生物技术药物分析范例6篇

前言:中文期刊网精心挑选了生物技术药物分析范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

生物技术药物分析

生物技术药物分析范文1

【关键词】西药制药;生物技术;制药;应用

近年来,生物技术、制药技术的联合日趋全球化,在整个制药生产当中居于首位。就以现代化西药制药生产技术而言,它在应用的过程中取得了优异的成绩,为制药行业的进步做出了巨大贡献。以生物制药技术为主的制药工艺应用不仅为人类解决目前存在病症提供了技术指导,也有效的消除了营养不良、延长人类寿命,提高生命质量。

1.生物制药技术现状

当今社会经济发展中,生物药品的开发与消费数量惊骇世俗,其开发资金也十分的巨大。就改革开放至今,我国生物制药技术总体投入了100多亿人民币,无论是在技术上还是设备上,都投入了相当大的精力。在目前的生物技术应用工作中,其主要是从基因工程、酶以及细胞固定化技术和细胞工程等方面入手的。

1.1基因工程

在当今的生物研究当中,激素以及多性因子是调节人体生理代谢和技能的主要物质手段,其活性强、临床效果十分的明显。但是这些物质在自然界中十分的稀少,从人体以及动物体重大量的摄取难度极大、来源限度极为严格,在供需矛盾上存在着严峻的缺陷。而在现代化生物制药技术当中,其为临床工作的开展提供了廉价、高效的药品,为人们身体健康做出了重要指导。胰岛素作为治疗糖尿病的主要激素之一,它在提取的过程中存在着资源匮乏、价格昂贵的特性,而利用基因工程则有效的解决了这种现象,并且有效的实现了生物制药技术的发展流程和要求。

1.2酶和细胞固定化技术

微生物在转化成为酶或者细胞固定化技术的过程中,这一技术已经广泛应用在各类制药工艺当中,逐渐弥补了酶中存在的不足,在制药领域的应用中极为显著,其无论是优势还是在制药模式上,都出现了翻天覆地的变化。生物制药技术在目前的应用中,最为常见的技术体系包含了固定化细胞、特别为生物等等。

1.3细胞工程

细胞工程是生物工程领域中最受欢迎的一项,也是最为关键的技术体系之一,它的应用为药物资源开辟、微生物原料利用提供了充足的技术指导,为保护生态平衡发挥出至关重要的意义。时至今日,无论是在西医还是中医方面都有所涉及,其重要方面的应用数量高达90%以上,而西药更为常见,几乎涵盖了西药生产各个领域,为西药生产技术的发展指明了新方向。

2.生物技术在西药制药工程中的应用

近年来的社会发展中,生物制药技术经过二十多年的努力已经创造出了许多重要的临床治疗药物,其年销售额更是高达70多亿。就生物技术的应用进行分析,它在西药制药生产中的应用不仅为需要生产打下坚实基础,更是为西药功能的发挥提供了更高效的技术水准。

2.1生物制药技术在肿瘤药物中的应用

近年来,就全球各种疾病引发的死亡数量进行分析,因为肿瘤而引起的死亡率高居榜首,就我国而言,每年所诊断出的肿瘤人数高达百万以上,因为肿瘤病症而死亡的人数高达50万。就我国每年就肿瘤药物的研究费用高达一百五十多亿。其中肿瘤作为多种机制导致了复杂的疾病,现在就早期诊断、手术、治疗等手段的选择上,更是呈现出翻天覆地的变化。我们可以预计,在未来十多年时间里肿瘤药物会迅速的增多。如果在利用的过程中将其进行综合研究和分析,其整个工作在扩散的过程中都是以下系统化、全面化进行的。在目前的当今社会发展的过程中,整个工作流程的应用都是整个肿瘤治疗制剂中最多的一项,它也很快得到广泛的应用。

2.2神经药物

神经系统药物在利用生物技术治疗老年痴呆、脑中风等多种药物体系,在应用和研究的过程中它包含了胰岛素生长因子等多种新药物的选择。目前,已经在许多医院的临床诊疗工作中得到重视。用于治疗末梢神经炎和脑萎缩硬化症的神经生长因子(NGF)以及脑源神经营养因子(BDNF)都开始Ⅲ期临床试验。全国每年中风患者大概60万,每年死于中风患者达15万。现在有效治疗中风症的药物不多,特别是很少有可治疗不可逆脑损伤的药物,CerestaL已被证明能对中风患者的脑力有显著改善和稳定作用,已经进入Ⅲ期临床试验。

2.3免疫性药物

很多疾病都是由于自身免疫缺陷引起,如红斑狼疮、哮喘、多发性硬化症、风湿性关节炎等。我国风湿性关节炎患者多达4000多万,每年花费巨额医疗费,很多制药公司正对这类疾病进行研究。如Genentech公司研制出一种治疗哮喘的单克隆人源化免疫球蛋白E抗体,进入了Ⅱ期临床试验。美国Cetor’s公司开发出一种用于治疗风湿性关节炎的TNF-α抗体,治疗的有效率达80%。有些公司运用基因疗法治疗糖尿病,治疗方法是把胰岛素基因导入到糖尿病患者的皮肤细胞,然后把这些细胞注入人体,让这些工程细胞可以进行全程胰岛素供应。

2.4冠心病治疗药物

我国每年有接近一百万人死于冠心病,每年都要花费高额的治疗费。未来10年,防治冠心病的药物将推动制药工业迅速发展。Cen-tocor′sReopro公司利用单克隆抗体对冠心病引起的心绞痛治疗以及对心脏功能的恢复取得了成功,这标志着诞生了一种新型冠心病治疗药物。随着基因组科学的建立以及基因操作技术的迅速发展,目前基因治疗与基因测序技术正在进行商业化开发,推动了治疗学的发展。利用转基因技术构造转基因动物和植物,都以实现产业化开发,以转基因绵羊为载体生产蛋白酶ATT抑制剂,来治疗囊性纤维变性和肺气肿疾病,进入到了Ⅱ、Ⅲ期临床试验。

