遥感技术前景范例6篇

前言:中文期刊网精心挑选了遥感技术前景范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

遥感技术前景

遥感技术前景范文1

关键词:环境;污染;遥感技术

引言

随着我国经济的高速发展,环境污染和生态破坏日益严重,突发性环境污染事故也时有发生。环境监测作为环境管理和污染控制的主要手段之一,正发挥着不可替代的作用。遥感技术是获取环境信息的有力手段,是实现这一目的的极有效的技术。运用遥感技术监测环境污染及生态环境状况,正确评价环境质量,寻求改善生态环境的途径和措施,具有重要的意义。

1遥感技术概述

1.1基本概念

遥感技术是从卫星、飞机或其他飞行器上收集地物目标的电磁辐射信息,判认地球环境和资源的技术。它是60年代在航空摄影和判读的基础上随航天技术和电子计算机技术的发展而逐渐形成的综合性感测技术。任何物体都有不同的电磁波反射或辐射特征。航空航天遥感就是利用安装在飞行器上的遥感器感测地物目标的电磁辐射特征,并将特征记录下来,供识别和判断。

1.2特点

遥感技术具有监测范围广、速度快、成本低、质量高,便于进行长期动态监测等优势,还能发现用常规方法往往难以揭示的污染源及其扩散的状态,因此遥感技术正广泛地应用于监测水污染、大气污染等方面.其最重要的作用是不需要采样而直接可以进行区域性的跟踪测量,快速进行污染源的定点定位、污染范围的核定、大气生态效应、污染物在水体、大气中的分布、扩散等变化,从而获得全面的综合信息。

2环境污染遥感监测技术

遥感技术是一种利用物体反射或辐射电磁波的固有特性,远距离不直接接触物体而识别、测量并分析目标物性质的技术,根据所利用的波段,遥感监测技术主要分为可见光、反射红外遥感技术、热红外遥感技术、微波遥感技术三种类型.当前,遥感的应用已深入到农业、林业、渔业、地理、地质、海洋、水文、气象、环境监测、地球资源勘探、城乡规划、土地管理和军事侦察等诸多领域。

3环境污染遥感监测技术的应用

3.1水环境污染遥感监测

对水体的遥感监测是以污染水与清洁水的反射光谱特征研究为基础的,可以采用以水体光谱特性和水色为指标的遥感技术。遥感监测视野开阔,对大范围内发生的水体扩散过程容易通览全貌观察出污染物的排放源、扩散方向、影响范围及与清洁水混合稀释的特点.从而查明污染物的来龙去脉。

3.1.1泥沙污染及水体浑浊度分析

水体中泥沙含量增加使水反射率提高.随着水中悬浮泥沙浓度的增加及悬粒径增加,水体反射量逐渐增加,反射峰亦随之向长波方向移动,即红移.又由于水体在0.93~1.13μm附近对红外线吸收多,不适宜作悬浮泥沙浓度的判定波段.定量判读悬浮泥沙浓度的最佳波段应在0.65~0.85μm之间。

3.1.2城市污水监测

城市大量排放的工业废水和生活污水中带有大量有机物,它们分解时耗去大量氧气,使污水发黑发臭,当有机物严重污染时呈漆黑色,使水体的反射率显著降低,在黑白像片上呈灰黑或黑调的条带.使用红外传感器,能根据水中含有的染料、氢氧化合物、酸类等物质的红外辐射光谱弄清楚水污染的状况.水体污染状况在彩红外像片上有很好的显示,不仅可以直接观察到污染物运移的情况,而且凭借水中泥沙悬浮物和浮游植物作为判读指示物,可追踪出污染源。

3.1.3废水污染和水体热污染调查

废水由于水色与悬浮物性状千差万别,特征曲线上的反射峰位置和强度也不大一样。废水污染一般用多光谱合成图像进行监测,有的根据温度的差异也可用热红外方法测定.热污染使用红外传感器,能根据热效应的差异有效地探测出热污染排放源,热红外扫描图像主要反映目标的信息,无论白天、黑夜,在热红外像片上排热水口的位置、排放热水的分布范围和扩散状态都十分明显,水温的差异在像片上也能识别出来.利用光学技术或计算机对热图像作密度分割,根据少量同步实测水温,可正确地绘出水体的等温线.因此热红外图像能基本上反映热污染区温度的特征,达到定量解译的目的。

