第二条上升管也进入气液分离器,小部分泥水混合物则沿着回流管返回到最下端的混合区,与反应器底部的污泥和进水充分混合。沼气可用于发电。

从IC反应器工作原理中可见,反应器通过2层三相分离器来实现SRT>HRT,获得高污泥浓度;通过大量沼气和内循环的剧烈扰动,使泥水充分接触,获得良好的传质效果。

2IC反应器的运行特性

J.H.F.Pereboom和T.L.F.M.Vereijken详细进行了IC反应器与UASB反应器生产性装置各项运行参数的测定和比较,如表1所示。下面从几方面进行分析。

2.1IC反应器的处理效能

前已述及,与UASB反应器相比,在获得相同处理效率的条件下,IC反应器具有更高的进水容积负荷率和污泥负荷率,IC反应器的平均升流速度可达处理同类废水UASB反应器的20倍左右。在处理低浓度废水时,HRT可缩短至2.0~2.5h,使反应器的容积更加小型化。由表1可知,在处理同类废水时,IC反应器的高度为UASB反应器的3~4倍,进水容积负荷率为UASB反应器的4倍左右,污泥负荷率为UASB反应器的3~9倍。由此可见,IC反应器是一种非常高效能的厌氧反应器。

2.2污泥物理性质

IC反应器颗粒的平均直径在0.66~0.87mm,略大于UASB反应器颗粒的平均直径0.51~0.83mm;IC反应器最大颗粒直径为3.14~3.57mm,UASB反应器颗粒的最大直径3.38~3.43mm;IC反应器颗粒密度为1.041~1.057g/cm3,与UASB反应器颗粒的密度1.039~1.065g/cm3较为接近。但是IC反应器颗粒相对剪切强度比UASB颗粒的强度差,如以UASB颗粒的相对强度为100%,则IC颗粒为32%~53%,这是由于IC反应器的污泥负荷率大大高于UASB反应器的污泥负荷率之故。IC颗粒污泥的灰分占0.13~0.15,低于UASB颗粒污泥的灰分0.2~0.26,这说明IC颗粒污泥中有机成分含量更高,污泥的活性更高。

2.3颗粒大小的分布

Pareboom和Vereijken比较了IC反应器与UASB反应器污泥样品颗粒大小尺寸的分布,UASB和IC反应器处理啤酒废水和土豆加工废水的颗粒大小分布情况。比较的结果表明,IC反应器颗粒尺寸较粗和分布较宽,这是由于IC反应器升流速度较大,使细小颗粒更易于被冲刷从而反应器内小颗粒比例减小,而留在反应器内的颗粒获得更充分的营养,在长期滞留情况下颗粒长得更大,因此IC反应器内颗粒大小的分布范围比UASB反应器更宽,且IC反应器的平均粒径Da和Sauter平均直径D32均大于UASB反应器。

2.4颗粒沉降速度

UASB和IC反应器内颗粒的沉降速度一般都高于液体升流速度。IC颗粒(粒径

2.5污泥的活性

IC反应器污泥的活性远高于UASB反应器的污泥活性。这是由于IC反应器的污泥颗粒完全趋于流化状态,传质的限制因素小,UASB反应器污泥床局部地方的污泥浓度很高,甚至存在死区,传质受到一定限制。因此,IC反应器的平均污泥去除负荷率远高于UASB反应器的污泥去除负荷率。

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

2.6反应器不同高度污泥浓度的变化

Pereboom和Vereijken分别测定了处理啤酒废水和土豆废水的IC反应器不同高度处污泥浓度及颗粒大小分布变化的情况。得出了不同高度的颗粒尺寸的分布,颗粒尺寸大小、生物量浓度和灰分沿IC反应器高度的变化,IC反应器的第一段污泥床混合良好,污泥床以上和出水中固体的灰分大大高于第一段污泥床。由此可得出结论,IC反应器具有很高的紊流和上升流速,有助于无机物的有效去除。

3IC工艺技术优点

3.1容积负荷高

由于IC反应器存在着内循环,第一反应室有很高的升流速度,传质效果很好,污泥活性很高,因而其有机容积负荷率比普通UASB反应器高许多,一般高出3倍以上。处理高浓度有机废水,如土豆加工废水,当COD为10000-15000mg/L时,进水容积负荷率可达30-40kgCOD/(m3d)。处理低浓度有机废水,如啤酒废水,当COD为2000-3000mg/L时,进水容积负荷率可达20-50kgCOD/(m3d),HRT仅2-3h,COD去除率可达80%左右。

3.2节省投资和占地面积

由于IC反应器容积负荷率高出普通UASB反应器3倍左右,IC反应器的有效体积仅为UASB反应器的1/4-1/3,所以可显著降低反应器的基建投资。由于IC反应器不仅体积小,而且有很大的高径比(一般为4-8),所以占地面积特别省,非常适用于占地面积紧张的厂矿企业。小型的IC反应器可以工厂预制,大型的可在现场制作,施工工期短,安装简便,且IC反应器的土方量很小,可节省施工费用。

3.3抗冲击负荷能力强

由于IC反应器实现了内循环,处理低浓度水(如啤酒废水)时,循环流量可达进水流量的2~3倍;处理高浓度水(如土豆加工废水)时,循环流量可达进水流量的10~20倍。因为循环流量与进水在第一反应室充分混合,使原废水中的有害物质得到充分稀释,降低了有害程度,从而提高了反应器的耐冲击负荷的能力。