3.生物技术在西药制药中的应用前景分析

今后10年生物技术将对当代重大疾病治疗剂创造更多的有效药物,并在所有前沿性的医学领域形成新领域。生物学的革命不仅依赖于生物科学和生物技术的自身发展,而且依赖于很多相关领域的技术走向,例如微机电系统、材料科学、图像处理、传感器和信息技术等。尽管生物技术的高速发展使人们难以作出准确的预测,但是基因组图谱、克隆技术、遗传修改技术、生物医学工程、疾病疗法和药物开发方面的进展正在加快。除了遗传学之外,生物技术还可以继续改进预防和治疗疾病的疗法。这些新疗法可以封锁病原体进入人体并进行传播的能力,使病原体变得更加脆弱并且使人的免疫功能对新的病原体作出反应。这些方法可以克服病原体对抗生素的耐受性越来越强的不良趋势,对感染形成新的攻势。

4.结束语

综上所述,随着现代生物制药技术的不断研发与应用,在西药制药中如何合理、科学应用生物制药技术,将成为影响现代西药制药行业发展趋势的重要因素,也是提高整体医药生产水平和工艺的关键。 [科]

【参考文献】

生物技术药物分析范文2

【关键词】膜分离技术;生物制药;分离浓缩

【中图分类号】TQ460.62 【文献标识码】B【文章编号】1004-4949(2014)01-0088-01

膜分离技术是现代生物制药分离工程的一门新技术,主要针对生物分离、生物浓缩以及净化提纯技术,是当代广泛应用的技术之一,其技术特点是:节约能量、保护产品原有结构不被破坏、无污染、操作简便、常温下可持续操作、有专一性等[1]。而且在膜分离技术中有各种不同的机制,以便用于不同的分离要求,特备是在热敏性物质的分离过程中有显著的优势,因此在食品的深加工以及医药的分离过程中都具有深远的应用意义,具备独特性和实用性。

1膜分离技术应用在抗生素、氨基酸和酶类分离纯化中。

1.1应用特点

与以往传统抗生素提炼工艺相比,膜分离技术程序更为简便,从传统的发酵液过滤、萃取、浓缩,简化为发酵液超滤、反渗透,之后经过脱色、干燥环节,就可直接生成产品。因此,膜分离技术不仅简化工艺、操作简单,而且投资少、运行费用低,更节省资源,对产品的结构和外观无破坏,且保证质量,材料分离效率和产品收成率均比较高。由于膜分离技术对溶剂量的要求极低,因此提纯、加工后的废液处理也更为简易。

1.2膜分离技术

膜分离技术主要用于发酵液后的处理,根据截留孔径的不同和分子量的大小,可将处理过程分成十余种,其中较为主要的是超滤、微滤、纳滤、反渗透、渗透蒸发、液膜分离、电渗析、气体分离等技术[2]。

超滤膜分离术截留孔径为2-50nm,采用压差和流速原理,在常温情况下,利用高分子薄膜渗透性,将小于膜孔径的低分子量物质过滤,而将高分子量物质截留,从而提升产品纯度。目前已开发出1000 - 100万分子量超滤膜,可根据分子大小及产品要求纯度对发酵液进行过滤处理,从而将酶、多糖、蛋白质、病毒等大分子物质截留,保证产品纯度。

微滤膜分离技术主要用于细胞收集、液固分离等技术环节,采用筛分原理,将直径0.01-10um以上的粒子截留,防止细菌、细胞、不溶物等物质进入发酵液中,是超滤之前重要的预处理过程。

纳滤膜分离技术截留孔径大约在2nm左右,可高度截留小分子物质,如抗生素、染料、双糖、合成药等小分子物质都会进行截留,而对于有机物、无机盐、水等小分子物质有益物质,可以通过,同时对产物起到浓缩作用,由于膜表明呈负电性,可抵制水垢污染,此膜分离技术获得较快发展。

反渗透分离技术采用溶解扩散原理,通过截留氨基酸、盐等小分子物质,而通过溶剂分子,从而利于有机物的浓缩,提高纯度。

液膜萃取技术,将萃取与反萃取相结合,利用液膜的选择透过性,将两个液相隔开,进行物质分离。液膜采用均质膜,其表面活性剂,具有传质速度快、分离率高、选择渗透性好,且分离、浓缩可同时进行等特点,为此近几年液膜萃取技术在活性物质的分离提取领域备受关注,如青霉素、红霉素等抗生素的提取就是液膜萃取技术应用的典型例子。但液膜萃取所需原料复杂、膜流动载体单一、易破裂、堵塞等缺点,也是该技术没能进行广泛退刚的原因。

2技术缺陷及改进

由于在压力驱动下,料液透过膜过程中容易被截留,于是导致膜与本体溶液界面间的浓度越来越高,形成较强渗透压,容易在膜表面形成沉积,从而为物质通过造成阻力,使膜发生溶胀或使膜性能恶化,结晶析出,堵塞流道。此外,在物料处理中,由于粒子、溶质分子与膜之间的屋里化学反应,以及浓度极化导致的膜表面浓度超标,很难溶解,膜表面及孔内吸附、沉积引起孔径变小或阻塞,而使膜的透过性和分离性出现不可逆的破坏[3]。

针对以上技术问题,可采用以下方式进行改进:(1)膜表面改性,可采用改变膜表面极性和电荷的方式,减轻污染;采用吸附力强的溶质吸附, 对于醋酸纤维膜可采用阳离子活性剂进行辐射嫁接,该表膜表面极性,此方法有助于膜表面改性处理,从而提升膜抗污染性及亲水性,增加溶液通量;(2)有效清洗。针对长期存在的膜污染问题,可采用物理清洗和化学清洗方法进行处理,如果高速流动液体进行冲洗,或海绵球擦洗等,也可采用表面活性剂、螯合剂、过氧化氢、磷酸盐等清洗剂进行清洗,从而去除膜孔、膜面的污染物,增强膜面透过性,延长膜寿命;(3)引进新型膜材料。陶瓷膜、玻璃膜、金属膜是近几年开发的新型膜材料,具有耐高温、耐溶剂、抗老化、耐细菌、再生性强等优点,且有助于膜截留性能改进,在业界受到广泛应用,是发展最快、最有前景的品种。

3技术革新

在膜分离技术领域,膜萃取、膜反应、膜蒸馏、亲膜分离等技术在未来有更广阔的发展前景,也是膜分离技术的发展方向。这些技术将传统分离技术与现代膜分离技术相结合,取其精华,去除糟粕,将两种技术的有点有效结合,从而提高膜技术的高分辨应用,促使蛋白质-病毒分离术、膜色谱、蛋白质切线流分离等技术更为纯熟,效果更好。这些膜技术的改进和发展,对今后生物制药的分离技术、以及现代生物制药的提纯过程有着重要的作用,是不可或缺的重要技术力量。为此,在未来膜技术领域,人们在关注膜分离渗透性及选择性的同时,也会更注重膜材料、性质、以及相关技术原理等内容,从而为膜分离技术的提升和跨越,提供更广阔的空间。

参考文献

[1]邬方宁.膜分离技术在药物分离中的应用[J].天津药学.2010(02):196.

