生物技术研究进展范例6篇

前言:中文期刊网精心挑选了生物技术研究进展范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

生物技术研究进展

生物技术研究进展范文1

关键词:固定化微生物 发酵 果醋

中图分类号:TS26 文献标识码:A 文章编号:1674-098X(2016)07(c)-0038-03

Abstract:Fruit vinegar becomes alkaline after metabolism in human body, so it has the effect of neutralizing acidic food. And it is beneficial to preserve and absorb nutrient, which is of health, beauty and eliminating fatigue. Because of fast fermentation, short production cycle, stable product quality and economic advantages, immobilization technology has attracted more and more attention. This paper introduces the immobilization technology development of history and research, summarizes the function, fermentation technology and development trend of fruit vinegar, and finally discusses the application prospect and economic benefit of fruit vinegar with immobilized microorganism technology.

Key Words:Immobilized microorganism; Fermentation; Fruit vinegar

果醋是利用现代生物技术酿制成的一种营养丰富、风味别致的酸味调味品,口感呈酸性,在人体代谢后呈碱性,可以中和呈酸性食品,并有利于它保存各种营养素和促进钙的吸收。苹果可以调节肠胃功能,降低胆固醇,降血压、防癌、减肥、还可以增强儿童的记忆力,存在有利于儿童生长发育的细纤维,能增强儿童记忆力的锌。开发果醋可以提高水果的使用效率,促进水果产业的发展,很好地利用了我国的水果资源,同时可以减少粮食的消耗,也丰富了苹果的加工产品,还能给人们提供集营养、保健、食疗为一体的新型饮品。

现在国内主要生产果醋的方法是选用试管菌种进行扩培发酵,进入发酵期需经过前期活化、分离纯化、种子培养等步骤,这使得发酵时间变长[1]。固定化微生物技术近年来成为了研究的热点,使得各国学者竞相研究。其产品的质量稳定,易于实现生产的连续化。固定化微生物技术对于果醋生产中的应用、工业技术改造和标准化等有着积极的推动作用。

1 果醋及苹果醋饮料

果醋的主要原料是果实,其通过醋酸菌发酵而成,因具有独特的保健功效,变成近年来发展较为迅速的产品。果醋含有丰富的营养,能清除自由基,从而平衡人体内的酸碱度。苹果醋具有苹果的典型风味与口感,成本较低,营养价值高,兼有水果和食醋的营养保健功能,是苹果深加工的一个重要方向。它比食醋的营养更高,风味更好,能够直接饮用。果醋能降低人体内多余的胆固醇,因此能达到抗氧化、降低血压、减轻糖尿病影响、促进人体新陈代谢等作用。

1.1 果醋的功能性

1.1.1 保健作用

维生素C可以促使亚硝胺的分解,避免人体受到侵害。食物中维生素C因果醋的保护而不被破坏,从而降低体内的胆固醇含量,具有降血压、软化血管、帮助消化、降血糖、减肥、抑菌等功能。

1.1.2 美容作用

导致皮肤细胞衰老的主要因素是因为过氧化脂质的含量增加,果醋可以抑制和降低人体衰老过程中过氧化脂质的形成[2-3]。

1.1.3 减肥作用

果醋中含有丰富的氨基酸,不但可以加速糖类和蛋白质的新陈代谢,同时使人体内过多的脂肪转移为体能而被消耗,长期饮用果醋具有减肥疗效。

1.1.4 对儿童的营养作用

果醋含有蛋白质、氨基酸等人体所需要的其他酸性成分,其中维生素C的含量更是苹果10倍之多。它可更加有效地提供儿童身体每天所需的大量维生素,促进新陈代谢,促进儿童的正常发育。同时果醋中的挥发性物质具有刺激大脑神经中枢的作用,具有开发智力的功效。

1.1.5 消除疲劳作用

果醋中含有丰富的有机酸,这些有机酸,促进人体内糖代谢,使肌肉中的疲劳物质乳酸和丙酮等被分解,能有效维持体内的酸碱平衡,从而使得氧代谢顺畅,阻止乳酸的沉积,更好地消除疲劳[4]。

1.2 果醋的国内外市场分析

研究表明除了其家喻户晓的抗菌活性作用外,果醋被赋予了众多涉及健康的优点。消费者逐渐认识到果醋对人体的益处,人们将更多关注放到作为保健品的果醋上。早在20世纪90年代果醋已风靡欧美、日本等发达国家,其果醋产品种类繁多,得到了广泛的使用。人们对果醋已认识到了它的价值、产品开发早已很深入,人们已习惯将果醋作为调味品[5]。

2 果醋的酿造

果醋的发酵技术研究如下所述。

在生理学上发酵是指微生物的无氧呼吸和有氧呼吸以外的另一种生物氧化作用。固态发酵法[6]、液态发酵法[7]以及固定化发酵法[8]等是现在果醋广泛采用的发酵技术。固态发酵法发酵速度慢,对营养物的吸收和代谢产物的分泌存在不均匀,发酵不均匀,且过程控制较困难,但产品风味好;液态发酵法发酵成本低,生产周期短,但口感一般。固定化技术利用微生物的生物转化作用,使底物原料变成所需产品,效率高、产品转化快,大大缩短了发酵食品的生长周期,且原料利用率高,生产成本低,保持高效菌种,菌体可重复使用,抗污染能力强,稳定性强,有利于产物分离,易于实现连续化、自动化生产,在食品工业领域有广阔的应用前景[9]。

3 固定化微生物技术

固定化微生物技术是通过将微生物高度密集地固定在选证的载体上,在生物活性适宜保存的条件下使微生物能够快速、大量增殖的生物技术。其具有效率高、稳定性强、能纯化和保持高效菌种的特性,与传统发酵技术相比较,避免了生物细胞太小、难与水溶液分离、存在二次污染的问题。因此,固定化微生物技术在食品工业领域有广阔的应用前景。

3.1 常用的微生物固定化方法

固定化微生物技术的制备方法有吸附法、包埋法、结合法和交联法。其中,包埋法是最常用的的固定化生物催化剂技术,因其具有较好的综合性能、催化活性的保留和存活力高的特性,且在反应工程中应用广泛,广泛应用于食品、医药、日用化工等产品[9-12]。

固定化微生物技术制备果醋的研究现状如下。

吴茂玉等[13]对多菌种共固定化活细胞混合发酵的效果进行了研究,实脸表明,固定化发酵技术和传统发酵技术相比,口感较好、周期短。党亚丽等[14]对海藻酸钠固定化乳酸菌促熟干酪的效果进行了研究。固定化乳酸菌使得比对照组干酪成熟期缩短30 d左右。李西腾[15]采用固定化醋酸菌细胞的方法制备草莓醋,研究表明,在同样接种量的情况下,由于固定化工艺具有很高的产酸速率,其反应速度比传统工艺快了1.7倍。林海等[16]为了改进海藻酸钙微珠的性能,采取了3种不同的方法,固定化细胞使得最后木糖醇平均质量浓度为43.2 g/L,平均得率为53.8%。固定化微生物较游离微生物的优势之一就是其单位体积内菌体浓度更大,因而其发酵速率更快[19-22]。孙菲菲等[17]采用凝胶包埋法对固定化醋杆菌发酵芒果醋进行了研究。研究表明固定化方法发酵芒果醋的产酸率比传统方法提高83%,说明固定化技术具有明显优势。贺江等[18]采用固定化技术酿造苹果醋具有很好的稳定性,该研究结果表明,采用酿酒酵母、产酯酵母和乳酸菌共固定颗粒和醋酸菌酿造苹果醋共需要7 d时间,产酸速率比李燕等[23]、王云阳等[24]报道的有较大提高。

3.2 固定化微生物技术在果醋制备中的应用前景及展望

采用包埋法将原生质体固定可大大提高其稳定性。但固定原生质体还处于研究之中,未用于生产。随着固定化微生物技术的不断完善和固定化生物反应器的不断研制开发,在不久的将来,此项技术将会拥有更加广阔的应用前景。我国水果资源非常丰富,但是目前主要的经济价值还是依赖于水果本身的价值,深加工技术落后,因此,解决深加工的问题是当务之急。以水果为原料进行果醋的研制,创新生产加工工艺,利用固定化微生物技术发酵制备优质果醋,不仅提高了水果的营养价值,也为水果的开发利用提供了新的途径,未来营养保健的果醋饮品需求量也会随着人们生活水平的提高与日俱增,具有十分广阔的市场前景。

参考文献

[1] 高寅,黄秋云,陈中,等.液态深层发酵水果醋的工艺优化[J].现代食品科技,2010(12):1419-1422.