3.4抗低温能力强

温度对厌氧消化的影响主要是对消化速率的影响。IC反应器由于含有大量的微生物,温度对厌氧消化的影响变得不再显著和严重。通常IC反应器厌氧消化可在常温条件(20-25℃)下进行,这样减少了消化保温的困难,节省了能量。

3.5具有缓冲pH的能力

内循环流量相当于第1厌氧区的出水回流,防止局部酸化发生,并可利用COD转化的碱度,对pH起缓冲作用,使反应器内pH保持最佳状态。

3.6内部自动循环,不必外加动力

普通厌氧反应器的回流是通过外部加压实现的,而IC反应器以自身产生的沼气作为提升的动力来实现混合液内循环,不必设泵强制循环,节省了动力消耗。

3.7出水稳定性好

IC反应器的第一、二反应室,相当于上下两个UASB反应器,它们串联运行,可以补偿厌氧过程中Ks高产生的不利影响。VanLier在1994年证明,反应器分级会降低出水VFA浓度,延长生物停留时间,使反应进行稳定。第一反应室有很高的有机容积负荷率,相当于起“粗”处理作用,第二反应室则具有较低的有机容积负荷率,相当于起“精”处理作用。整个IC反应器实际上是两级厌氧处理。一般情况下,两级厌氧处理比单级厌氧处理的稳定性好,出水也较稳定。

3.8启动周期短

IC反应器内污泥活性高,生物增殖快,为反应器快速启动提供有利条件。IC反应器启动周期一般为1-2个月,而普通UASB启动周期长达4-6个月。

4IC处理技术应用现状及发展前景

IC处理技术从问世以来已成功应用于土豆加工、菊苣加工、啤酒、柠檬酸和造纸等废水处理中。1985年荷兰首次应用IC反应器处理土豆加工废水,容积负荷(以COD计)高达35-50kg/(m3d),停留时间4-6h;而处理同类废水的UASB反应器容积负荷仅有10-15kg/(m3d),停留时间长达十几到几十个小时。

在啤酒废水处理工艺中,IC技术应用得较多,目前我国已有多家啤酒厂引进了此工艺。从运行结果看,IC工艺容积负荷(以COD计)可达15-30kg/(m3d),停留时间2-4.2h,COD去除率ηCOD>75%;而UASB反应器容积负荷仅有4-7kg/(m3d),停留时间近10h。

对于处理高浓度和高盐度的有机废水,IC反应器也有成功的经验。位于荷兰Roosendaal的一家菊苣加工厂的废水,COD约7900mg/L,SO42-为250mg/L,Cl-为4200mg/L。采用22m高、1100m3容积的IC反应器,容积负荷(以COD计)达31kg/(m3d),ηCOD>80%,平均停留时间仅6.1h。

我国无锡罗氏中亚柠檬有限公司的IC厌氧处理系统自1998年12月运行以来一直都很稳定,进水COD一般在8000mg/L以上,pH5.0左右,容积负荷(以COD计)可达30kg/(m3d),出水COD基本在2000mg/L以下,且每千克COD产沼气0.42m3。1996年IC反应器首次应用于纸浆造纸行业,并迅速获得客户欢迎,至今全世界造纸行业已建造IC反应器23个。反应器产生的生物气纯度高,CH4为70%-80%,CO2为20%-30%,其它有机物为1%-5%,可作为燃料加以利用。

表1列出了IC反应器和UASB反应器处理啤酒废水的对照结果,从表中数据可以看出,IC反应器在很大程度上解决了UASB的不足,大大提高了反应器单位容积的处理容量。

5结语

随着生产的发展,经济高效、节能省地的厌氧反应器越来越受到水处理工作者的青睐。IC反应器的一系列技术优点及其工程成功实践,是现代厌氧反应器的一个突破,值得进一步研究开发。而且由于反应器容积小,生产、运输、安装和维修都十分方便,产业化前景也很乐观。

参考文献

[1]贺廷龄.废水的厌氧生物处理.北京:中国轻工业出版社,1998.

[2]娄金生.水污染治理新工艺与设计.北京:海洋出版社,1999.

[3]马志毅.工业废水的厌氧生物技术.北京:中国建筑工业出版社,2001.

[4]吴允,张勇,刘红阁.啤酒生产废水处理新技术-内循环反应器.环境保护,1997.

[5]何晓娟.IC-CIRCOX工艺及其在啤酒废水处理的应用.给水排水,1997.