生物技术药物分析范文3

关键词:污水河;生态修复;生态河道体系

据不完全统计,我国大约有80%的城市河道己受不同程度的污染,由此每年造成的直接经济损失就高达377亿元。据1999年全国环境状况公报可知:我国流经城市的河段普遍受到严重污染,141个国控城市河段中,就有大约63.8%的城市河段处于IV类至劣V类水质。改革开放以来,随着上游城市经济发展的不断加速,煤炭和电力等“耗水型”工程项目的快速建设,形成杂乱无序开发利用有限的水资源问题,加上污水等污染物的肆意排放,造成城市河流水能供需长期处于不平衡状态,水资源严重紧缺,导致流域内生态系统结构功能受到严重的破坏,各类服务功能急剧衰减退化。人民生活水平的不断提高,加上环境保护意识的不断加强,城市居民和政府开始越来越重视河流生态环境功能的修复与保护。由于受传统治理理念的桎梏,许多城市在多年的污水河治理中均以防洪功能为主,在对生态系统进行修复的方案措施上,缺乏统一明确的区域河段生态修复管理目标体系。本文将结合自我对河流污水治理方面多年的研究经验,依据河流生态修复相关理论技术构建河流生态河道修复目标体系,以期与其它河流污水治理生态修复相关工程进行共同探讨。

1 河流生态系统基本组成

河流生态系统的结构是由其内部的生物组分和非生物环境间,通过相互的约束作用,在时间和空间上按照一定序列和联系规则进行整合的组织形式和逻辑秩序。河流中的生态系统同其它水域生态链一样,也具有一定的营养结构、生物种群多样性、以及时间和空间位置坐标等基本特性。

2 河流生态修复技术研究

河道生态修复是指在河流现有基础上,采取相关的技术手段,对已受到污损的河道进行改造与重建,即:通过生态化工程建设,将各种生态修复技术应用到实际河流生态修复工程中,尽可能的恢复和完善河流生态系统功能结构,恢复其应该具有的服务功能和质量水平。

2.1 生态化护坡技术

生态护坡工程施工工艺流程一般为:先在河流边坡岩体上铺上铁丝网或塑料网,然后用锚钉和锚杆将网进行固定,接着用喷射机将两层不同厚度的生态基材喷射至带网状的坡面上,即:第一层厚约5~10cm,不含种子;而第二层厚约1cm,包含生态化护坡专用种子。生态化护坡是利用植被涵水固土的原理对河流开挖边坡进行岩土稳定和美化生态环境的一种新的绿色护坡技术,是集河流动力学、岩土工程力学、生态学、植物学、以及土壤肥料学等多门学科专业为一体的综合性河流生态修复技术。

2.2 河道景观规划建设

河道景观规划建设也是河流生态修复的一项重要技术,主要涉及到河道现有平面和断面两个基础条件。天然的河流中既有凹岸也有凸岸、既有浅滩也有沙洲,不同的河流“微地形“既可以为河流中各种生物生存栖息提供适宜的生境,又可可以减低河水流速、蓄洪涵水、消弱洪水的破坏力等。在对河道生态修复平面景观规划建设时,应尽量保持河道现有的自然弯曲,不应为了进行景观设计而进一步破损河道的生态系统。在进行河道断面景观规划建设时,应在结合艺术功能时,收放有致,不必强求平行等宽,同时要设计出一个能够常年保证有水的水道,且能够应付不同水位、流量等特性的复式断面结构。

2.3 水质生态修复技术

污染受损的水资源水质条件很差的主要原因是水体受污染后缺氧导致河流生态环境功能降低所致。利用相应的机械设备,人工向水体中充入清洁空气或氧气,以加速水体内部复氧过程,从而提高水体的溶解氧水平,通过逐步恢复和增强河流生态环境中好氧微生物的自身活力,加快对水体中有机污染物的降解速度,从而有效改善受污损水体的水质性能,进而恢复河流水体中生态系统综合性能水平。底泥疏浚是污染河流治理过程中最为常用的技术,同时也是一种见效迅速的方法措施。底泥疏实际上就是将河流底部的污染物从水域生态环境中清除出去,不仅可以削减底泥对上覆水体生物的重复污害率,同时可以解决河流底部内源释放造成河流生态受到二次污染。

3 污水河生态河道体系

3.1生态河道构建的基本原则和目标

在突出河流生态功能体系内部整体协调能力的前提下,通过各河段功能的相互补偿调节,实现对河流生态体系的大范围治理;按防洪与生态景观优美、农作物经济利益等功能进行可利用水资源协调分配,遵循可持续发展与前瞻性的建设目标。污损河流河道生态功能修复体系是在河流现有的生态环境结构的基础上,以指导河流生态修复为总体目标。

3.2 生态河道构建体系

本文所构筑的生态河道体系是基于污损河流现有生态环境调查与搜集流域相关水环境资料的基础上,利用先进RS与GIS技术平台,对污损河流进行系统的生态环境现状评价分析,以明确污损河流中流域生态系统的空间结构分布;然后进行各项生态功能评价分析,以期获得水生环境中所存在的生态问题现状和发展趋势,以确定污损河流生态系统中存在的生态敏感区域及分项生态功能重要性的空间特异性能;最后根据污损河流的分布情况,对河道进行分区治理,并提出时间上的不同河段生态修复调控最终指标。

4 结束语

建立生态河道构建体系是污水河流规范化、科学化治理工作的必要措施,是污水河流河道整治理论、技术、以及具体生态修复规划设计工程实践科学合理衔接的重要技术保障。污水河流在进行生态河道整治过程中,其具体方案的制定及具体相应技术措施的采取,应结合河流实际情况因地因时因类制宜,在空间和时间等结构上形成污损河流各河段生态修复的基本方向与综合调控指标,保障河流污水治理工作高效稳定、节能经济的开展。

参考文献

[1] 崔爽,周启星.生态修复研究评述[J].草业科学,2008,25(1):87-9.

[2] 陈兴茹.城市河流生态修复浅议[J].中国水利水电科学研究院学报,2006,4(3):226-231.