3.2大气污染遥感监测

大气遥感是利用遥感器监测大气结构、状态及变化。对于水汽、二氧化碳、臭氧、甲烷等微量气体成分具有各自分子所固有的辐射和吸收光谱,可以通过测量大气的吸收及辐射的光谱而从其结果中推算出来。

3.2.1有害气体的监测

人为或自然条件下产生的SO2、氟化物等对生物肌体有毒害的气体,通常采用间接解译标志进行.植被受污染后对红外线的反射能力下降,其颜色、纹理及动态标志都不同于正常的植被,如在彩红外图象上颜色发暗、树木郁闭度下降、植被个体物候异常等,利用这些特点就可以间接分析污染情况.对于地面污染,例如农田遭受污染之后,作物的生长将起特殊变化,地下水的污染也会引起地面植被的变化,与正常生长区的作物有不同的光谱表现.多光谱成像仪能监测这些变化,从而圈定地面污染分布范围,进一步对地面污染预防规划。

3.2.2臭氧层监测由于臭氧对0.3μm以下紫外区的电磁波吸收严重,因此可以用紫外波段来测定臭氧层臭氧含量的变化.在2.74μm处有个吸收带,可以用频率为11083MHz的地面微波或用望远镜来测定臭氧在大气中的垂直分布.又由于大气中臭氧含量高则温度高,又可以用红外波段来探测。

4发展趋势

遥感影像获取技术方面,随着高性能新型传感器的研制开发水平的提高以及环境资源遥感对高精度遥感数据要求的提高,高空间和高光谱分辨率已是卫星遥感影像获取技术的总发展趋势。雷达遥感技术具有全天候全天时影像的获取能力以及对一些地物的穿透能力,将得到更广泛的应用。以地球为研究对象的综合对地观测数据获取系统必将是当前及今后遥感技术发展的重要方向之一。

遥感信息模型的发展方面,遥感信息机理模型的发展和拓宽,特别是不确定性遥感信息模型与人工智能决策支持系统的开发与综合应用也将是一个重要研究和应用方向。将环境污染遥感监测技术(RS)与地理信息系统(GIS)、全球定位系统(Geographic Information System,GPS)、专家系统(Expert System,ES)技术集成,利用环境污染遥感监测集成系统,可以大大提高环境监测的科学性,合理性及智能化程度,从而大扩展环境监测的应用范围,开发集GPS、RS、GIS、ES于一体、适合环境保护领域应用的综合多功能型的遥感信息技术,也将是今后环境遥感技术的发展趋势。

5结束语

当前,我国环境污染遥感监测技术应依托我国的对地观测技术和对地观测系统的发展计划,同时充分利用国际上资源环境卫星系统,开展广泛的国际合作和交流,大力发展我国的环境污染遥感监测技术,并充分利用现有的环境监测网点和常规监测方法,采用遥感技术与地面监测相结合的方法,建立我国的环境污染遥感监测系统。

参考文献

[1]李晓雪.基于遥感技术的环境监测应用分析[J].自动化与仪器仪表,2015(04)

遥感技术前景范文2

【关键词】空间信息技术;3S;矿山测量

0 前言

空间信息技术是20世纪80年展起来的,其核心和主体是“3S”技术,即遥感、全球定位系统、地理信息系统,作为一项综合性的技术已构成当代高技术的一个重要组成部分。与传统的对地观测手段相比,它的优势在于能够提供全球或大区域精确定位的高频度宏观影像 ,扩大了人类的视野,加深了对地球及其变化的了解。目前,空间信息技术已在全球与区域通信、导航定位、资源调查、灾害和环境的动态监测、区域和城市规划等领域得到了广泛应用[1]。