生物技术发展前景范文2

一、企业工商管理发展现状

生物技术是一门新兴的技术,生物技术和其他高新技术一样,有自身的特点,当前我国对生物技术的研究和管理在不断的寻求新的方法和技术。而我国当前企业的工商管理发展现状为:

第一,工商管理模式粗放。因为生物技术是一门新兴的技术,所以,当前生物技术研究企业的工商管理会存在一定的粗放管理现象,这种现象的产生主要是因为生物技术研究企业的管理者没有丰富的工商管理经验,在企业管理中没有系统的管理理论和管理知识作为企业管理支持,企业的管理者只能凭借个人习惯和情感进行企业管理,这样就会造成企业工商管理中出现内部控制制度不完善、管理制度不完善,这样就会影响企业的发展方针的制定。

第二,生物技术研究企业的文化建设不足。企业在发展的过程中需要将社会效益而后经济效益结合在一起,才可以促进企业的发展,企业的员工才可以在工作中感受到企业文化的力量,对自己的工作充满信心。可以说企业文化建设是企业发展的一个向导,起到指引的作用,对企业的发展有强大的推动力。生物技术研究企业更加需要注重企业文化的建设,这样才可以推动企业的发展。

第三,工商管理地位不清。我国社会主义市场经济体制在不断的发生着变化,这位企业的管理提出了更高的要求。首先需要将企业工商管理思想进行转变,结合一些新的发展观念和思想,在追求经济效益的同时,将社会责任加入在企业发展中,将以上企业管理中的粗放式管理转变成集约型管理,同时进行管理创新。因为生物技术发展中心企业和其他企业的发展本质不同,所以工商管理方式需要有一套自己的管理理念,这样才会促进该企业的发展,提高企业的经济效益。

第四,工商管理人才缺失。众所周知人才是一个企业发展的动力,当前企业之间的竞争实际上就是人才的竞争,但是目前我国企业发展中人才比较缺失,生物技术发展企业的人才更为缺失,真正有能力的管理人才更是少有,这些现状的产生和我国企业的发展历史和工商管理的发展有关,管理人才的缺失,需要企业加强对内部人员的管理,珍惜企业当前的内部人员,加强对内部人员进行思想教育,关心企业内部人员的生活,不同的将企业的管理水平提升。

在当前我国企业发展现状中,还有很多不同的问题出现,这些问题出现,为企业管理者提出了新的管理要求,需要找出这些问题的根源将问题解决,同时将企业的管理模式进行改进,对于生物技术发展中心等相关的生物技术研究企业来讲,因为是一门新兴的技术研究领域,所以其管理模式需要进行创新,寻找适合该企业发展的工商管理模式,才可以促进企业的发展。

二、我国企业工商管理的发展方向

从以上我国企业工商管理的发展现状进行研究分析,可以知道今后我国企业工商管理的发展方向和发展前景。

第一,培养工商管理人才。当前我国企业发展中,工商管理人才非常的稀缺,生物技术研究因为是新兴的一个研究领域,所以相关企业对工商管理人才的需求非常急切。今后我国企业的发展方向为培养更多专业的工商管理人才,为企业的发展提供更多的人力资源和人力保障,将企业的管理水平提升,运用新的管理模式、管理方法,进行企业管理,实现企业管理的科学化和合理化。

第二,制定企业工商管理制度。无规矩不成方圆,在企业发展中的规矩就是企业制定的各项制度,企业的各项工作需要有序的发展和进行,就需要有一定的制度最为其发展的保证。当前我国企业之间的竞争非常的激烈,企业之间的竞争也是企业管理水平的竞争,我国生物技术是一门新兴的技术,该领域企业的发展需要将企业的管理模式进行创新,制定适合生物技术研究发展的工商管理制度,为企业的发展提供保证。建立有效的管理制度,可以帮助企业留住更多的人才,保证企业各项工作有序的进行。

第三,实行人性化管理。我国当前企业的发展和管理,主要是坚持以人为本的理念进行管理,很多企业管理制度的制定是以经济利益为前提进行制定的,缺乏人性化管理,进而导致大量人才的流失,着不利于企业的发展。为了在实现企业经济效益的同时促进企业的发展,需要实行人性化管理。在企业管理制度制定的过程中,需要体现出人性化,体现企业对员工的关怀,促使企业工商管理的人性化。

生物技术发展前景范文3

关键词:生物制药技术;发展现状;产业化

我国生物制药产业具有起步晚,发展滞后的特点,但在国内庞大市场的推动下,我国生物制药产业仍然有着非常良好的发展前景。再加上我国政府对生物医药领域不断加大的投资力度和政策扶持,未来我国生物制药产业将会成为推动国民经济发展的朝阳行业。生物制药在这样的情形下面临着严峻的考验,在过去的发展过程中,已经取得了很好的成绩,但是发展也进入了一个相对的稳定期,这样想要更好的发展,就面临着严峻的考验,应该加大问题分析的广度与深度,只有这样,我们的问题才会取得更好的效果。

一、生物制药原理

生物制药,简单的说,就是利用生物活体来生产药物的方法。有时特指利用转基因动植物的活体作为生物反应器来生产药物,如利用转基因玉米生产人源抗体、转基因牛乳腺表达人α1抗胰蛋白酶等。而生物药物是指利用微生物学、医学、生物学、生物化学等学科的研究成果,在生物体、生物组织、细胞、体液内,综合运用微生物学、化学、生物化学、生物技术、药学等科学的原理和方法用以制造的一类用于预防、治疗和诊断的药物制品。尽管生物制药是一种新兴的技术,但其发展速度非常快,规模也发展的也极其壮大。目前,全国来看,已有近一半以上的药品属于生物制药,尤其在合成分子结构复杂的药物时,其优点更加显著:操作简单,提高效率,经济适用且市场广阔。