[3] 赵彦伟,杨志峰.城市河流生态系统修复当议[Jl.水利保持通报,2006,26(1):89-93.

生物技术药物分析范文4

[关键词] 三段式片段弓; 压低辅弓; 前牙压低; 三维非线性有限元分析

[中图分类号] R 318.01 [文献标志码] A [doi] 10.7518/hxkq.2013.01.019 片段弓技术于1977年由Burstone学者首先提出,并逐步发展为当今口腔正畸领域中一个独立的矫治体系。其遵循生物力学的观点,构建了一个相对简单的力偶系统,使其可以达到理想的牙齿移动[1]。以

前牙压低为目的的三段式片段弓由后牙支抗单位、前牙压低段以及压低辅弓三部分组成。以往临床研究表明:使用该技术打开咬合能有效的压低前牙,同时防止磨牙的伸长[2]。但是,利用三维有限元分析法

对片段弓技术进行生物力学的研究国内外还鲜有报道。本研究采用CT薄层扫描技术,结合Mimics 10.0、CATIA V5、Anasys 11.0等专业软件建立了包含三段式片段弓、直丝弓托槽的下颌牙列三维有限元模型,并将弓丝与托槽、牙齿与牙齿之间设定为接触关系,运用非线性计算方法初步分析了压低辅弓的力学特性及片段弓技术打开咬合的生物力学特点。

1 材料和方法

1.1 建模素材

参照文献[3]选择一副磨耗少、无缺损的成年男性下颌12颗牙齿。MBT直丝弓托槽和双管颊面管

(杭州新亚公司),Ni-Ti圆丝、方丝(北京有研亿金公

司),不锈钢方丝(3M公司,美国),TYPODONT(日进公司,日本)。

1.2 方法

1.2.1 排列整齐的下颌牙列模型的获取 将实验选择的12颗下颌牙齿按正常顺序排列在TYPODONT的下颌蜡堤上,依照MBT直丝弓治疗标准对下颌牙列粘接托槽和颊面管,然后按一定的弓丝更换顺序依次对牙齿进行结扎加力,弓丝更换顺序依次为0.356、0.406、0.457 mm Ni-Ti圆丝,0.457 mm×0.635 mm Ni-Ti方丝,0.483 mm×0.635 mm不锈钢方丝,每次更换弓丝后都将TYPODONT在55 ℃恒温水浴箱中加热以实现牙齿移动排齐。弓形均按照中国人的直丝弓弓形进行弯制[4]。待下颌牙列排齐后,去除托槽和颊面

管,抛光牙面备用。

1.2.2 下颌牙列三维实体模型的建立 使用西门子多层螺旋CT机对已排齐的下颌牙列TYPODONT模型进行扫描,获得的扫描图像以DICOM格式文件保存。使用Mimics 10.0软件读取CT扫描获得的DICOM数据,根据图像数据中灰度值的差异提取出实验所需的下颌牙列的点云数据,以ASCⅡ格式保存。用CATIA V5中DSE(Digital Shape Editor)模块提取点云数据,并对其进行过滤、降噪等优化处理,再通过Mesh Creation功能对点云进行铺面处理,最后运用CATIA V5的自由造型(Freestyle)模块对表面进行优化重构,生成实体,以CATProduct格式文件保存。

1.2.3 包含直丝弓矫治器的下颌牙列、牙周组织的三维有限元模型的建立 将下牙列三维实体模型导入Anasys 11.0软件中,依照牙根外形构造牙周组织(包括牙周膜和硬骨板);依照下牙列外形及下颌骨相关结构数据[5-6]构建下颌骨模型(包括皮质骨及松

质骨)。利用Anasys 11.0中的CAD建模工具,参照中国人标准弓形方程[4]及直丝弓托槽数据建立一个截面

为5 mm×5 mm的三维实体弓形,在其唇面中央去除一块截面为0.559 mm×0.711 mm的实体弓形,即模拟了一根带有0.559 mm×0.711 mm槽沟的方丝弓弓形实体。将其置于下颌牙列唇面并使槽沟中心平面位于中切牙与第一磨牙牙冠中心所构成的平面上,参照直丝弓托槽数据及牙长轴方向去除多余的实体弓形部分,再在托槽的唇颊面加一层盖板,以模拟弓丝的结扎。对此模型进行有效的网格划分,即形成了包含直丝弓矫治器的下颌牙列、牙周组织的三维有限元模型。

1.2.4 包含三段式片段弓矫治技术的下颌牙列三维有限元模型的建立 根据下颌牙列的TYPEDONT模型弯制压低辅弓,选用0.432 mm×0.635 mm不锈钢丝弯制,片段弓水平前臂长32 mm、后臂长6 mm、龈向台阶高5 mm、小圈直径2 mm,压低辅弓前端制作成钩,钩挂于下前牙与尖牙托槽间的弓丝上,压低辅弓后端插入下颌第一磨牙辅弓管中,辅弓管长5 mm、内径为0.635 mm×0.711 mm。根据以上数据,用Anasys 11.0软件中的APDL语言建立了参数化的压低辅弓三维有限元模型。其中,压低辅弓水平前臂与后臂的夹角为θ(图1),其能根据需要设置不同的角度,便于研究其力学特性。

在中国人标准弓形方程[4]的基础上生成截面尺寸为0.43 mm×0.64 mm的方形主弓丝,将其网格划分并装配到直丝弓托槽中,同时在切牙与尖牙间将弓丝截断。最后,将上述模型与压低辅弓的模型合并,即得到了完整的三段式片段弓技术打开咬合的三维有限元模型。根据有限元中镜面对称原则,本实验仅建立了左侧下颌牙列及矫治器的模型(图2)。

1.2.5 材料参数 本研究将模型中各种材料和组织考虑为连续、均质、各向同性的弹性材料,具体数值见表1。

1.2.6 定义接触和边界条件 模型底部全部施加约束使x、y、z 3个方向上的位移和旋转均为0;压低辅弓末端同时施加y方向的约束。托槽与牙齿、牙根与牙周膜、牙周膜与牙槽骨间定义为粘接关系。定义压低辅弓的变形属于非线性几何大变形;定义弓丝、托槽、牙齿、牙周膜、牙槽骨为可变形接触体,弓丝与各托槽间、辅弓与辅弓管之间为非线性接触关系,摩擦系数为0.15。由于本研究模型只建立了实际模型的一半,因此对模型的对称面行对称约束。

