人工神经网络改进范例6篇

前言:中文期刊网精心挑选了人工神经网络改进范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

人工神经网络改进

人工神经网络改进范文1

1.1人工神经网络研究简况

1943年,生理学家W.S.McCulloch和数学家W.A.Pitts首次提出二值神经元模型。半个世纪以来人们对神经网络的研究经历了五六十年代的第一次热潮,跌人了70年代的低谷;80年代后期迎来了第二次研究热潮,至今迭起,不亚于二战期间对原子弹研究的狂热。

人工神经网络是模仿生物脑结构与功能的一种信息处理系统。作为一门新兴的交叉学科,人工神经网络以其大规模并行结构、信息的分布式存储和并行处理,具有良好的自适应性、自组织性和容错性,具有较强的学习、记忆、联想、识别功能气引起众多领域科学家的广泛关注,成为目前国际上非常活跃的前沿领域之一。

    1.2人工神经网络的基本模型及其实现

    1.2.1人工神经网络的基本模型人工神经网络的基本模型见表1?

1.2.2以误差逆传播模型说明人工神经网络的实现人工神经网络中应用最多的是误差逆传播(ErrorBack-Propagation)网络,简称BP网络,从结构讲’BP网络是典型的多层网络,分为输入层、隐含层和输出层3层,层与层的神经元之间多采用全互连方式,而同层各神经元之间无连接,见图1。BP网络的基本处理单元(输入层单元除外)为非线性输人-输出关系,一般选用S型作用函数f(x)=l/(1+e-当给定网络一个输人模式时,它由输人层单元传到隐含层单元,经隐含层单元逐层处理后再送到输出层单元,由输出层单元处理后产生一个输出模式。这是一个逐层状态更新的过程,称为前向传播。如果期望输出与实际输出之间的误差不满足要求,那么就转人误差反向传播,将误差值沿通路逐层传送并修正各层连接权值(w1,W2),这是一个逐层权值更新的过程,称为误差反向传播过程。随着2个过程的反复进行,误差逐渐减小,直至满足要求为止。

2常用人工神经网络模型的应用分析

当前,人工神经网络方法主要应用于有机有毒化合物毒性的分类及定量预测、对不同污染物生物降解性能的预测、单要素环境质量评价、环境质量综合评价、环境预测、环境综合决策等方面。

2.1预测性能的分析

以BP网络为例,就近两年来应用BP网络进行预测的成功研究来看,人工神经网络的预测性能得到了充分的肯定。

1997年,刘国东等141应用BP网络建立的雅砻江和嘉陵江流域气温、降水和径流之间关系的网络模型,具有较高的拟合精度和预报精度,并具有精度可控制的优点。计算结果同国内外研究成果的一致性表明,用BP网络分析、研究气候变化对一个地区(或流域)水资源环境的影响是一种新颖、有效的方法。

王瑛等w指出,当外界环境和系统本身性质发生剧烈变化时,BP网络能提供一种有效的方法来更新模型,实现新旧模型之间的转换。他们利用最近12年(1981~1992年)的环境经济数据对2000年环境指标进行了预测,并根据预测结果对未来的环境对策进行了分析。这为解决环境预测的模型问题提供了一条新思路。

张爱茜等用人工神经网络预测含硫芳香族化合物好氧生物降解速率常数和孙唏等⑺对胺类有机物急性毒性的分类及定量预测的结果都说明了,人工神经网络作为一种非线性模型预测能力大大优于多兀线性回归模型。