近年来,中国空间信息技术发展取得一系列重要进展,其中,遥感信息技术方面,已建立资源卫星数据服务体系,形成一定市场规模,相应遥感数据生产加工市场潜力巨大,相关企业也正在迅速发展与壮大。此外,卫星定位技术方面已得到广泛应用,并形成相当规模的产业群体[2]。矿山测量应用于矿区生产与管理的各个环节,矿山测量技术经过几十年的发展,在理论和技术上基本能够满足矿山开采生产的要求,但信息时代的矿山测量面临的是新的任务和要求,近十几年来空间信息技术在矿山测量界取得了较大进展,其理论研究和实际应用不断发展和完善,这些先进技术已经在一些矿区得到广泛应用,并取得了显著的经济效益。

1 空间信息技术在矿山测量中的应用

以“3S”集成为主导的空间信息技术体系已逐渐成为测绘学或地球信息学(Geoinformatics或Geomatics)新的技术体系和工作模式,其先进性、时效性明显。以空间信息技术为技术支撑,现代测绘仪器、技术正处于快速的发展之中。空间信息技术是矿山测量实现其现代任务的重要的技术支撑和保证,以“3S”技术和其他测量仪器技术的有机结合为基础的矿区资料环境信息系统就是空间信息技术在矿山测量中应用的综合性成果[1]。

1.1 遥感及其在矿山测量中的应用

遥感依据不同的物体的电磁波特性不同来探测地表物体对电磁波的反射和发射,从而提取这些物体的信息,完成远距离识别物体。遥感包括卫星遥感和航空遥感,航空遥感作为地形图测绘的重要手段已在实践中得到了广泛的应用,卫星遥感用于测图也正在矿究之中并已取得一些意义重大的成果,基于遥感资料建立数字地面模型(DTM)进而应用于测绘工作已获得了较多的应用。

遥感科技正在走向定量化 、自动化与实用化。遥感观测技术向多传感器、多平台、多角度和三高(高分辨率、高光谱、高时相)的方向发展;1m及更高空间分辨率的多光谱遥感数据已商品化;具有几十、上百个光谱段的高光谱遥感正在从航空向航天平台迈进,它能够鉴定矿物岩石的成分及土壤的物化性质;合成孔径雷达图像处理与应用发展喜人;无地面控制遥感影像定位技术,国际上已达到15m甚至更高的精度[3]。

遥感技术在矿山测量中的应用已经历了较长的时间,并积累了丰富的经验。应用遥感资料,可获取矿区实时、动态、综合的信息源,对矿区环境进行监测,为矿区环境保护提供决策支持,在进行找矿、矿区地质条件研究、煤层顶底板研究等方面也已得到应用。合成孔径雷达干涉(InSAR)测量技术是近年来微波遥感发展的一个重要方向,InSAR 利用雷达信号的相位信息提取地球表面的高精度三维信息,可以测量地面点的高程变化,是目前空间遥感技术中获取高程信息精度最高的一项技术,由于它可以获得全球高精度的(毫米级)、高可靠性的(全天时、全天候)地表变化信息,因此能够有效地监测由自然和人为因素引起的地表形变。

1.2 全球定位系统及其在矿山测量中的应用

全球定位系统(GPS)是20世纪70年代由美国国防部批准,陆海空三军联合研制的新一代空间卫星导航定位系统。其主要目的是为陆海空三大领域提供实时、全天候和全球性的导航服务。全球定位系统共三部分构成:空间部分、地面控制部分、用户装置部分等。GPS的主要特点是全天候、全球覆盖、三位定速定时高精度、快速省时高效率及应用广泛。未来几年中,GPS和俄国研制的GLONASS两个卫星导航定位系统的技术水平、精度和抗干扰能力将会大幅度提高。有中国参与的欧洲Galileo 卫星导航定位系统 2005年已进入实质建设阶段,将于 2010年前后建成,其精度和性能将大大优于目前的 GPS系统,从而打破美国GPS在全球的垄断局面[2]。