1.2.7 载荷的施加 压低辅弓前臂向龈方弯折一定角度后再钩挂至前牙段弓丝上,压低辅弓前端挂钩对弓丝会产生相应的力;同时,其后臂对磨牙辅弓管也会产生相应的力。在Anasys 11.0中,将压低辅弓前臂在xz平面内向龈方旋转一定角度(即修改θ值),再将其约束至与辅弓管平行,即可计算出压低辅弓前端挂钩处所产生的力值。选取前端挂钩处产生0.245 N力值时的压低辅弓模型,将相应的力加载于下颌牙列的有限元模型上,也就精确模拟了临床上使用片段弓打开咬合的过程。

1.2.8 计算 使用Anasys 11.0软件,将θ角度从5°~75°平均设置15个工况,分别计算每个工况下压低辅弓前端产生的力值。将相应力加载于下颌牙列后,观察加力后下颌牙列的移动趋势,计算前后牙的受力大小及牙根、牙周膜、牙槽骨的Von Mises应力分布情况。

2 结果

2.1 各工况下压低辅弓前端产生的力

在15个工况下压低辅弓前端产生的力值的变化曲线见图3。在5°~25°范围内,压低辅弓前端的力值随角度的增加而快速增大;在30°时达到最大(0.604 8 N);

在30°~65°范围内,压低辅弓产生的力在0.59 N左右波动;在65°以后,不锈钢材料超出了其形变范围,计算结果不收敛。

2.2 下颌各牙齿所受的力及其移动趋势

根据建立的压低辅弓角度-力值变化曲线,在Anasys 11.0中将压低辅弓前臂在xz平面内向龈方旋转6.5°,再将其约束至与辅弓管平行,压低辅弓前端挂钩处对弓丝产生的力约为0.251 1 N。同时,其后臂对磨牙辅弓管也会产生相应的力。将这两个力对应的加载于下颌牙列的有限元模型上,在受到压低辅弓的加载后,下颌牙列中位移改变最明显的是侧切牙和第一磨牙。侧切牙向远中唇侧倾斜并向龈方压入,其所受力为0.252 N,其中垂直向的分力最大,为0.251 N;而其近远中向及唇舌向的分力都接近为0。第一磨牙则后倾明显并伴有牙冠的近中颊向远中舌向旋转趋势,其受到的力为0.620 N;其中远中倾斜的分力最大,为0.462 N;使其向方伸高的分力最小,为0.113 N。其余牙齿所受的力都非常小,所以在加力的瞬间基本不会发生移动(表2、图4)。

2.3 牙根、牙周膜、牙槽骨的Von Mises应力分布

情况

牙根、牙周膜、牙槽骨的Von Mises应力分布情况见表3、图5。牙根、牙周膜、牙槽骨的应力分布情况大体相似。下颌牙列的应力集中区主要出现在侧切牙根的唇侧颈1/3处及第一磨牙根分叉附近,其牙周膜最大应力分别为4.40、2.25 KPa;其余牙齿的应力较小且分布均匀,无明显的应力集中区。

3 讨论

3.1 三维非线性有限元分析

在正畸治疗过程中,正畸力是通过弓丝、矫治器向牙齿及周围组织传递的。牙齿的实际受力并不等于施加于单个托槽或弓丝上的力,而要考虑弓丝与托槽、牙齿与牙齿之间的接触与摩擦。以往涉及正畸力作用下牙齿移动的三维有限元研究,有学者[7]通过部分或简化的建模,将单纯的点载荷直接加载到牙面或托槽对应的节点上,以此来避免弓丝与托槽间接触的过程。也有学者[8-9]使用弹簧单元来部分模拟弓丝与托槽间的接触,但仍不够精确。在实际受力过程中,弓丝与托槽间的接触点及接触区域不定,需要使用三维非线性有限元分析来模拟计算。目前,使用三维非线性方法来模拟分析正畸治疗中生物力学的研究相对较少[10]。在本研究中,笔者进行了全牙列建模,弓丝与托槽的尺寸与临床一致,并且将托槽与弓丝、辅弓与辅弓管间都设定为接触关系,共生成了2 360个接触单元。

非线性分析除了上述的接触非线性,还包括几何非线性及材料非线性。本实验中,压低辅弓在加

力过程中会产生几何大变形,属于几何非线性;弓丝材质为不锈钢,是双线性材料,属于材料非线性。因此,本实验采用三维非线性方法来分析计算,虽然这种方法加大了计算的难度,但所建模型更接近临床实际,计算结果也更为真实精确。

3.2 压低辅弓的力学特性

在临床上使用压低辅弓时,主要通过将压低辅弓的水平前臂向龈方旋转一定的角度来达到向其加力的目的,其实质上可视为一个单端固定的悬臂梁。本研究所建立的包含辅弓管的压低辅弓模型即模拟了这样一个临床过程,从结果中得出的压低辅弓角度-力值变化关系曲线,与弯制压低辅弓所用不锈钢丝的应力-应变曲线的变化趋势基本一致。其在初始阶段,力值随角度的增加而直线增大,属于弹性变形阶段;到了30°以后,力值稳定在最大值0.59 N,变化趋于平稳,属于塑性变形阶段;在65°以后,计算结果不能正常收敛,不锈钢材料超出了其变形极限。这个结果提示:在临床上一味的加大压低辅弓打开的角度并不会产生所想象的更大的力值。在很多临床情况下,正畸弓丝的形变都已超出了其弹性形变范围,它将不能完全恢复原状,但这时弓丝仍存在临床意义的回弹,除非其形变达到了断裂强度[11]。同时,本实验中弯制压低辅弓的材料是0.432 mm×0.635 mm的普通不锈钢丝,由于其刚度较大,弹性较小,因此压低辅弓的弹性变形范围较小,力值变化也相应较快。在正畸临床治疗过程中,需要尽量采用柔和持久的轻力来达到理想的牙齿移动效果,在有条件的情况下,使用材料弹性更好的β钛丝制作压低辅弓[12-13]是一种更好的选择。