二、生物技术药物的分类

自从人类基因组计划完成以来,结构基因组,功能基因组,蛋白质组等研究计划相继起动。这为生物技术的发展注入了强大的活力。各国对此十分重视,并把生物技术产业的发展作为国家经济发展中新的增长点之一。生物学的革命不仅依赖于生物科学和生物技术的自身发展,而且依赖于很多相关领域的技术走向。尽管生物技术的高速发展使人们难以作出准确的预测,但是基因组图谱、克隆技术、遗传修改技术、生物医学工程、疾病疗法和药物开发方面的进展正在加快。第一代重组药物是一级结构与天然产物完全一致的药物,第二代生物技术药物是应用蛋白质工程技术制造的自然界不存在的新的重组药物。自1982年第一个重组药物――人胰岛素上市以来,第二代生物技术药物正在取代第一代多肽、蛋白质类替代治疗剂。重组蛋白质和重组多肽药物:即利用DNA重组技术,将重组对象的基因插入载体,拼接后转入新的宿主细胞,构建成工程菌(或细胞),实现遗传物质的重新组合,并使目的基因在工程菌内进行复制和表达,最后将表达的目的产物纯化并做成制剂,得到重组多肽、蛋白质类药物。重组DNA药物:基因治疗是指向靶细胞或组织中引入外源基因DNA或RN断,以纠正或补偿基因的缺陷;关闭或抑制异常表达的基因;刺激产生相应的抗体,从而达到治疗和预防疾病的目的。其他生物技术药物:如微生态制剂,另外还有利用生物技术生产的血液代用品、肿瘤疫苗等等。

三、我国的生物制药技术发展现状及趋势

与美国等西方国家相比,我国在生物制药技术的研究方面相对起步较晚,且在早期受经济、技术以及其他因素的限制。目前我国的生物制药技术已经取得了一定的成就,并且生物制药产业也在逐渐形成并不断扩大规模。现如今我国己经在肿瘤、心脑肺血管、免疫以及内分泌等诸多疾病的药物研制中充分应用了生物制药技术,研发出大批特效新药,为这些疑难病症的治疗技术水平提高提供重要支撑。但相对来讲,我国当前的生物制药技术水平还是落后与西方等发达国家,且在发展中还是存在着一定的问题与不足,及新药研发力度不足、融资渠道不通畅、研发成果转换困难等三个方面。从当前的发展形势来看,我国未来生物制药技术的发展趋势主要体现在以下几方面。

(一)生物制药产业呈现集群式发展

经过多年的发展和市场竞争,加上政府不失时机地加以引导,我国生物技术、人才、资金密集的区域,已逐步形成了生物医药产业聚集区,由此形成了比较完善的生物医药产业链和产业集群。这些产业集群对于促进生物制药产业的发展具有重要的作用,使得生物制药整体产业链得到优化,在生产效率方面得到大幅提升。我国生物制药产业以后仍会朝着这一方面快速发展。政府也将会加大投资力度、重点建设产业集群区,在基础设施、配套服务业、研究开发、服务创新、教育培训和风险投资等方面进行发展和创新,为生物制药产业集群发展提供良好的发展环境。

(二)生物医药技术向产业化推进

我国生物医药技术当前很大一部分还停留在科研方面,并没有有效地转换为生产力,这不仅浪费了很多的资源,也使得我国的生产实践跟不上研发,造成了生产的滞后状况。生物医药技术向产业化推进要求企业通过委托外包策略,建立技术同盟,形成优势互补,使得自身能够专注于自身专长方面,从而能够降低生产成本、提高竞争优势。我国生物制药公司在未来发展过程中,势必会朝这一趋势发展,通过外包方式进行新药开发,将技术较强的研发内容分包给具备研究实力的小型公司来完成,充分发挥小公司在某些领域的技术优势,共同开发新药,大大提高新药开发效率,使新药研发周期缩短,实现技术与资金互补。

四、结束语

生物制药技术是在科技不断发展的推动下逐渐形成的,这是一种利用生物化学技术、免疫技术、微生物技术等诸多生物技术为基础而发展得来的现代高新技术。本文主要分析了当前我国的生物制药技术发展现状以及存在的问题,并指出其未来的发展趋势主要是向着产业化发展,从而为我国的医药行业做出更大贡献。

参考文献:

生物技术发展前景范文4

【关键词】生物技术;食品工业;应用

生物技术能够实现产业、社会、经济和生态效益的统一。食品工业正向着全面深入运用生物工程技术结合设备化、智能化以及低耗高效系统工程的方向发展。生物技术包括传统生物技术和现代生物技术。生物技术生物工程在21世纪发挥了越来越重要的作用,在生物技术快速发展的过程中,生物技术在食品中的应用得到了人们的广泛关注。但同时,生物技术在应用过程中产生的一些安全性问题也需要引起重视。