[2] 李郁.迎接果醋行业的春天――专访承德红源果业有限公司董事长闫斌[J].中国食品工业,2007(3):50-52.

[3] 陈春香.苹果醋的功能和工艺探讨[J].中国调味品,2007(10):65-74.

[4] 姚玉静,龚慧雯,王尔茂.果醋的保健功能[J].饮料工业,2009,12(9):1-2.

[5] 林清华,唐欣昀.固定化醋酸杆菌发酵条件的研究[J].食品科学,2011,13(32):213-217.

[6] 李红光.苹果醋固态法发酵技术[J].中国酿造,2000(6):25.

[7] 李莉,田士林.苹果醋生产工艺研究[J].安徽农业科学,2006,34(16):4098-4099.

[8] 吴定,温吉华,程绪铎.固定化酵母菌和醋酸杆菌发酵食醋工艺研究[J].中国酿造,2005(1):20-22.

[9] 李历.固定化醋酸菌在醋酸发酵中的应用研究[J].中国酿造,2013,3(32):7-12.

[10] 李慧荣.微生物的固定化在食品加工中的应用[J].食品研究与开发,2012,6(33):227-229.

[11] 赵小锋,王治业,王洁.共固定化复合菌种混合发酵冬果梨果醋工艺研究[J].食品研究与开发,2008,4(29):117-118.

[12] 李慧芸.固定化醋酸菌酿造火棘果醋的工艺研究[J].陕西教育学院报,2012(3):90-94.

[13] 吴茂玉,许平,林春国.共固定化多菌种混合发酵生产苹果醋的研究[J].中国调味品,2001(8):15-18.

[14] 党亚丽,张富新,田园,等.海藻酸钠固定化乳酸菌促熟干酪效果的研究[J].食品科学,2006(9):159-163.

生物技术研究进展范文2

关键词 农资竞争;无人直升机;植保技术;飞行植保

中图分类号 S252 文献标识码 A 文章编号 1007-5739(2013)03-0136-03

当今世界普遍兴起的绿色农业、有机农业、精准农业和数字农业[1],迫切需要植保技术的变革,研发相应的绿色植保、有机植保、精准植保、数字植保和飞行植保。其中,飞行植保当是日益兴旺的新兴产业。飞行植保就是用飞机防治农林业病虫草害或相关的作业,也可称为空中植保、航空植保或飞机植保技术。近年来,由于受全球气候异常、生态环境恶化等因素的影响,我国农作物病虫草害发生的面积在不断扩大,暴发性的病虫害灾难时常发生,造成了严重的后果,病虫草害防治的面积、病情和难度都在加大。以前,我国的飞机防治多采用固定翼飞机,这类飞机的起飞和着陆必须使用跑道,飞行速度快,作业效率高,但是药物漂移较多,精准度较差,容易造成农药浪费和环境污染。因此,不适应于复杂地形作业或障碍物多的作业环境以及家庭联产承包的中、小田块的病虫害防治,更不适应慢速度的超低空飞行防治作业。另外,由于病虫害的突发性(如2012年东北地区暴发的玉米粘虫),一般的地面喷雾设备或人工喷洒由于效率太低,根本不能及时扑灭病虫害,同时安全性也很差。近年来,无人直升机喷雾设备的研究与应用在美国、日本、韩国等发达国家得到了快速的发展[2-4]。在我国,由于缺乏先进的无人直升机植保技术和控制装置,使我国飞行植保的应用水平不适应我国农业发展的需要,因此借鉴发达国家飞行植保发展的先进经验,结合我国现状探索符合我国国情的飞行植保发展路径实属当务之急。

1 飞行植保的由来

在飞行植保这个新兴领域,美国、日本、韩国等发达国家走在前列。他们在器械设备研制、药剂研制、智能化装备及植保应用技术等方面为我国提供了可资借鉴的经验。

1.1 美国航空植保由来已久

美国航空植保经历了由有人驾驶直升机植保技术向无人机植保技术的过渡。20世纪中期以后,美国等发达国家逐步形成规模化的大型农场,采用专业化、现代化的生产方式。相应地,建立了以大型植保机械和航空植保为主体的病虫草害防治体系。目前,美国拥有农用飞机20多个品种9 000多架(13%为农用直升机),占世界总拥有量的28%,平均2万hm2耕地就有一架农用飞机[5],65%的农业化学处理是由飞机承担的。由于美国面积广阔,耕地集中在大规模经营的家庭农场,因此农用飞机以作业效率较高的有人驾驶固定冀飞机为主。作业项目除了包括航空播种、施肥和喷洒农药外,还拓展到人工降雨、森林灭火、空气清洁、旅游观光等方面[6]。由于无人机起飞时不需要跑道,在飞行中机动灵活,生存力较强,具有其他一些飞行器不具备的独特的飞行能力。目前,美国60%以上的农药喷施是由专业的植保公司运用无人智能机械完成的。

1.2 日本直升机植保技术居领先地位

日本直升机植保技术居领先地位,从20世纪90年代起就将无人直升机用于大田作物、果树和蔬菜的病虫害防治、施肥和品质管理上,还应用于田间监测,如判断水稻作物的田间生长状态。早在1990年,日本山叶公司就率先推出了世界第1架有效载荷为20 kg的无人直升机,此种飞机主要用于撒布农药,由于其独特的优点深受农民的欢迎。据2006年资料显示,日本水稻种植面积近169.2万hm2,且经营规模相对较小。这样的生产条件非常适合无人机的作业,因为机身尺寸小、重量轻、操控非常灵活、适应区域广,作业效率高、喷洒效果好。因此,日本农用无人机因其独特的优势得以快速发展,已经从1995年的307架增加到现在的2 400多架,仅YAMAHA用于农林业方面的无人机的“RMAX”系列就有1 200架以上,RMAX 无人直升机可喷洒农药7~10 hm2/h,一架RMAX每天可喷洒农药80 hm2,而且节水省药非常明显,1 hm2稻田仅用农药1 L,用水7 L。可以说,在日本这种无人直升机播种、耕作、施肥、喷洒农药、病虫害防治等无所不能。日本无人机的防治面积从1997年的20万hm2增加到2005年的60万hm2,年均增长20.1%,已经超过了有人驾驶直升机的防治面积。目前,日本国内水稻种植总面积的45%都靠无人直升机来进行病虫害防治[7]。日本总约533.33万hm2农田常年保持近3 000架无人直升机作业。日本还重视飞行人才的培养,已经取得执照的操控人员(飞手)达到6 000多人。因此,在日本采用无人机进行农业生产已成为现代化农业发展趋势之一[8]。

1.3 韩国飞行植保快速发展

农用无人直升机于2003年首次引进韩国,其后,每年都在增加数量,目前全国共有73架(图1)。其中约80%归于各地方的农协会所有,其余的则是营农组合法人或个人接受政府援助购置。韩国的农林水产食品部和农协中央会计划以后每年增加100架,到2013年共增加到500架[8]。全罗南道绿色农业科科长尹成浩说:“由于人口架构的老龄化和女性化日趋严重,农村人口急剧减少,这种情况下只能利用无人直升机了,以后还会利用无人直升机来进行播种和喷洒农药,它们的用途会更广。”