3.3 三段式片段弓矫治技术

目前常用的通过压低前牙来控制深覆的矫治方法主要有J钩联合高位牵引技术、多用途弓技术、微种植支抗技术等,但都各有其优缺点[14-17]。而三段

式片段弓作为方法之一,其优点主要有:1)压低辅弓与前牙压低段的弓丝呈点接触,既可以产生适宜且持续的轻力,又可清楚的了解力的大小和方向,使压低力更接近前牙的阻抗中心,利于前牙整体的压入移动;2)压低辅弓段不直接扎入前牙槽沟,避免了入槽后产生不必要的转矩而影响前牙压入;3)通过辅弓段与前牙段接触位置的改变,可以有选择性的压低前牙;4)支抗需求的减少,除需强支抗的患者需要口外弓配合外,更多患者不必依赖口外弓的控制[2]。本实验中笔者只观察到了侧切牙有明显的压

入移动,这是由于有限元分析计算的是压低辅弓加力一瞬间所产生的变化。但是,可以想象随着侧切牙的压入,中切牙的位置就会相对抬高,弓丝在侧切牙处的压入力会逐渐转移到中切牙,在弓丝的作用下,中切牙也会产生压入移动。

在本实验结果显示侧切牙在压低的同时发生了一定的唇倾。这提示在临床操作中可以尝试使用更粗尺寸的不锈钢丝作为稳定弓丝来维持前牙正常的唇倾度。对于后牙支抗单位,第一磨牙发生了后倾及旋转移动,但伸长移动不明显,其移动趋势类似于在主弓丝上给其增加了外展弯及后倾弯的效果。在大部分情况下,这种移动对矫治过程是有益的,可以增加后牙的支抗。如果希望减少这种移动,可以采用舌弓等手段来抵抗。本实验的结果也再次证实了三段式片段弓能产生有效的压低前牙的效果。

3.4 前牙区适宜的压入力

对前牙压低治疗来说,需要持续的轻压力才能获得正常的前牙压入。大量的研究表明:单个前牙适宜的压低力为15 g[11]。过大的压低力不仅不会加快

前牙压低的效果,反而会造成牙根吸收、牙周组织损伤以及后牙伸长等副作用。有学者[18]研究发现:牙

齿的压低常伴有牙根的吸收,并且随着压入力的增大,牙根吸收也越明显;通常0.245 N的力作用于前牙就会产生牙根吸收。同时,牙周膜的应力水平也是衡量牙齿受力大小的一个重要指标。Lee[19]报道牙周膜的应力极限在26 KPa,若超过该应力,牙周膜就会产生永久性损害。本实验中给压低辅弓加载的初始力值为0.245 N,这与其他研究所推荐使用的力值相一致[2,17]。在加力初期,侧切牙上产生了0.245 N

的垂直向力。其虽然略大于单个牙的适宜压入力,接近了引起前牙牙根吸收的临界力值;但是,在该力作用下,牙周膜的Von Mises应力较小,因此笔者认为0.245 N的压入力在加载的即刻对于前牙牙周是合适的。根据临床应用实际,由于牙周组织的可压缩性及牙槽骨组织的改建变化,可以推测,随着下前牙的压低,辅弓的力量必然会有所衰减,因此,只要加力的初始力量处于合适的范围,随时间的变化,辅弓的力量也不会增大和造成不必要的牙周伤害。

[参考文献]

[1] Burstone CJ. The mechanics of the segmented arch techniques[J].

Angle Orthod, 1966, 36(2):99-120.

[2] Shroff B, Yoon WM, Lindauer SJ, et al. Simultaneous intrusion and

retraction using a three-piece base arch[J]. Angle Orthod, 1997,

67(6):455-461.

[3] 王惠芸. 我国人牙的测量和统计[J]. 中华口腔科杂志, 1959, 7(3):

149-155.

Wang Huiyun. Measurement and statistics of Chinese tooth[J]. Chin

J Stomatol, 1959, 7(3):149-155.

[4] 杨新海, 曾祥龙. 牙弓形状和标准弓形的研究[J]. 口腔正崎学,

1997, 4(2):51-54.

Yang Xinhai, Zeng Xianglong. The research of dental tooth arch

[J]. Chin J Orthod, 1997, 4(2):51-54.

[5] Wical KE, Swoope CC. Studies of residual ridge resorption. I. Use

of panoramic radiographs for evaluation and classification of man-

dibular resorption[J]. J Prosthet Dent, 1974, 32(1):7-12.

[6] 赵保东, 李宁毅, 杨学财, 等. 成人下颌骨截面相关数据测量[J].

青岛大学医学院学报, 2001, 37(3):186-188.

Zhao Baodong, Li Ningyi, Yang Xuecai, et al. DATA ofman-

dibular section measurement[J]. Acta Academiae Medicinae Qing-

dao Universitatis, 2001, 37(3):186-188.

[7] 张晓芸, 杨维国, 许天民, 等. 磨牙支抗曲打开咬合前牙压入力

分布的有限元研究[J]. 现代口腔医学杂志, 2002, 16(4):307-309.

Zhang Xiaoyun, Yang Weiguo, Xu Tianmin, et al. The finite ele-

ment analysis of the force system produced by the molar anchor

bend[J]. J Modern Stomatol, 2002, 16(4):307-309.

[8] 顾永佳, 吴燕平, 高美琴, 等. 滑动法内收下前牙过程中力学行

为的有限元分析[J]. 上海口腔医学, 2008, 17(5):520-524.

Gu Yongjia, Wu Yanping, Gao Meiqin, et al. Finite element ana-

lysis of mechanical characteristics during retracting mandibular in-

cisors through sliding mechanics[J]. Shanghai J Stomatol, 2008, 17

(5):520-524.

[9] Kojima Y, Mizuno T, Fukui H. A numerical simulation of tooth

movement produced by molar uprighting spring[J]. Am J Orthod

Dentofacial Orthop, 2007, 132(5):630-638.

[10] 卢燕勤, 曾祥龙, 高雪梅. 牵引力大小对关闭间隙时滑动阻力影

响的三维非线性有限元研究[J]. 中华口腔正畸学杂志, 2009, 16

(4):207-210.

Lu Yanqin, Zeng Xianglong, Gao Xuemei. Comparison of the fric-

tion resistance in sliding mechanics at different forces level for

space closing—a nonlinear finite element study[J]. Chin J Orthod,

2009, 16(4):207-210.

[11] Proffit WR. Contemporary orthodontics[M]. 4th ed. St. Louis: CV

Mosby Co St, 1986:319-320.

[12] Liou EJ, Chang PM. Apical root resorption in orthodontic patients

with en-masse maxillary anterior retraction and intrusion with mi-

niscrews[J]. Am J Orthod Dentofacial Orthop, 2010, 137(2):207-

212.