一生物技术在食品工业中的应用

在食品加工行业,动物和植物是基本的原料。我们知道,如果原料的品质较好,那么它在贮运加工中的性能就较好,且产品质量能够得到保障。生物技术在动植物原料和材料品质的一个重要应用是机械能改良,其本质是通过DNA重组技术,采用DNA分子克隆对蛋白质分子进行定位突变的所谓蛋白质工程。经过该工程处理之后,食品的营养价值更高,食品的加工性能更好,其科学价值极大,且应用前景是非常广阔的。第一,生物技术在动物原料和材料品种改良中的应用。近年来,生物技术在动物原料和材料品种改良的应用发展很快,这种改良对于食品工业发展的推动作用较大。在基因工程中,生产得到的动物生长激素能够使动物的发育和生长速度加快,从而缩短动物的生长周期,改变动物的营养品质。一个典型的案例就是把猪生长激素注入猪的体内,降低猪的脂肪含量,这样就有利于对肉食品质进行优化和改善。又如,在牛乳的加工中,牛奶容易发生沉淀。如果使用基因操作,增加K—酪蛋白编码基因的拷贝和置换,那么就可以使牛奶的磷酸化程度增加,这样就可以使牛奶热稳定性更强,还能防止炼乳凝结现象的产生。第二,生物技术在植物性食品中原料和材料品种改良中的应用。利用基因工程的培育功能,可以使植物的性能更好,比如抗高温、抗病毒、防虫害等。培育少脂肪的油料作物,多蛋白、富含某些营养素等优质主食(大米、小麦等)作物,提高作物的营养成分。当今,很多国家在这方面进行了深入研究。比如,对马铃薯进行基因改造,可使固形物的含量增加;大豆在基因改造之后,可以提高不饱和脂肪酸的比例,从而提升食用油的品质。为了使谷物蛋白质中氨基酸含量更高,生物工程学家可以使用基因工程,提高谷物蛋白的营养价值。这样一来,就可以降低我国农业生产的负担。目前我国已有越来越多的农民不再务农,大量的农田被荒废,其中很大一部分原因是因为农作物生产的效益太低。如果能够对农作物进行基因改造,使单位面积的农作物产量提高,也许能够使该问题得到缓解。第三,生物技术在保健食品中的应用。目前,随着人们对保健食品需求的增加,人参、西洋参、长春花、紫草等植物的细胞培养发展潜力增加。所谓植物细胞培养技术,其本质是一种无菌培养技术。该技术把植物组织、感官或细胞在特质的培养基进行培养,最终得到所需要的生物产品。细胞工程大量控制性的培养技术在免疫球蛋白以及生长激素的生产中应用广泛。在具体的生产过程中,通常是基因工程技术重组分子,对动物细胞进行培养,实现批量生产。

二生物技术在食品工业中的应用前景分析

1.充分利用生物资源,研发新型生物技术产品

在我国轻工业食品的产业发展规划中,未来发展的总目标是要充分利用生物资源研发新型生物技术产品。通过把现代生物技术跟食品技术结合起来,对新型生物技术产品进行研发。其中,重点研究领域包括这几个方面:新酶品种开发及其应用、遗传育种、生物法替代化学合成,生产安全性能更好的食品添加剂;使用生物技术深度加工原料,在这个过程中,需要保障对环境产生的污染最低化。另外,在食品加工产业发展的过程中,我们发现生物技术产物的分离提取水平不高,这也是其中一个瓶颈,因此,我国应当重视这方面技术的研发。另外,在监控生产方面,可研发功能更加完善的生物传感器。

2.生物技术推动经济、生活及应用科学的发展

在对生物技术逐步深入研究的过程中,生物技术对经济和生活中的改变是我们能够感知到的。世界上有很多国家把食品工业中的生物技术作为重点发展对象。在食品资源改造以及生产工艺改良方面,生物技术提供了极大的方便。另外,生物技术在加工产品包装,以及储存和运送、食品检测等领域的应用前景非常广阔。生产基因工程食品从预言变为了现实。在生物技术发展的过程中,为基因重组技术的发展与进步带来了巨大的推动作用。另外,生物技术在全球社会发展重大问题上能够起到积极的作用。比如,粮食短缺问题和生态环境恶化问题在生物技术的帮助下,这些问题正在逐步得到缓解。

3.发展生物技术被国家列入国策是大势所趋

最近几十年来,国外一些发达国家,比如美国、日本等国家的生物技术对经济发展的促进作用是有目共睹的。我国把生物技术作为高新技术中的第一位,对生物技术给予了高度重视。在生物基因工程技术的帮助下,食品更加丰富、更加健康营养,品种更加多。我相信,在不久的将来,生物技术将给食品工业带来巨大的改变。综上,随着生物基因工程的发展,农业将会发生巨大的变化,农业生产能够得到产量更高的粮食作物。在未来,生物技术将增加食品的种类,提高食品的营养价值;在安全性方面,生物技术可以提供对人们更加健康安全的食品;在环境友好方面,生物技术有利于食品工业的长久发展。生物技术在食品工业中的应用范围非常广泛,本文介绍的内容只是冰山一角。*作者单位:张易葳,湖北省宜昌市葛洲坝中学。

参考文献

[1]刘开华,李耕,邬全喜等.现代生物技术在软饮料品质改良中的应用现状与展望[J].饮料工业,2004(3)

[2]陈美珍,余杰.大豆牛乳多肽饮料的工艺研究[J].食品工业,2002(2)

[3]汪薇,白卫东,赵文红.生物技术在天然香精香料生产中的应用[J].中国酿造,2009(9)

[4]毕海丹.生物技术在肉类食品中的应用现状[J].肉类研究,2009(1)