2 飞行植保在我国的兴起

近年来,尤其是近2年来,全国各地都积极开展了无人直升机的研发和应用。机型越来越多,应用范围越来越广,推广速度越来越快,技术研究越来越深入。

2.1 无人直升机飞行植保应运而兴

人们越来越深刻地认识到,农、林业生产在国民经济发展中具有突出的位置和重要意义,发展农林业生产是有关国计民生的头等大事。目前,病虫害仍然是我国发展农业生产的“天敌”,每年因病虫害造成的粮食损失在15%以上,防治费用也十分可观。未来我国1.2亿hm2农田将容纳年均过10亿元的无人机械设备市场和年均超100亿元的植保服务业务量。因此,植物病虫害防治是一项长期艰巨的任务。当前国内主要依靠于化学防治,化学农药防治效果除受药剂本身性质和性能制约之外,施药的时机、技术质量及药械等都是很重要的影响因素。

我国从1951年就开展航空施药技术的研究和应用,当时主要在大面积的垦区、森林和农场进行喷洒作业,机型多以固定翼飞机为主。60多年来,直升机出现了贝尔-212型、米-8型、米-171型机型的更替。目前,国内通用轻型无人机主要有蜜蜂16共轴式无人驾驶直升机,Z-3无人直升机,wD100型无人直升机、天鹰-3和AF811等。我国引进的国外先进轻型飞机,如美国RoBNSoN公司生产的R22轻型直升机等可应用于吊桶吊囊灭火,将水注入到用PVC制成的吊囊、吊袋(容量为0.5~1.5 t)中,用直升机吊挂到扑火现场,供机动泵、水枪使用,方法简单易行,设备造价低廉,效果良好。北京市2/3是山区,山区地形复杂多变。为了发挥航空护林优势,加强森林防火工作,北京市政府决定,今后每年3月1日至5月31日开展直升飞机森林灭火工作。直升机可利用吊桶吸水直接扑火,也可运送森林消防队员和扑火物资[7]。直升机除了森林消防以外,还用于病虫害防治工作。2003年,梁家林等人对飞机喷洒技术在防治美国白蛾当中的应用进行了探讨。试验结果表明,对美国白蛾集中连片发生的林区采用直升机防治,取得了比较满意的防治效果[8]。

在我国,无人直升机植保技术之所以得以快速发展,主要在于它具有高效、节水、优质、全能、安全、便利等多项独特的优势。如无人驾驶小型直升机具有作业高度低(1~10 m),农药用量少(使用超低容量液剂、热雾剂及超低容量静电制剂,施药仅为3 000~7 500 mL/hm2,电动无人直升机喷洒技术采用喷雾喷洒方式至少可以节约50%的农药使用量,节约90%的用水量),重量轻(整体尺寸小,转向起降灵活,可空中悬停,无需专用起降机场),防治效率高(1架飞机可完成施药0.13 hm2/min,1 h完成施药超过6.67 hm2);防治效果好(旋翼产生的向下气流有助于增加雾流对作物的穿透性,飘移少),远距离遥控操作(喷洒作业人员避免了暴露于农药的危险,提高了喷洒作业安全性),智能化程度高(GPS卫星定位导航,可以自动规划航线,自主按航线飞行并可自主接力,即断药补药后,从断药点开始续喷,可以减少人工漏喷重喷的现象),飞行稳定(飞行自稳系统带GPS模块,高精度姿态传感器,可实现自动增稳,漂移校正,自动巡航等)等诸多优点。另外,还在很大程度上降低了资源成本。电动无人机折旧率更低、单位作业人工成本不高、易保养。同时,飞机本身价格15万~50万元,防治用工费用与人工相当,都在植保企业和农民的可接受范围之内。这样,在小麦、水稻、果树、棉花等农作物的病虫害防治中以及授粉、监测等相关作业中广泛应用是完全可能的。

2.2 南方沿海地区先行先试

我国南方及沿海地区因经济发达和地形复杂,对飞行植保进行了先行先试。首先将直升机植保技术应用于柑桔病虫害(红蜘蛛)防治上(广东德庆喷洒1%阿维菌素热雾剂,3 d后防效82%);广西的甘蔗田利用无人直升机喷洒增糖剂取得了良好的经济效益;在海南省三亚林旺水稻种基地,由国家杂交水稻工程技术研究中心、南京农机化研究所等单位共同主办了“杂交水稻机械化种子生产暨农用无人直升机辅助授粉和施药技术”的现场观摩会,袁隆平、朱英国和罗锡文等院士现场指导;湖南省华容县利用TH28直升机喷洒森得保防治杨小舟蛾(7 d后防效达82%);在浙江、成都、珠海等地都先后利用无人直升机喷洒农药在水稻、油菜等作物上进行病虫害防治,取得了理想的防治效果和统防统治经验。

2.3 中原经济区蓄势待发

2012年3月17日总理观看了舞阳县1.07万hm2高标准粮田的无人直升机一喷三防现场演示(中央新闻联播)(图2),从此拉开了中原经济区飞行植保的序幕。5月8日,由广西田园、河南农业大学和河南平安种业联合主持的产学研结合项目无人机GPS定位一喷三防(防治穗蚜等)现场会在温县国家粮丰工程百亩方中进行(河南新闻联播),经河南农业大学专家测定,效果良好(1 d后防效达79.6%,3 d后达100%)。其后,新乡、睢县、永城、尉氏等地也先后利用无人机植保技术进行了小麦及林木病虫害统防统治工作,取得了明显的经济、社会和生态效益。中原经济区的其他省市也相继进行了直升机统防统治工作,如山东省防治林业病虫害,安徽、山西、河北等地防治农作物病虫害等。

应该说,中原经济区的飞行植保仅仅是个开端。可喜的是,势头非常好,不少地方和单位都是蓄势待发,呈现出良好的发展态势:一是研发主体多元化。以产学研结合的方式,如广西田园公司尉氏金田地与西安中航618研究所研制成功的AF811机型已经在林果、大田作物上成功应用。再如安阳全丰公司与无锡汉和航空公司联合研制农用无人机及其药物的同时,还建立了人才培训基地,开办了初、中、高级培训班。目前,开封田秀才公司也利用TXC8-1无人机开展了飞防服务。二是机型多样化。目前,研制成功正待推广应用的有超轻型可折叠一体化多旋翼农药无人机TTA MH3,广西田园公司的AF811,田秀才公司的TXC8-1,安阳全丰公司的QF26-01,80 ccCD-10无人机机型等。三是服务主体多元化。除了研制公司直接面向社会开展有偿服务以外,还出现了农民合作社植保专业队、植保公司统防统治专业队、农业协会专业服务队,农业局植保站等多种主体。四是研制服务一体化,研发企业的主要动因来自于对农药产品的促销。飞机防治是其次,更重要的在于增加农药、肥料等农资产品的销售,即无人机植保技术可作为促销农资的手段,进而提高企业的核心竞争力。同时,飞行植保也有利于扩大企业的社会影响和服务形象,从而助推了农资市场竞争向空中发展。

3 结语

综上所述,必须认识到直升机植保技术无疑是农业现代化进程中一场伟大的变革,必将推进农资市场竞争的空中争夺战,必将引起我国土地资源、农业栽培模式、农业经营规模等方面的变革,尤其是加速病虫害统防统治的进程。

4 参考文献

[1] 黑龙江省农机局.建设现代农业大力发展农业航空[J].今日农垦,2004(2):34-35.

[2] 龚艳,傅锡敏.现代农业中的航空施药技术[J].农业装备技术,2008,34(6):26-29.

[3] 刘卓.中国农业航空发展现状与展望[J].农机推广与安全,2001(1):28-29.

[4] 张毅.遥控直升机在日本农业上的应用[J].世界农业,1997(4):49-50.