GPS作为一项引起传统测绘观念重大变革的技术,已经成为大地测量的主要技术手段,也是最具潜力的全能型技术,在矿山测量、控制测量、工程测量、环境监测、防灾减灾以及交通运输工具的导航方面发挥着重要的作用。由于GPS不仅具有全天候、高精度和高度灵活性的优点,而且与传统的测量技术相比,无严格的控制测量等级之分,不必考虑测点间通视,不需造标,不存在误差积累,可同时进行三维定位等优点,在外业测量模式、误差来源和数据处理方面是对传统测绘观念的革命性转变。

目前,在矿山测量中,主要应用GPS技术建立区域性或局域性的大地测量GPS控制网,进行矿区地表移动监测等等。其中,定位精度比 DGPS高100倍的GPS-RTK实时载波相位差分技术,以其高精度、全天候、高效率等优势,在大地测量和工程测量中,显示出巨大的潜力和广阔的前景。传统的定位和施工放样,不仅仪器种类繁多,需要人员多,而且精度容易受施工作业现场影响。GPS-RTK 综合了其他测量仪器的功能,提高了作业效率,对于图形的数字化管理和使用也起到了促进作用,利用 GPS-RTK 测量手段可以得到每一个测点的三维坐标,并采用数据、图形和位置等不同的表现形式反映到不同的应用环境中,解决了图形不能统一到国家坐标系中这一问题。GPS-RTK 在矿山测量中的应用,使得代表着当今尖端科学水平的3S技术在矿山测量中成功实现突破[3]。

1.3 地理信息系统及其在矿山测量中的应用

GIS是近20年来发展起来的一门综合应用系统,它能把各种信息同地理位置和有关的视图结合起来,并把地理学、几何学、计算机科学及各种应用对象、Internet、多媒体技术及虚拟现实技术等融为一体,利用计算机图形与数据库技术来采集、存储、编辑、显示、转换、分析与输出地理图形及其属性数据。这样,就可根据用户需要将这些信息图文并茂地输送给用户,便于使用。地理信息系统作为对空间地理分布有关的数据进行采集、处理、管理、分析的计算机技术系统,其发展和应用对测绘科学的发展意义重大,是现代测绘技术的重大技术支撑。GIS正在向地理信息科学或空间信息科学的方向发展,并与计算机技术、信息技术相互借鉴、渗透,将成为一门独特的影响广泛的空间信息科学技术。

地理信息系统在地质、矿产领域的应用可以概括为三个方向:GIS技术建立多源数据找矿模型、矿山地理信息系统(Mine GIS,MGIS)和三维矿山[4]。目前虽然在我国矿山资源勘查、开发和生产管理中已经有多种GIS软件系统发挥了作用,但是由于许多原因如地下矿产资源数据获取不易性、不完整性及矿山地下采掘空间动态性等等,使得这些软件在矿山不完全实用,因此致力于研发适宜矿山特点的矿山地理信息系统是十分必要的,十几年来国内外的科技人员特别是矿业界的科技人员在MGIS的基本理论、技术体系、方法及实用软件开发方面做了大量的工作,取得了可喜的成果;三维矿山是矿山客观实体的一个模型描述, 通过三维矿山的建设,地质、矿业界人士能够更直观、更精确地圈定矿体边界,了解不同矿体分布的三维形态,准确地解译和圈定地下地质体,借以指导矿业开发和深部找矿预测,现在三维矿山已成为地学与信息科学的交叉技术前沿和热点。

2 结语

随着计算机技术、空间信息技术的发展,平面模型在向空间模型转化,数值记录在向数字模型转化 ,测绘科学也正逐步发展为内涵更为丰富的地球空间信息学,以“3S”集成技术为主导的空间信息技术虽然还在起步阶段,但其对于矿山测量的发展所起到的促进作用是不可估量的,在空间信息技术技术的推动下,矿山测量学正在演绎着深刻的变革,朝着“矿山空间信息学”的方向前进。

【参考文献】

[1]3snews中国地理空间产业门户网站[OL].http:///.

[2]郭达志.论“矿山空间信息学”:矿山测量的现展[J].测绘工程,2006,15(3).