生物技术发展前景范文5

关键词:生物基塑料 概念 存在问题 未来展望

近年来随着生物基塑料的研发和应用,一些传统的塑料制品已经被其替代,生物基塑料已经在解决资源和环境问题上发挥了重要作用。本文分析了生物基塑料的研究状况及当前发展中遇到的主要问题,并对生物基塑料的未来发展前景进行展望,以期为经济社会的可持续发展做出贡献。

一、生物基塑料的概念

1.生物基塑料的定义

2003年11月日本的生物塑料协会将生物塑料定义为生物分解塑料和生物基塑料。所谓生物分解塑料(BDP)是指,在一定环境条件下,这类塑料能够由细菌、藻类、真菌等微生物的作用分解,而不会带来环境问题,目前生物分解塑料既来源于石油又来自可再生资源。所谓的生物基塑料(BBP)是指可再生资源例如淀粉、蛋白质、纤维素、木质纤维素、生物聚合物及二氧化碳等,以这些材料为原料加工而成的塑料,就被称为生物基塑料。所谓生物塑料就是指绿色的生物材料,它不会对环境造成污染,或能够减轻对环境的污染,是给空气带来二氧化碳负担的“碳中性”材料。

2.具有代表性生物基塑料产品的特点比较

3.生物基塑料的检测标准

对生物基塑料的检测方法主要是通过对其进行C-14分子标记,然后测量其产品中各组分的碳原子是生物碳或化石碳及含量在总有机碳中的百分比(质量分数)。例如计算以淀粉为原料制造的淀粉基塑料的生物基含量:

50%淀粉与50%聚乙烯的淀粉基塑料,其中淀粉生物C含量为41%、聚乙烯生物C含量为82%,其生物基含量的计算方法为(50%×41%)÷(50%×82%+50%×41%)=33.3%。日本的生物含量的等级分为4个:25%~50%,50%~75%,75%~90%,>90%,其中25%~50%的产品所占的比例最大。

二、当前生物基塑料发展状况

随着,公众环保意识的逐步增强,探寻资源的可再生方法已经得到了越来越多人的关注,将一些常见的可再生资源例如谷物、木材、甜菜等制造成生物聚合物,实现资源的再生。目前,生物基塑料的研究已经完成了由初级研究到商业化、规模化方向的发展,截止到2012年全球生产制造的生物基塑料产量达500Kt左右,其所能带来的能量达1060kt,根据美国Fredonia集团的研究报告表明,生物基塑料的需求量在未来的几年里其增长率仍会大幅度提高。欧洲的生物塑料协会预测在未来的几年里生物基塑料的生产规模仍然会扩大,今后可被生物分解的生物基塑料中制造业产品如儿童玩具、汽车装饰用品、汽车零件及家用电器等的需求量最大且增长速度最快,预测增长速度会超过20%。目前生物基塑料在我国的应用主要是在以下5个行业:一包装行业;二制造业;三纺织业;四农用地膜;五医学业。

三、生物基塑料使用的主要技术

1.“生物成型”技术

作为世界知名的可口可乐公司承诺在2020年,本公司所使用的所有的PET容器都将使用生物材料,该产品主要是由美国著名的生物技术公司Virent、Gevo共同研发生物合成PX工艺,实现PTA的绿色化。Virent公司已经成功的采用了“生物成型”技术,将玉米、甘蔗等含糖作物与糠醛生物共同转化为PX,实现了完全由可再生材料合成生物基PET。

2.分子重组技术

目前,国际上知名的生物化工企业Virent、Gevo、Avantium等已经成功的应用生物技术从植物、农作物的废弃物等资源中进行分子重组转化为PX,并通过氧化技术生产出PTA,从而实现了100%的PET生物基产品。

3.“YXY”技术

美国生物化工Avantium公司与美国高校共同研发了“YXY”技术,该技术将植物源获得的呋喃糖通过生物技术转化为2,5-呋喃羧酸,从而与MEG酯化聚合生成PEF,目前 已经实现了PEF聚酯瓶的商业化生产。

四、几类生物基塑料的国内外研究进展

目前国内外研究较多且开发和技术相对成熟的生物基塑料主要有:淀粉基生物降解塑料、聚乳酸、聚丁二酸丁二醇酯等。

1.淀粉基生物降解塑料

淀粉基生物降解塑料是淀粉经过改性、接枝反应后与其他聚合物共混加工而成的一种塑料产品, 具有投资少、成本低、方便快捷、等特点。目前共研发出填充型、光-生物双降解型、共混型及全淀粉型四种可降解塑料。经过30年的研发历史,淀粉生物降解塑料已广泛应用于化工、农业以及化妆行业等。

2.聚乳酸生物降解塑料

聚乳酸是以乳酸为原料合成的材料,具有无毒、无害、高强度、易加工成型及可全降解性能等特点。因此,聚乳酸是一种能真正达到生态和经济双重效应的环保材料,是近年来国内外着重研究和关注的生物降解塑料。但价格较高对其大规模应用有一定的限制。

3.聚丁二酸丁二醇酯生物降解塑料

丁二酸和丁二醇经缩聚形成聚丁二酸丁二醇酯, 其具有优良的力学性能和耐热性,并且其加工定型和稳定性方面也比其他生物基塑料好。总体而言,其综合性能优异, 性价比合理, 具有良好的应用推广前景,。