[5] 尹铮,喻旋.论农用航空的发展应用对南昌市农业生产的促进作用[J].南方农机,2006(4):15.

[6] 刘卓.农用航空与突发性病虫害的防治[J].农业机械化与电气化,2001(4):32.

生物技术研究进展范文3

关键词:食品安全 食品微生物 快速检测

中图分类号:TS207.4 文献标识码:A 文章编号:1672-5336(2015)02-0023-01

伴随着科技的发展和人们对食品安全的重视,作为评价食品安全重要指标之一的食品微生物,其快速检测技术备受人们的关注。国标中关于食品微生物的检验方法,不仅步骤繁琐,且耗时耗力,尤其面对突发食品安全事件时,检测结果往往滞后于监管需要。因此,食品微生物快速检测技术备受人们的欢迎。本文将对近些年来微生物快速检测技术,如PCR技术、酶联免疫吸附技术、ATP生物发光技术、LAMP、阻抗法等的研究进展进行分析、总结和展望。

1 PCR技术

PCR(Polymerase Chain Reaction)技术,聚合酶链式反应,用于扩增放大特定DN段的分子生物学技术,是在体外的一种特殊DNA复制。PCR技术能在短时间内将特定的基因片段扩增数百万倍。由于其具有简便、快速、敏感性高和特异性强的优点,适用于时间紧的检测工作和突发食品安全事件。PCR技术在不断的发展,多重PCR、荧光定量PCR、实时定量PCR等就是PCR技术的衍生[1]。PCR技术耗材多为一次性,配套的仪器设备较为昂贵。若能进一步降低使用成本,必定能扩大使用范围。

2 酶联免疫吸附技术

酶联免疫吸附(ELISA)是指将可溶性的抗原或抗体结合到固相载体上,对免疫酶进行染色,利用抗原抗体结合专一性进行免疫反应的定性和定量检测方法。酶联免疫吸附技术集免疫荧光法和放射免疫测定法优点于一身,灵敏度高、特异性强、操作判断简单、实验设备要求简单[2]。

3 ATP生物发光技术

ATP是活的生物体中的能量货币,普遍存在于所有活的生物体中。生物体死亡后,ATP在细胞内酶的作用下很快被分解掉。荧光素-荧光素酶与ATP作用发光,通过用发光检测仪测定发光量从而测得ATP浓度。根据样品中的ATP浓度,即可推算出活菌数[3]。优点是快速、简便、重现性好;缺点是不能区别非微生物ATP且干扰因素较多。

4 LAMP

LAMP即为环介导等温扩增技术。是由2000年日本学者Notomi在Nucleic Acids Res杂志上公开的一种新的适用于基因诊断的恒温核酸扩增技术。其特点是针对靶基因的6个区域设计4种特异引物,在链置换DNA聚合酶(的作用下,60-65℃恒温扩增,15-60分钟左右即可实现109~1010倍的核酸扩增。优点是反应时间短、灵敏度高、无需特殊仪器、操作简便。缺点是由于灵敏度高,一旦开盖容易形成气溶胶污染,造成假阳性结果。

5 阻抗法

微生物在代谢生长过程中会引起培养基的电特性变化,阻抗法正是通过测量该变化从而间接的测定微生物的含量。培养基中蛋白质、脂肪、碳水化合物等电惰性的大分子营养物质能被微生物转化分解为氨基酸、乳酸盐等微电活性的小分子物质。培养基电阻性与微生物的浓度在微生物生长的不同时期有着不同的关系。通过检测培养基的电阻抗从而推算出微生物的浓度。优点是能够检测绝大部分食品微生物。

6 展望

食品安全问题异日突出,食品微生物检测环节极为重要。作为食品卫生检测的重要一环-食品微生物检测,其快速检测技术亟待发展。在实际检测过程中,检验人员可根据检测目标和检测环境等选择合适的快检方法,也可联合使用多种快检方法,提高检验效率,服务监管,保障人们的食品安全。

参考文献

[1]卿柳庭,屈小玲.核酸探针和PCR技术在食品检验中的应用[J].动物医学进展,2000,21(1):22-24.

[2]陈爱华,杨坚.酶联免疫吸附(ELISA)法在食品微生物检测中的应用[J].中国食品添加剂,2004,4:109-111.

[3]唐倩倩,叶尊忠.ATP生物发光法在微生物检测中的应用[J].食品科学,2008,29(06):460-464.

生物技术研究进展范文4

关键词 地下水;生物脱氮;异养反硝化;自养反硝化

中图分类号X3 文献标识码A 文章编号 1674-6708(2013)110-0148-02

近年来,生物反硝化法得到了较为广泛的关注,高效低耗的特点,使其被认定为最具发展潜力、最为实用的一种脱氮方法。生物反硝化包括异养反硝化和自养反硝化。

1异养反硝化

异养反硝化以有机碳为碳源和电子供体,利用反硝化细菌脱除地下水中硝酸盐。1983年,法国建成第一个以生产饮用水为目的的地下水生物脱氮处理工厂。采用Biodent工艺(如图1所示)。通过补充乙醇和磷酸盐的待处理水,使得硝酸盐浓度大幅度下降,出水亚硝酸盐浓度明显降低[1]。

图1Biodent生物脱氮工艺

1.硝酸盐污染水;2.厌氧生物反应器;3.空气;4.生物碳滤器;5.凝聚剂;6.活性碳; 7.砂;8.臭氧;9.出水贮池;10.投加氯气和硫代硫酸钠

德国研发固定床生物脱氮技术(Denipor工艺),用NaOH调节pH,乙醇和磷酸盐作基质,漂浮性Styropor球作填料,硝酸盐去除率大于90% [2]。Nilsson等[3]以乙醇作电子供体将脱氮假单胞菌固定于藻酸钙凝胶中进行生物脱氮,硝酸盐被完全去除,亚硝酸盐浓度也接近于零。Kokofuta等[4]用聚乙烯乙醇硫酸盐和聚二丙烯基二甲氨盐酸盐组成的复合物固定脱氮假单胞菌。在中性条件下,出水亚硝酸盐浓度接近于零,脱氮率为80%。异养反硝化处理费用低,将硝酸盐转化为氮气,不产生废液,但必须严格控制有机物投加量,否则造成二次污染。

2自养反硝化

自养反硝化以无机碳为碳源,以还原性硫化物为电子供体脱除地下水中硝酸盐,其包括氢自养反硝化和硫自养反硝化。

2.1 氢自养反硝化

H2无毒、无污染,以H2为电子供体的自养反硝化是较理想的脱氮方法。Ginocchio等[5]在原水中注入大量H2,经过1.5h后,水中30mg/L硝酸盐全部脱除。Robert等[6]将生物反硝化与电解供氢相结合,脱氮率为100%。Kurt等[7]采用氢作基质,利用混合培养物,在流化床中研究了自养型生物脱氮。当pH升至9.0时,生成大量亚硝酸盐,故将pH调至7.5为最适。Denitropur工艺是利用氢和脱氮菌混培物开发的另一自养型生物脱氮技术[8](如图2所示),由9个固定床反应器串联组成,以三维波纹结构的Mellapack为填料。被处理水用氢加压饱和,并补充CO2和磷酸盐。脱氮水先充氧,然后在双层滤池中过滤,最后用紫外线消毒。该装置水处理能力为50m3/h,对硝酸盐处理能力为90kg/d。当停留时间为1h时,硝酸盐可从75mg/L降至5mg/L。氢自养反硝化以纯H2为氢供体,存在安全隐患,且其溶解度较小,并非理想的脱氮方法。