[13] Kang YG, Nam JH, Park YG. Use of rhythmic wire system with

miniscrews to correct occlusal-plane canting[J]. Dentofacial Orthop,

2010, 137(4):540-547.

[14] Davidovitch M, Rebellato J. Two-couple orthodontic appliance sys-

tems utility arches: A two-couple intrusion arch[J]. Semin Orthod,

1995, 1(1):25-30.

[15] Ohnishi H, Yagi T, Yasuda Y, et al. A mini-implant for ortho-

dontic anchorage in a deep overbite case[J]. Angle Orthod, 2005,

75(3):444-452.

[16] Deguchi T, Murakami T, Kuroda S, et al. Comparison of the in-

trusion effects on the maxillary incisors between implant ancho-

rage and J-hook headgear[J]. Am J Orthod Dentofacial Orthop,

2008, 133(5):654-660.

[17] van Steenbergen E, Burstone CJ, Prahl-Andersen B, et al. The

role of a high pull headgear in counteracting side effects from in-

trusion of the maxillary anterior segment[J]. Angle Orthod, 2004,

74(4):480-486.

[18] Han G, Huang S, Von den Hoff JW, et al. Root resorption after

orthodontic intrusion and extrusion: An intraindividual study[J].

Angle Orthod, 2005, 75(6):912-918.

生物技术药物分析范文5

关键词:生物技术;制药;发展对策

引言

始于1971年的生物制药技术指的是基于医学、生物学、微生物学等领域的研究成果,对化学、微生物学、生物技术、药学等原理与方法进行综合应用,从而制造出在疾病预防、诊断与治疗等方面的制品。生物技术制药技术目前正在赶超传统化学制药,成为当前研究的热点与重点,市场前景巨大。然而,因为受到各种因素的制约,中国生物制药产业发展还比较缓慢,在生物技术诊断、现代生物支撑技术、酶工程、生物制剂等方面要加大研究的力度。

一、中国生物制药发展现状

第一,中草药。作为中国国粹的中草药历史悠久。中国拥有种类繁多的中草药,同时,中草药质量非常好。根据有关数据表明,全球大约3%的中草药都是中国出售的。目前中国中草药领域主要是对中草药原料进行出售。中草药的发展需要先进生物技术的支持。我国对中草药有关的技术研究工作要给予重视,使得科技水平不断提升,从而会死的中国中草药国际市场竞争力提高。

第二,生物技术药物。单克隆抗体药物因为具有较强稳定性、较高特异性等优势,因此,单克隆抗体技术是当前生物技术制药领域人们研究的重点。基于此,中国对单克隆药品的研发给予极大重视,众多制药企业在单克隆药品的研发方面投入了大量的人力、物力以及财力。基因工程是生物技术制药最关键的及时,对生物技术制药的发展有决定性作用。我国政府多方面扶持生物技术制药与基因工程的发展。但是,中国部分基因工程制药还处于试验时期。

二、目前中国生物技术制药存在的不足

第一,资金投入不足。生物技术制药需要大量资金的支持,1997年美国投入到生物工程资金高达500亿美元,同时以每年50亿美元的速度增加。我国近年来虽然加大了对生物技术制药的资金投入,然而,相对发达国家而言投入不够。因此,新产品的研究缓慢,竞争力缺乏。

第二,当前中国科研成果产业化比较缓慢。基于生物工程药物而言,在实验时期我国部分生物技术达到甚至超过国际先进水平,肝细胞生长因子、治疗用单克隆抗体、人血代用品、人源性碱性成纤维细胞生长因子等生物高科技产品我国具有自主知识产权,这些生物高科技产品已经实现了临床试验或者进入后期阶段。然而,中国中试环节不足,造成了生物制药产业科研成果转化慢,生物工程产业化水平比国际先进水平要低。

第三,有关企业的设施比较落后。生物技术制药形成新的成果、形成成果的进度、成果质量等受到专业服务体系的直接影响。相对于国外发达国家,中国有关服务比较落后,尤其是还没有实现专业化、社会化与市场化的产品开发。发达国家医药研究过程中,存在着委托合同研究机构,这一机构对于医药研发具有重要作用,并且具有一定运行规模与相应机制。中国大部分委托合同研究机构是公关公司,其服务主要是临床实验阶段,国外并不认可这些公司提供的新药临床数据的真实性与可靠性。同时,相对而言中国生物技术制药企业内部管理有待于提高,缺乏具有技术与管理复合型人才,网络销售不完善,缺少开发市场渠道经验等,造成了中国尽管具有重量众多的生物技术制药企业,然而综合实力不强,与国外发达国家缺乏竞争力。

三、中国生物技术制药发展的对策

第一,增加投资,引入风险资金。生物制药企业自身竞争力提高的两个重要举措是科技创新和企业运营规模。生物技术制药的研究需要大量的资金支持。随着我国加入WTO的不断深入,中国生物制药企业存在与发展的前提是对具有自主知识产品的产品进行研发。制药企业各自为营的传统的经营方式与目前日益竞争的市场不匹配。为了加大生物技术制药研发的力度,需要增加投资,风险资金的引入,能够使得研发资金的投入得到有效扩大,对科研成果产业化的转换具有极大的促进作用。成熟、先进的技术与广阔的市场前景是生物技术制药风险投资引入的前提。通过风险资金增加投入,从而极大的推动生物技术制药的发展。

第二,加大人才的培养。生物技术制药作为高科技领域离不开人力的支持。当前,我国生物技术制药的发展依赖于人力资源。人是技术创新的主体。因此,为了使得研发人才不足得到弥补,中国需要对国外从事生物技术制药的专家与学者进行引入,同时,通过有效的激励机制留住人才。生物技术制药企业发展的动力是对人才的吸引与培养。

第三,重视对药物的创新。对患者治疗有效的药物是制药行业销售的具有真正价值的药品。基于需求开始进行创新,对满足疾病治疗需求的药物进行寻找,从而功能出发对技术构思进行明确,基于技术构造对技术方案进行设计,从而使得生物技术制药研发产品的技术风险降低。对于生物技术制药而言,上游的创新、中游物质分离、产品加工、下游营销构成了整个产业链。因此,生物技术制药要实现“研发――试验――生产――销售”产业链一体化。基于创新,使得中国生物技术制药竞争力水平不断提高。