另外,国内外正在研究开发一些新型生物基塑料。例如:美国农业部研究由柠檬酸和丙三醇制得的生物降解聚合物,美国加州大学正在推出的利用碳水化合物和肽合成生物材料以及国内相关研究部门研究以农产品为原料制造可塑淀粉生物降解材料,显示出未来生物技术塑料发展的前景巨大。

五、生物基塑料发展中存在的主要问题

1.生物基塑料的性能较石油基塑料有差距

目前形成产业的生物基塑料的性能(力学性能、稳定性、耐热性、燃烧性、阻隔性等)较石油基塑料的性能上还存在着一定的差距,在很多要求严格的领域中,生物基塑料不能够替代石油基塑料,因此必须通过对其性能进行改造的手段,尽量使其性能达到可利用的标准。

2.生物基塑料的生产投资大、成本高

相关国外《生物基生命周期对环境影响的全面分析》调查研究表明,生物基塑料的制造所使用的农作物,较普通的农作物而言使用的农药、化肥的量更大,其产品对环境污染的影响更大,因此在投资项目时一定要全面分析,慎重做决定。

六、展望生物基塑料的发展前景

1.生物基塑料替代传统能源

随着经济社会的发展,全球面临的资源和环境问题日趋加剧,环境污染、资源匮乏、能源短缺都迫使人们急切探寻新能源来替代传统的能源。用可再生资源替代石油资源已经成为人们关注的焦点,随着人们生活水平的提高,对石油资源的需求量只会与日俱增。随着全球气候变暖问题的日益严峻,美国能源情报署2006年初预测,到2025年,世界的二氧化碳排放量将达3.88×107kt,而中国目前的二氧化碳排放量已经达到3.8×106kt,因此中国面临的减排工作还是十分严峻的,同时相关研究表明,生物基塑料的节能减排效果显著,生物基塑料的二氧化碳排放量比石油基塑料的排放量少20%~30%。因此,生物基塑料的发展有巨大的市场潜力。

2.生物化学工艺技术发展为生物基塑料发展带来新革命

生物化学工艺技术的发展为生物基塑料的性能、生产工序、生产成本等都有了突破性的改变,其不仅能够使生物基塑料的性能达到最佳状态,而且能够大幅度的降低生产成本,提高淀粉及纤维素的含量,并且还能够直接或间接的使用非粮食淀粉,节约粮食资源。

3.生物基塑料产品种类不断增加,应用领域不断扩大

随着人们生活水平的提高对生活质量的要求越来越高,绿色食品、绿色包装都是人们追求的新事物,而生物基塑料就是绿色包装的典型资材。而且今后不会单单仅仅将生物基塑料的产品种类局限于包装上,会将生物基塑料的应用领域扩大到农业领域、医药领域、纺织领域等,他们都将在各自领域发挥着巨大的作用,实现资源替代和环境资源矛盾的缓解,更加有利于国家的可持续发展。

七、结语

近年来,生物基塑料的生产技术体系目前已经得到了确立,并且随着生物材料和生物生产技术的发展,其在节能减排和缓解资源环境压力发挥着显著的优势,通过对生物基塑料的研究和应用的现状进行综合分析,生物基塑料具有巨大的市场潜力。并且当前生物基塑料作为石油基的替代品使着我国的资源利用正朝着绿色、高效、高附加值、规模化、标准化的方向发展,从而为我国走经济可持续、能源可持续、资源可持续发展的道路奠定了基础,因此生物基塑料具有十分美好的发展前景。

参考文献

[1]唐赛珍.生物基材料发展前景展望[J].新材料产业,2013(03).

[2] 李洋.研究报告称生物基材料具有巨大的市场潜力[J].印刷技术,2010(04).

[3]张慧君.生物塑料在汽车上的应用与展望[J].橡塑资源利用[J].2013(04).

[4]杨中文.生物基塑料带来绿色革命[J].国外塑料,2006(05).

[5]王战勇,张晶,苏婷婷.可生物降解塑料的研究与发展[J].辽宁城乡环境科技,2003(08).

[6]关文.生物塑料有望替代90%传统树脂[J].中国石化报,2009(12).

生物技术发展前景范文6

关键词:生物技术环境污染应用

引言

改革开放以来,我国的经济建设取得了领举世瞩目的成就,人民的物质生活也得到了空前的满足,但是经济建设的高速发展也带来了环境的持续恶化。环境问题目前已经成为一个全世界都关注的课题,严重制约着全球经济发展新局面的到来,在我国环境问题则表现的更为严重,对经济结构调整和可持续发展有非常大的影响。近年来我国对污染治理投入了大量的人力和财力,已经取得了一定的阶段性成果,但是总体来看,目前的污染问题还十分严重,需要加大对其治理的力度。生物技术是指利用自然界中广泛存在的生物体以及其组成器官和组织,去研发新工艺或者新产品的一种技术应用体系,而环境生物技术就是指可以应用到环境污染治理中的工艺或者技术。在现代社会中,生物技术的应用范围非常广泛,作为其重要组成部分的环境生物技术在污染治理过程中有非常重要的地位,无论是在污水处理、废气处理和固体废物处理的过程中都有非常重要的作用。随着科技的发展,环境生物技术的发展和革新速度也非常快,酶工程和基因工程等都是生物技术发展革新的结果。