图2Denitropur生物脱氮工艺

1.污染水;2.氢;3.氢饱和;4.生物反应池;5.逆向充氧;6.空气;7.双层滤池;8.紫外线消毒;9.脱氮水

2.2 硫自养反硝化

除H2外,硫也被用于自养型生物脱,在缺氧条件下,以硫或还原性硫化物为电子供体进行自养反硝化。刘玲花等[9]利用硫/石灰石滤柱脱除地下水中硝酸盐氮,水中硝酸盐基本被除尽,反应产物中几乎无亚硝酸盐氮。姜巍等[10]采用装填硫磺和石灰石的生物膜反应器脱除地下水中硝酸盐氮,去除率达80%以上。荷兰利用硫/石灰石滤器建立了一个自养型生物脱氮示范工厂[11],如图3所示。该系统包括真空脱气,充氧和回灌等操作。为避免反应器堵塞和短流,并去除反应产生的氮气,因此采用真空脱气。反应器长20m,宽7m,深2m,其内充填石灰石颗粒和硫,水处理能力为35m3/h。对于含高浓度硝酸盐的污水,经过一段时间的运试,硝酸盐氮去除率超过90%。脱氮水的细菌数达-个/mL,回灌并停留10~12周后,菌落全部去除,细菌学指标良好。硫自养反硝化在反应过程中会产生大量硫酸根离子,污染水质,因此该法只适合处理硫酸根离子浓度低的地下水。

图3 硫/石灰石滤器生物脱氮工艺

1.污染水;2.真空脱气;3.硫/石灰石脱氮反应器;4.阶式充氧;5.渗滤塘

参考文献

[1]郑平,冯孝善.饮用水的生物脱氮[J].环境污染与防治,1997,19(1):32-35.

[2]Roennefahrt, K.W.Aqua,1986,5:283-285.

[3]Nilsson I.Immobilized cells in microb ial nitrate reduction[J].J.Appl.Microbiol Biotechnol,1982,7(1):39-41.

[4]Kokufutn, E.J.Ferment.Technol,1986,64:533-538.

[5]Ginocchio B..Nitrate levels in drinking water are becoming to high[J].Water Services,1987,88(4):143-147.

[6]Robert B. M., etal.Reduction of nitrate and nitrite in water by immobilized enzymes[J].Nature,1992,355:717-719.

[7]Kurt M, Dunn I J, and Bourne J R.Biological denitrification of drinking water using autotrophic organisms with H2 in a fluidized-bed biofilm reactor[J].Biotechnology and Bioengineering,1987,29:493-501.

[8]Gros, H..Wat.Supply,1986,4:11-21.

[9]刘玲花,工占生,工志石.硫/石灰石滤柱去除地下水中硝酸盐的研究[J].环境工程,1995,13(3):11-15.

生物技术研究进展范文5

关键词:农村生活污水;生态处理;应用;进展

中图分类号: R123 文献标识码: A前言

随着工业化的全盘深入,目前我国的农村生活污水污染十分严重,据调查,我国农村地区每年产生的生活污水高达80亿吨,大部分污水直接进入生态环境,而且绝大多数村庄没有一个良好的排水系统与污水处理系统。农村生活污水污染已经成为主要的污染源之一,这与国家新农村政策中提出的和谐,文明,宜居的新农村理念背道而驰,农村生活污水污染已经成为亟待解决的问题,加强水污染防治是改善农村生态环境和防治农业面源污染的重要措施,农村生活污水收集处理与资源化设施建设,不但关乎新农村建设的需要,也是避免农村水体土壤和农产品污染,确保农村环境安全和农民身心健康的重要举措。

一、农村生活污水的主要来源

农村污水是农村村庄和小镇的居民生活污水和生产废水的总称。 它的来源很多,通常有: 农村居民日常生活产生的污水;中小学、当地政府机关、民俗旅游、旅店排放的污水; 农民养殖的畜禽排泄物;乡镇企业排放的各种污水。 其中,农村生活污水一般来源于以下三方面:

1、厨房污水,多以洗碗水、涮锅水、淘米和洗菜水组成。淘米洗菜水中含有米糠菜屑等有机物,其他污水中含有大量的动植物脂肪和钠、醋酸、氯、碘等多种元素。由于生活水平的提高,农村肉类食品及油类使用的增加,使生活污水的油类成分增加。

2、是生活洗涤污水,洗涤用品的使用使洗涤污水含有大量化学成分。洗衣粉的大量使用加重了磷负荷问题。

3、是冲厕水。部分农村改水改厕后,使用了抽水马桶,产生了大量的生活污水。部分农村仍在使用旱厕,且有的农户养家畜家禽,产生了冲圈水,粪料还田,粪水溢流。畜禽粪尿所含的N、P及BOD等浓度很高,冲洗水中的COD、BOD5和SS浓度也很高。

二、农村生活污水的特征

从农村生活污水的取样与分析表明,农村生活污水的水质并不是很差,但变化范围较大,如水中N、P两种微量元素含量较低、若是没有经过处理就直接排放,很容易造成水体污染。此外,农村的生活污水分布较广,水量较大、排放不均匀;但生化性能较强,水中有毒害污染物含量几乎为零。农村生活污水增长较快,处理率极低。

三、农村污水治理的重要性

农村生活污水没有统一规划的管理系统,一般都是随意排放,这就很容易导致疾病地随意散播,严重损伤广大农民的身体健康。由于农村自来水的普及率不高,许多农村家庭用水还是向自然汲取,但由于生活污水肆意排放,农村的地下水源也在一定程度上受到了污染,村民饮用的河水、井水中也会含有一些病菌,如皮肤病、斑牙病等,严重可致癌,由此可见,污水若是不能经过系统的处理,危害将无法想象。

四、农村生活污水处理现状

目前,我国农村地区生活污水的处理率还不高,农村生活污水治理工程较少,很多处理技术也仅仅处在示范研究阶段,目前农村生活污水的治理存在一个较大的难点,即基建投资以及运行费用较大,农村经济实力以及技术力量很难满足常规城市生活污水处理厂技术要求等 因此,急需要开发高效低能耗低成本的污水资源化技术,引进适合我国国情的国外发达国家的先进技术与工艺,解决农村生活污水污染问题。

五,农村污水生态处理技术的应用及进展

农村污水处理生态技术在传统工艺的基础上,将朝着以土壤介质的净化作用为核心,在技术上特别强调在污水污染成分处理过程中植物-微生物共存体系与处理环境或介质的相互关系的方向发展,特别注意对生态因子的优化与调控。传统的污水生态处理技术有人工湿地系统土地渗滤系统稳定塘系统,近年来将蚯蚓引入生物滤池的生态工艺也越来越引起人们的重视。

(1)稳定塘处理系统

稳定塘实际上是一种人工处理过后的池塘,池塘周围设有防渗层与围堤,它主要利用自然生物的净化系统与水生生物的净化功能让污水得到净化。这种系统工艺性较低,建设费用与运行费用都比前两种方式要低,且不需要进行污泥处理。但是它也存在着一些弊端,这种方式受气候条件的影响较大,且需要利用村民自家池塘,占地面积较大,有机负荷较低。为了更进一步的利用池塘来处理污水,研究者们开始向高效藻类塘研究并取得了一定成果。这种藻类塘能够充分利用塘内藻类产生的氧气,通过菌藻的共生关系来高效处理污染物。这种高效藻类塘还处于研究阶段,并未被广泛使用。

(2)沼气池处理技术

污水净化沼气池是一种利用污水中的有机物对污水进行发酵,在接近厌氧的状态下处理污水的一种技术。这种沼气式的处理办法在农村居民中使用最为广泛,也是最为节俭、通用的处理技术。沼气池通过将污水中的有机物发酵,产生的沼气可以提供居民洗澡、烧火的能源,而污水中的有机物也随着沼气的产生被去除大半,处理后的污水可以用来浇花浇田,实在是一种社会效益与环境效益相结合的处理模式。在我国,传统的化粪池已被这种生态沼气池所取代。而这种沼气池的设计由于每个居民都是自行建造的,在建造过程中会有不合理现象出现。因此,在改进生活污水净化沼气池方面,研究者还需要深入分析,不断改进建造方案及工艺,为村民详细的介绍搭建方法,让污水处理更为有效。