结束语

生物技术制药前景广阔,具有巨大的潜力,对于生物技术制药中国政府给予了极大的重视。当前生物技术制药领域处于技术变革时期,基因组与后基因组的研究极大的增加了生物技术制药的发展。基于功能基因组的研究,开发基因组药物,对具有自主知识产权的基于组药物进行研发,提高中国生物技术制药的竞争力。

参考文献

[1]李 珂.现代生物制药技术的发展现状及未来趋势[J].中小企业管理与科技(上旬刊).2010(6)

生物技术药物分析范文6

关键词:生物技术;制药;应用

生物技术也可以称作是生物工程。以现在化的生命科学为主要基础,综合各种科学技术,科学原理以及先进的科学手段,按照设计对生物体和生物原料的加工为人类生产出具有重要作用的生物技术产品。生物技术是人们对动植物以及微生物本身的物质加工而成,为人们生产数优质的生物技术产品更好的为社会服务。现代生物制药技术其中包括现代化生物技术和发酵技术,生物技术来源于相关的学科和生物学发展相融合的产物,其中以重组DNA技术为核心主要的基因工程,这之中还包括有生化工程、细胞工程、微生物工程和生物制药等各个领域。生物技术是综合许多种现代科学理论与生命科学研究出来的一种高新技术,运用先进的技术手段为我国制药行业的研究创造出广阔的应用前景。

1 发酵工程制药

现代的发酵制药工程。又可以被称作微生物工程,是指采用现代的生物技术手段,利用微生物的特定功能,为人类生产出有用的产品,工业生产的过程直接运用微生物技术。微生物代谢生产的生物技术就是发酵工程制药。发酵工程制药中含有,抗生素、激素、维生素等相关的生理活性物质。主要的研究对微生物改良和筛选,工艺研究,等处理产品后续的问题。如今DNA重组技术对微生物菌类的改良有着重要的作用。在20世纪70年代中,基因技术和细胞技术融合等生物技术的不断发展,发酵工业进入了现代化的工程阶段,其中生产的产品有酒精类饮料,还有胰岛素、生长激素和抗生素等多种保健药物。发酵工程制药利用微生物生长以及代谢制作中药,此类制作中药方式比一般方式都优越,可以全面的改善药性,降低副作用,橹幸钚猿煞痔峁┬碌姆⒄狗较颍产生新的药物作用,针对各种适应症的治疗,充分保护中药成分,避免中药活性成分遭到破坏,从而做到节约药物资源。

2 基因工程制药

基因工程制药是指分子水平上基因的操作,根据人类的需求所设计的,按照设计方案创建含有新性状的生物新品系,并且能使生物新品系稳定的遗传给下一代。基因工程与工程设计运用了相似的方法,具有明显的理学与工程学的特点。工程制药通过DNA技术将疾病的蛋白质、酶、核酸等基因药物转移到宿主细胞进行表达和繁殖,最终可以获得相应的治疗药物。抗生素通常是人体的活性因子,主要研究基因的鉴定、克隆导体的构建,导入产物分离纯化等问题。基因工程被人们掌握时间并不是很长,但已经多次的取得了实际性的成果和应用价值,基因技术已经成为我国的核心技术,将在制药方面充分的发挥重要作用。

3 细胞工程制药

相关于细胞工程制药的范围还没有确切的说法,细胞工程是根据分子生物学原理,应用了细胞培育技术以及细胞水平进行遗传操作。细胞工程大体可分为细胞质工程和染色体工程。细胞工程的主要关键是运用植物和动物的细胞培养作为药物生产技术。利用细胞技术对动植物的培养可以生产出人类活性因子,以及单克隆等抗体产品。也可以生产出活性因子疫苗等DNA产品。在地理条件和气候环境的影响下植物细胞代谢产物含量仍然很高。系统正在研究培养,人参、三七等制药用的植物,并对相关的培养条件做出了。分析表明,人参细胞培养物与药理活性都和普通种植的人参没有明显差异。对于某些植物的细胞培养与生产已经达到了商业化作用。除了对细胞大规模的培养之外,毛状根与不定根的培养也很成功。黄氏毛状根的培养效果与价格与药物黄氏相似,希腊毛地黄细胞应在褐藻酸欲的固定情况下培养,可将有毒的毛地黄物质转化成地高辛,运用紫草细胞培养生产紫草宁等根据野生新疆雪莲的抗炎等作用,相关人员等进行了细胞培养物与天然新疆雪莲抗炎、镇痛的药理实验,实验表明新疆雪莲细胞培养物,可以成为野生雪莲的替代品。资源短缺也是比较严重的问题,对于资源短缺完全可以利用细胞培养技术对犀角等相关药用动物器官进行培养,此方式就能解决资源短缺的问题。

4 酶工程制药

酶工程指的是用酶、细胞,等拥有独特的催化功能,借助生物技术手段为人类制造出需要的产品。酶学理论与化工技术结合形成的新技术就是没酶工程。现如今已经有很多国家都运用了固定化的酶和细胞生产药品。没工程技术是现代生物技术的重要部分,固定化酶不仅能合成药物分子。还能用于对药物的转化。我国运用微生物的两部转化方法成功的生产出维生素C,酶工程主要研究产药酶,酶细胞固定化相关的操作条件等。酶工程的应用前景一片光明,发酵工业与化学合成工业发生了巨大的改变。药用植物的有效成分来源于植物的次生代谢产物。现如今已有很多个国家充分的应用固定化细胞与固定化酶进行药物的生产。

5 结束语

综上所述,我国的生物技术已经越来越重要,目前生物制药的研究成果数量日益增长,其技术制药研究已经不断的深入各个领域,中药研制新药的环节也在不断的介入在新药研发中生物技术制药形式相对比较重要,使生物技术制药成为了研发主流。生物技术同时还具有对珍稀传统药材的保护同时还能生产出大量的高品质药材和药品活性成分,使药品活性成分的含量有效的提高。合理的应用现代化生物技术,使我国的制药行业不断地取得更大的发展。

参考文献

[1]张秀婷,王英姿,段飞鹏,等.生物技术在制药行业的应用概况[A].中华中医药学会中药制剂分会、世界中医药学会联合会中药药剂专业委员会.“好医生杯”中药制剂创新与发展论坛论文集(上)[C].中华中医药学会中药制剂分会、世界中医药学会联合会中药药剂专业委员会,2013:4.

[2]李云静.浅谈生物技术在制药行业中的应用[J].科技资讯,

2010,34:2.