1环境生物技术的发展概况及特点

生态系统遭到破坏是造成当前各种污染产生的主要原因之一,而环境生物技术对生态系统的构建有非常好的作用。从微生物学的观点来看,构成生态系统最基本的要素就是自然界中各种生物体,生态系统需要通过内物质的循环去保持平衡,而当前的生态系统遭到了非常严重的破坏,进而就造成了水污染、空气污染以及固体垃圾污染等各种我们能够看到的污染现象出现。当前的环境生物技术主要就是利用微生物自身的代谢功能去进行各种污染的治理,近年来随着微生物技术的不断进步和发展,也有越来越多的诸如酶工程、基因工程以及环境修复工程等新工艺和新技术的出现,并且在环境污染治理中发挥着越来越重要的作用。环境生物技术不仅仅只被用在污染治理之中,在健康产业、环境监测以及医药产业等等方面也有非常重要的应用价值。在世界范围内,发达的资本主义国家都非常看好环境生物技术的发展前景,也非常重视生物环境技术产业的构建和发展,以此可见在不久的将来环境生物技术必定会有更好的发展。环境生物技术之所以在世界上受到如此青睐,主要是因为其本身有诸多的优点,在环境污染治理中的效果也明显优于其他技术。传统的物理或者化学技术处理污染的过程比较繁琐,且一次性的处理量非常有限,投资相对来说也显得更高,最重要的是还会造成二次污染,而环境生物技术与之相比则有速度快、消耗低、效率高、成本低、反应条件温和以及无二次污染等许多的优点。此外,环境生物技术可以利用修复技术去净化环境,使得受到污染的资源能够再次有被使用的价值,这是其他传统技术和方法无法比拟的一项巨大优势。

2环境生物技术在环境保护中的应用

2.1污水的生物净化

水为生命之源,水污染给人们的日常生活和身体健康所带来的危害是非常大的,因此,水污染的治理在我国一直被重点强调。相关的研究资料显示,造成水污染的污染因子具有多样性和复杂性的特点,有机磷、重金属、氰化物以及各种酚类物质等等都是造成水污染的重要污染因子,传统的治污技术很难处理污水中这些有害的物质,而利用生物技术则比较容易实现。当前,通常采用固定化酶和固定化细胞的技术进行污水的处理,这两种技术都是通过微生物自身的生命活动,利用生物体的新陈代谢过程去祛除或者转化污水中的有毒物质。无论是固定化酶还是固定化细胞的技术都属于微生物技术的范畴之内,都是环境生物技术在污染处理中应用的直接体现。

2.2污染土壤的生物修复

土壤的污染是近几年来被重点关注的一种污染形式,因为我们所食用的粮食和蔬菜都来源于土壤,我们的生活更是片刻都不能离开土壤,因此必须要解决土壤污染的问题。相关的研究数据表明重金属是造成土壤污染最重要的污染因子,对于土壤中重金属的处理一直以来都是一个难题,当前主要采用微生物的修复技术。土壤修复技术的原理是利用生物本身吸收和代谢的生命体活动去改变重金属的化学形态,使其化学特性固定,从而降低其在土壤中的移动性,最终达到对受污染土壤中重金属的净化和消减。通过上述生物技术处理过的土壤,不仅能够大大降低或者清除重金属的污染,还能在一定程度上提高土壤中有机质的含量,通过微生物活动改善土壤生态结构,防止水土流失。

2.3白色污染的消除

白色污染是当前表现非常突出的一种污染现象,其污染源就是我们日常生活中的废弃塑料袋,还有就是很难被化解的农用地膜,据统计我国每年所产生的塑料垃圾有数百万吨之巨,广泛分布于河沟和土壤之中。许多人可能认为塑料垃圾只会有碍观瞻,却不是什么有毒有害的物质,实则不然,塑料垃圾会造成严重的水污染、土壤污染以及空气污染。生物可降解塑料袋的研发已经成为全世界都关注的一个课题,当前也已经有许多环保袋产品问世,这些生物可降解塑料袋的制作就需要用到环境生物技术。当前利用环境生物技术可以广泛地分离筛选能够降解塑料和农膜的优势微生物、构建高效降解菌,还可以分离克隆降解基因并将该基因导入某一土壤微生物中,从而使得两者同时发挥出更大的作用,加速塑料袋垃圾的降解。

结语

综上所述,环境生物技术在污染治理工程中的应用非常广泛,同时在环境修复工程中的应用也很广泛,从目前的实际应用情况来看环境生物技术非常有效。然而,由于我国在经济发展的过程中长期以来对环境问题有所忽略,所以尽管现在的污染治理取得了一定的成就,但是所面临的形势依然不容乐观,需要进一步加强环境生物技术的开发和应用。在实际的污染治理过程中,许多环境生物技术的虽然有很好的效果,但是由于其成本和适用性等条件的限制,还不能被全面推广应用,这就要求环境生物技术要不断的进行革新与进步,使其能够在环境工程中发挥更大的作用。

参考文献

[1]于洁,冯裕,解玉红等.PCR-DGGE技术及其在环境微生物领域中的应用[J].西北农林科技大学学报(自然科学版),2010,12(06):227-234.

[2]林杰喜.分子生物技术在环境污染治理中的应用[J].资源节约与环保,2014,12(07):129.