(3)生物滤池系统

生物滤池是一种由塑料制品或碎石等惰性材料填充,表面生长生物群落的一种过滤系统。这种系统让污水与填料表层的微生物膜间隙接触,相当于制造了一层生物膜反应器。这种滤池系统最大的特点就是将截留悬浮与生物氧化继承与一体,节省了传统污水净化中的二沉池作用,省掉了二沉池的建筑面积,具有除污效果强、占地面积小、出水水质好的特点。另外,研究者发现利用高效功能的陶粒来作为填充材料也是很好的选择。此外,一些研究者正研究将蚯蚓这种生物引入滤池中,以提高土壤的透气性与透水性,促进有机物质的分解。

(4)人工湿地处理系统

所谓人工湿地,是指利用人工手段模拟出来的自然湿地系统,以构筑物形式呈现在人们眼前。在这种构筑物的底部,会铺设一层由沙子、碎石组成的填料,在填料上层的土壤中种植一些生长期长,有排污能力和经济价值的水生植物,建立一个小型的生态系统。通过这个小型生态系统中的水生植物与微生物的协同作用,污染物能够被成功去除。人工湿地作为一种高效、经济的处理系统,在农村污水处理上起到了重要作用。

(5)土地渗滤处理

由于农村地段的公共建筑面积较少,有大量土地不作为建筑用地,因此土壤的排污能力远远高于城镇地段。土壤渗滤系统充分利用的大自然的净化功能,将污水有计划、有条理的排入地下土层中,通过土层本身及内部有机物来吸附污水中的有害物质,对污染物进行降解,常用的土地渗滤技术为慢速渗滤处理以及人工快速渗滤处理。

1)慢速渗透处理

所谓慢速渗透是指完全按照土地本身吸收状况来处理污水,将废水引入到耕作农田中,污水中的有机物能够满足部分农作物的生长需要。这种渗透技术的速度非常慢,以利用水中的营养物、深度处理污水为目标,有效利用污水,不易产生污水的二次污染。早期,污水的慢性渗透处理多在小麦、玉米地上进行,慢速渗透处理系统虽说速度较慢,但具有一定的经济效益。

2)人工快速处理系统

这种处理系统充分利用了人工工艺,采用天然河沙为渗滤介质,通过参入一定的特殊填料来达到净化的目的。这种方式不仅运营成本较低、管理简单,在处理工艺上也比较简便,与传统工艺相比,它不受土地等自然环境因素的影响,还能够提高水力负荷,具有较高的实用工艺性。人工快速处理系统采用的是干湿交替的运转方式,被认为是解决农村小流量污水的最可靠、最适合的方式。通过加大落干与淹水的频率、缩短淹水周期,能够达到明显的除污效果。迄今为止,人们尚未对这种除污的去污机理研究透彻,普遍认可是在过滤过程中吸附、截留与生物降解下三者共同作用的结果。

结语

综上所述,污水生态处理系统已成为农村生活污水处理的重要组成部分,对农村水环境面临的水资源危机问题有一定缓解作用。农村污水生态处理是一个很好的出路,处理流程不能拘泥于形式,可根据不同处理要求对现有的污水处理技术进行组合来完成污水处理技术的低能耗,优质化,资源化。

参考文献

[1]陈长太,王雪,祁继英.国外人工湿地技术的应用及研究进展[J].中国给水排水.2003年

生物技术研究进展范文6

【摘要】

综述了微乳液的形成机理、结构、微乳液膜传质机理,研究现状和其在医药生物上的应用,并对微乳系统的应用进行了展望。

【关键词】 微乳液 机理 应用

Abstract:The formation mechanism of microemulsion as well as its structure,mass transfer mechanism and its present situation of research and medical application was summarized in this review. In addition,industrialization prospect of microemulsion liquid membrane technology was also prospected .

Key words:Microemulsion liquid membrane; Mechanism; Application

1943 年Hoar 和Schulman 用油、水和乳化剂以及醇共同配制得到一透明均一体系并将该体系命名为微乳液以来[1,2],微乳液的研究受到广泛关注。微乳液真正作为液膜体系是近十多年来出现的一项新技术,其在石油、环境、水处理、制药、医药、食品、牛奶、饮料、造纸、纺织、电子等领域的广泛用途,使其在近些年成了一个非常热门的研究课题,本文对微乳液的形成理论、结构、微乳液膜传质机理和近些年来微乳液膜作为一种分离技术的国内外研究状况和其在医药生物上的应用进行综述。

1 微乳液的形成

微乳液是在一定条件下可以自发形成的、宏观上是各向同性的热力学稳定体系,一般由表面活性剂、助表面活性剂、油和水(或水溶液)组成。较为成熟的微乳形成理论有3 种,即界面混合膜理论、溶解理论和热力学理论。Schulman提出了界面混合膜理论,即负界面张力理论,该理论认为微乳液之所以能自发形成与瞬时负界面张力的产生有关,在表面活性剂和助表面活性剂的共同作用下,使油/ 水界面产生瞬时负界面张力,形成由表面活性剂、助表面活性剂、油和水(或水溶液)组成的混合膜,体系自发扩张界面,形成微乳体系。该理论在解释微乳液的形成和稳定性上是合理的,但这种负界面张力难以测定,所以它在解释微乳的自动乳化现象时缺乏有力的实证,并且事实上一些双链离子型表面活性剂如AOT 和离子表面活性剂也能形成微乳而无需加入助表面活性剂,所以该理论存在一定的局限性。

溶解理论以Shinoda 和Friberg 等为代表,认为微乳的形成是油相和水相增溶于胶束或反胶束中而使胶束逐渐变大并溶胀到一定粒径范围内的结果,但此理论无法解释表面活性剂的浓度大于临界胶束浓度(CMC) 时即可产生增溶作用这一事实,而此时也并不一定形成微乳。

热力学理论以Ruckenstein 和Overbeek 等为代表,他们从热力学方面对微乳的形成进行了阐述,认为表面活性剂降低油水表面张力的程度和系统的熵变决定了微乳形成的自由能,公式:ΔG f =γΔA -TΔS ,其中ΔGf 表示微乳形成的自由能,γ表示油水表面的表面张力,ΔA 表示微乳化时表面积的变化,ΔS 表示系统的熵变, T 是热力学温度。值得注意的是,由于微乳形成时有大量非常小的液滴生成,ΔA是非常大的。Taha 等通过计算机辅助的分子建模、描述符计算及多重线性回归技术提出了统计学上具有重要意义的O/ W 和W/ O 微乳的模型,使人们对微乳的形成过程和性质有了更深更好的理解。

2 微乳液的结构

微乳液又称膨胀胶束,可以看成是胶束内核增溶非极性或极性物质后所形成的体系。而胶束是表面活性剂分子当浓度超过其临界胶束浓度后在水或有机溶剂中自发缔合形成的自组织系统(或聚集体),在水中形成的聚集体称为正常胶束(normal micelle),在有机溶剂中形成的聚集体称为反胶束(reversed micelle)。胶束内部的非极性环境使它可以增溶非极性物质水形成膨胀胶束,又称为水包油型微乳液(O/W);同样,反胶束内部的极性环境使它可以增溶极性物质形成膨胀反胶束,或称为油包水型微乳液(W/O)。目前,胶束和微乳液的区分尚无严格界定,两者在拓扑学结构上极为相似,但还是有区别。对于反胶束和W/O型微乳液来说,两者的主要区别在于W/O型微乳液的水池内有自由水存在,反胶束则没有。胶束的大小一般在5 nm以下,而微乳液的大小则在5 nm以上[3],但不超过40 nm[4]。根据表面活性剂分子极性端基电离性质的不同,微乳液可分为以下4 种类型:非离子型微乳液(如以OP-7[壬基酚聚氧乙烯(7)醚]和OP-4[壬基酚聚氧乙烯(4)醚]等非离子表面活性剂组成的微乳液),阳离子型微乳液(如以十六烷基三甲基溴化铵组成的微乳液),阴离子型微乳液[如以AOT[二-(2-乙基己基)磺化琥珀酸钠]和SDS(十二烷基硫酸钠)组成的微乳液,两性离子型微乳液(如以卵磷脂、甜菜碱类表面活性剂组成的微乳液)。图1是胶束、反胶束和微乳液的示意图。

3 微乳液的相行为

从连续相性质来分,微乳液有O/W(水包油)、W/O(油包水)和双连续型。而从相平衡观点来看,微乳液体系可分为WinsorⅠ,Ⅱ,Ⅲ,Ⅳ四个相平衡体系。如图2所示。

3.1 WinsorⅠ体系O/W型微乳液与过剩油相共存的两相平衡体系。

3.2 WinsorⅡ体系W/O型微乳液与过剩水相共存的两相平衡体系。

3.3 WinsorⅢ体系双连续型微乳液(中相微乳液)同时与过剩油相和过剩水相共存的三相平衡体系。

3.4 WinsorⅣ体系O/W 或W/O型微乳液的均相热力学稳定体系。

4 微乳液膜的传质机理

4.1 界面溶化传质机理用于水相萃取的体系是W/O型的反胶束或W/O微乳液,萃取过程在winsorⅡ体系(W/O型微乳液和水相的两相平衡体系) 中进行。在传质方面,Plucinski和Nitsch提出了萃取过程的界面溶化传质机理(又称“bud”胶束溶化机理或 “蓓蕾”状胶束溶化机理,该机理如图3所示。

其要点是:反胶束移动到油、水两相的液/液界面并发生黏性碰撞使反胶束发生开孔而形成“bud”反胶束(“蓓蕾”状反胶束),被萃溶质随后通过离子交换在“bud”反胶束的凹陷部分发生连续溶化(fusion),负载有溶化物的反胶束扩散进入有机相中。

4.2 基于液膜的界面传质机理Tondore等[4]最早将阴离子型微乳液作为液膜使用,研究了亲油化合物,如:芘、蒽在液膜中的传质。之后他们又拓展到W/O型微乳液萃取金属离子Ni2+,Co2+,Cu2+等。对Ni2+,Co2+,Cu2+的萃取分离所用的体系是含萃取剂8-羟基奎啉或改性物Kelex 100的SDS-异丁醇(戊醇)-水-十二烷的阴离子型W/O微乳液。Tondre等通过用一个U-型管进行的大量传质实验研究基础上提出了W/O微乳液萃取的两种液膜界面传质机理,一种是通过有机相的传质(transfer via the organic phase):溶质首先转移到有机相,然后再转移到反胶束或W/O微乳液滴内并通过该聚集体扩散到第2个液/液界面;另一种是直接传质(direct transfer):通过两亲分子膜的开裂-愈合方式使溶质直接从料液相转移到反胶束或W/O微乳液滴,然后该液滴离开第1个界面扩散到第2个界面。这两种界面传质机理可用图4表示(其中S表示溶质,a表示水相,o表示有机相):显然,Tondore等提出的直接传质机理(b)与Plucinski和Nitsch提出“蓓蕾”状胶束溶化机理是相似的。

4.3 液膜促进传质机理用非离子型微乳液萃取分离金属离子时常常加入萃取剂(在液膜体系中称为流动载体),萃取机理与传统液膜萃取中的Ⅱ型促进迁移机理相同[5,6],萃取过程一般包括金属离子从料液相扩散到料液/微乳液界面,金属离子在该界面与流动载体发生反应生成可溶于油相的络合物并扩散到微乳液/接收内水相界面,络合物在内相解络剂作用下发生解络释放出金属离子等四个步骤,通过被萃物和内相解络剂在膜内外两相的偶合传质,最后可以使被萃物在膜内相富集,其实质是流动载体在液膜内外两个界面之间来回穿梭地传递被迁移的物质。如图5所示。非离子型微乳液萃取研究以Wiencek等为主,他们主要研究了用非离子型表面活性剂DNP-8[双壬基酚聚氧乙烯(8)醚]代替阴离子表面活性剂并加入流动载体制成微乳液,用于从水相中分离富集萃取Hg2+,Cu2+和HAc等, 并与普通乳状液膜体系作了对比。结果表明,非离子型微乳液膜比传统粗乳状液膜具有更高的效率。

5 微乳液体系的研究概况

微乳液体系用于蛋白质的分离、浓缩、纯化和金属萃取的文献不多,1982年后才有少量的相关报道,1990年后略有增加。用反胶束、微乳液进行萃取分离研究主要是以德国munchen技术大学的Nitsch和Plucinski,法国Nancy大学C.Tondre教授及其合作者和美国Rutgers大学J.Wiencek 教授等人的工作为主,近年来在其他的实验室也开展了一些研究。如K.Osseo-Asare、 Ovejero-Escudero F.G, Angelino H, Casamatta G等[7] 、C. S. Vijayalakshmi., A. V. Annapragada, E. Gulari[8],Tondore等[9]、P. Plucinski and W.Nitsch[10]、Wiencek等[11,12],他们分别用离子型或非离子型微乳液作为分离介质进行了金属离子的萃取研究。非离子型微乳液萃取研究以Wiencek等为主,他主要研究了非离子型W/O微乳液作为液膜的传质,用非离子型表面活性剂DNP-8 [双壬基酚聚氧乙烯(8)醚]代替阴离子表面活性剂并加入流动载体制成微乳液,用于从水相中分离富集萃取Hg2+,Cu2+和HAc等, 并与普通乳状液膜体系作了对比。结果表明,非离子型微乳液膜比传统粗乳状液膜具有更高的效率,而传质机理与传统粗乳状液膜相同。用微乳液膜萃取完成时间短,并在较长时间内检测无H+泄漏。而用普通乳状液,萃取所需时间长。

在国内,著名化学家徐光宪、袁承业等早在20世纪70年代开创性地进行稀土串级萃取理论和工艺的研究时就发现液液萃取体系中微乳液的形成对萃取有增效作用[13]。韩立新等[14]、朱霞石等[15]、分别用W/O阴离子型和O/W非离子型微乳液萃取痕量金属离子如Cd3+,Cr3+,Fe3+的萃取,然后用浓酸或浓盐水进行反萃,其工作仅限于对痕量金属离子Cd3+,Cr3+的分析。曾平等[16]研究了皂化P204/煤油体系微乳液对V(Ⅳ)萃取。近年来,龚福忠等[17,18]进行了W/O非离子型微乳液萃取钕的研究,效果良好。

6 微乳液在生物医药领域中的应用

6.1 微乳液在生物工程中的应用微乳萃取是一项新出现的膜萃取技术, 最早用于具有经济价值的蛋白质、多肽、氨基酸的分离[19]。在传统的液膜萃取中, 由于液膜本身的稳定性和机械性能较差, 不可避免地出现液膜破裂, 从而造成已被萃取的溶质返回到料液相, 大大降低了萃取效率; 另外, 萃取完毕后,还需对液膜进行破乳, 以分离出萃取的溶质, 因此根据液膜的不同, 破乳设备也复杂多样。研究发现,反胶团W/ O 型微乳体系可以用于生物活性物质的萃取[20],由于微乳体系中的微环境和生物细胞的环境类似,所萃蛋白质不易变性。另外,反胶团微乳液作为细胞的模拟膜,还可以用来制备生物分子的超微颗粒[21,22]。

最近研究还发现,在反胶团W/ O 型微乳体系及低含水介质中的酶体系中应用酶可以增加非极性试剂的溶解度,有利于反应进行,提高酶的热稳定性。在微乳体系中,酶催化应用于许多种反应,例如采用脂肪酶、磷脂酶、碱性磷酸脂酶、胰蛋白酶、溶菌酶、肽酶等催化应用于酯、肽、酰基糖的合成、酯交换、各种水解反应及生物碱的变换等。

转贴于

6.2 微乳液在医药中的应用在制药工业中,利用微乳粒径小的特性,将药物包裹在微乳小颗粒中制成液体状的药物,通过注射或者内服,使药物进入人体,微乳液的高稳定性可以使包裹的药物保质期延长,并且易于扩散和吸收[23],例如微乳液膜包裹的口服胃蛋白酶,由于其粒度小,大大降低了病人的不良反应。另外,微乳作为药物释放体系, 已引起研究者的高度注意。通常O/W 型微乳可作为水难溶性药物载体;W /O 型微乳可使水溶性药物得以持续释放,增加药物的生物利用度[24]。微乳型药物的研究,国外相对较多, 且已有产品上市。Sandoz 公司生产的环孢霉素A口服微乳胶囊剂Neoral, 显著改善了药2时曲线的峰谷水平, 生物利用度比普通型药剂Sandimmun 提高了20%~ 30% [25]。陈刚等[26]研究结果表明, 肝移植术后口服环孢霉素最好用环孢霉素微乳剂, 因肝移植患者术后多置T 管引流胆汁, 而Neoral 具有吸收快、稳定、不受胆汁及食物影响的优点。由于微乳剂具有分散性好,分散相颗粒小等特点,其在超声造影剂(U CA )技术方面能够大大增强超声检测信号,其应用也得到人们的重视,气液相变型超声造影剂利用微乳剂分散性好、分散相颗粒可以达到10~ 100 nm,并具有能被长期保存的特点。将一类沸点低于人体正常体温的物质制成微乳剂,当这类微乳剂注入人体后, 由于人体温度高于其沸点, 就会从非致声的小液滴转变为强致声的微泡。气液相变型超声造影剂是一类新型的超声造影剂, 具有稳定、强致声及能够通过外周静脉实现心肌灌注及脉管Doppler 增强效应。EchogenR是以十二氟戊烷(DDFP, 沸点为28. 5℃) 为主要组分制成的微乳液, 乳化剂采用非离子表面活性剂。、EchogenR已在人体内进行了心脏病学及放射学临床研究[27~29]。微乳剂的制备简单、条件温和、设备要求不复杂, 易实现工业化操作。目前的其它方法如声空化法等, 受设备等条件的影响, 难以实现大规模的生产。因此,微乳气液相变性超声造影剂是一种很有前途的超声造影剂[30]。

7 结论和展望

半个世纪以来,微乳系统的理论研究和应用开发取得了显著的成就,微乳液作为一种热力学稳定的体系, 制乳十分方便,黏度小,破乳容易,其所具有的超低界面张力和表面活性剂所具有的乳化、增溶、分散、起泡、和柔软性等性能使它不但在医药生物领域有实际的和潜在的应用价值,而且在其它领域包括石油、环境、水处理、制药、食品、牛奶、饮料、造纸、纺织、电子等领域也得到了广泛应用并取得了令人瞩目的成就。尽管液膜(包括微乳液膜)分离技术存在这样和那样的不足,但笔者有理由相信, 随着人们研究工作的不断深入,理论上的不断完善, 微乳液系统作为一种新型分离技术在今后的科技发展中将发挥越来越大的作用,应用领域和发展前景将更为广阔。

【参考文献】

[1]Hoar T P ,Schulman J H. Transparent water2in2oil dispersion :the oleopathich hydro2micelle[J].Nature , 1943 , 152 : 102 .

[2]Schulman J H ,Stoeckenius W,Prince L M. Mechanism of for2mation and structure of microemulsions by electron microscopy[J].J Phys Chem ,1959 ,63 :1 677.

[3]S.P.Moulik,B.K.Paul.Structure,dynamics and transport properties of microemulsions[J]. Adv. Colloid Interface Sci. 1998,78:140.

[4]C.tondre and M.Hebrant. Micellar and microemulsion systems to perform heterogeneous reactions,biphasic extraction and solute transport[J].J.molecular liquids 1997(72):279.

[5]龚福忠,李成海,马培华,等.微乳液膜法萃取钕[J].化工学报,2003,Vol.54, (11): 1569.

[6]张瑞华.液膜分离技术[M].南昌:江西人民出版社,1984:1.

[7]Ovejero-Escudero F. J., Angelino H. and Casamatta G. Microemulsions as adaptive solvents for hydrometallurgical purposes: a preliminary report[J]. J Dispersion Sci Technel. 1987,8(1): 89.

[8]K.Osseo-Asare. Enhanced sovent extraction with water-in-oil microemulsion[J].Sep. Sci. Technol. 1988, 23(12&13): 1269.

[9]Vijayalakshmi C.S.,Annapragada A. V., Gulari E. Equilibrium Extraction and Concentration of Multivalent metal Ion Solutions by Using WinsorⅡ Microemulsions[J]. Sep. Sci. Technol. 1990, 25(6):717.

[10]C.Tondre, A.Xenaklis.Use of Microemulsion as Liquid membranes[J]. Faraday Discuss. Chem. Soc.,1984, 77:115.

[11]P. Plucinski and W.Nitsch Mechanism of Mass transfer between aqueous phase and water-in-oil microemulsion[J].Langmuir 1994,10:371.

[12]Wiencek. J. M, Qutubuddin S.Microemulsion liquid membranes (Ⅰ) Application to acetic acid removal from water[J].J. Sep. Sci. Tech. 1992,27(10):1211.

[13]徐光宪,袁承业.稀土的溶剂萃取[M].北京:科学出版社, 1987:151.

[14]韩立新,李克安,童沈阳. W/O型微乳状液迁移和富集含量金属离子Cd2+、Cr3+的研究[J].高等学校化学学报,1998,(8):1236.

[15]朱霞石,张晓红,范国康,等.Triton X-100 微乳液体系中铁的萃取与分离[J].应用化学,2001,18(2):149.

[16]曾平,雷昱,王桂庆. NH3·H2O皂化P204/煤油体系微乳液溶水性能及其对V(Ⅳ)的萃取研究) [J].膜科学与技术,1998,18(5):19.

[17]龚福忠,李成海.非离子型微乳液膜提取稀土[J].广西大学学报,1998,4:377.

[18]M adavan V asudevan, JohnM. W iencek. Journal of Colloid and Interface[J].Science, 1997,186: 185.

[19]Johnston K P ,侯玉翠,et al. 二氧化碳包水的微乳液可做为包括蛋白质的亲水物的溶体(英) [J]. 吴卫泽译.日用化学品科学,1998, 1:5.

[20]沈玉华,谢安建,张 群. 反胶团或微乳液萃取蛋白质的研究[J]. 安庆师范学院学报, 1999 ,5(3) :31.

[21]周世琦,郭祀远. 反胶束萃取蛋白质中静电相互作用能的研究[J].化学物理学报, 1997 ,10(5) :466.

[22]Von Corswant ,Christian. Triglyceride - based microemulsionfor introvenous admistration of sparingly soluble substances[J].. Pharm Sci ,1998 ,87(2) :200.

[23]Neumayer HH, Farber L , Haller P, et al. Clin Neph ro l, 1995; 43 (supp l 1) : S27.

[24]BansalV K, Shah DO ,O 'Connell JP. J Co llo id In-terface Sci, 1980; 75 (2) : 462.

[25]陈 刚, 叶启发, 陈 实,等. 中华器官移植杂志,1998; 19 (2) :74.

[26]Robert F. M at t rey, San D iego. Sympo sium on第10 期化学世界:513.

[27]Ultrasound Contrast Agents[M].May 10, 1995,Atlantic City,N ew Jersey.

[28]To sh ih iko N ish ioka, HuaiL uo,M ichael C, et al.JACC, 1997; 30 (2):561.