2.2 评价性能的分析

人们在环境评价中主要应用了BP网络、Hopfield网络、径向基函数网络等模型,并不断地改进应用方法,对其在环境评价中的性能进行比较研究》李祚泳的研究结果表明BP网络用于水质评价具有客观性和实用性。刘国东等?改进了BP网络的应用kf法,并比较了BP网络与Hopfield网络在水质综合评价中的性能。他们指出Hopfield网络采用模式(图象)联想或匹配,既适用于定量指标的水质参数又适用于定性指标的水质参数,而且使水质评价形象化,因此更优于BP网络.郭宗楼等将径向基函数人工神经网络(RBF—ANN)模型应用于城市环境综合评价,结果-表明RBF网络不仅具有良好的推广能力,而且避免了反向传播那样繁琐、冗长的计算,其学习速度是常用的BP网络无法比拟的。郭宗楼等[|11又以三峡工程为背景,把该模型应用于水利水电工程环境影响综合评价的人工神经网络专家系统中,与分级加权评价法相比较具有更高的推理效率。

环境科学研究的问题,如环境污染、生态破坏、自然灾害、资源耗竭、人口过量等等,无一不是在某种程度上损伤或破坏了人——环境的和谓。人——环境关系有着自身的变化规律,是可以进行科学量度的。显然这一M?度是多方位、多因素的非线性评价问题,至今尚未建立起一种适当的评价模型,我们是否可以借鉴人工神经网络的应用优点,考虑建立基于人工神经网络方法的评价模型。

人工神经网络改进范文2

关键词 神经网络;BP;优化算法

中图分类号:TP183 文献标识码:A 文章编号:1671-7597(2014)13-0066-01

1 人工神经网络模型

人工神经网络简称ANN,它是一种将人类大脑的组织结构和运行机制作为其研究基础来模拟人类大脑内部结构和其智能行为的处理系统。人工神经网络中的神经元细胞将其接收到的所有信号进行处理,如加权求和等操作,进行操作后经轴突输出。

2 人工神经网络的分类

2.1 前馈型神经网络

前馈型神经网络通过对其网络中的神经元之间的连接关系进行复合映射,因此这种网络模型具有非常强的非线性处理的能力。如图1所示,在这里前馈型神经网络模型被分为三层,分别为输入层、输出层和隐含层,一般常用的前馈型神经网络有BP神经网络、RBF神经网络、自组织神经网络等。

图1 前向神经网络模型

2.2 反馈型神经网络

反馈型神经网络其结构,在这个模型中我们假设网络总的神经元个数为N,则每个神经元节点都有N个输入值及一个输出值,每个神经元节点都如此,节点之间相互联系。现在被大量使用的反馈型神经网络一般有离散Hopfield神经网络模型、Elman神经网络模型等等。

3 BP神经网络

3.1 BP神经网络简介

1986年,Rumelhant和McCelland提出了BP神经网络的一般模型,BP神经网络是一种具有多层网络的反向传播学习算法。BP神经网络模型的基本思想是:整个过程主要由信号的正向传播和误差的反向传播两个过程组成。目前,BP神经网络的应用范围为数据压缩、数据分类、预测分析和模式识别等领域。

3.2 BP神经网络的结构

如图2所示,这里是BP神经网络的一种模型结构,在这种模型结构中输入信号量为m,具有隐含层的数量为j,输出信号量为q的模型结构。

BP神经网络一般具有一个或多个隐含层单元,其差别主要体现在激活函数的不同。针对BP神经网络所使用的激活函数一

图2 BP神经网络模型结构

般采用S型对数函数或者采用正切激活函数,而输出层则一般采用线性函数作为激活函数。

3.3 BP神经网络的改进方法

BP神经网络作为当今对研究电力负荷预测应用最多的一种神经网络,但标准的BP神经网络算法存在的一些缺陷,这里就对一些经常使用的典型改进方法进行描述。

1)增加动量项。在一般的BP神经网络算法中,其模型中的各层权值在进行更新的过程中,是按照t时刻误差曲线进行梯度下降方式进行调整的,在这里并没有考虑其之间的梯度下降的方向,如果使用这种方式进行调整则会造成训练的过程不稳定,容易发生振荡,导致收敛过程缓慢的结果。因此有些学者就为了使网络训练的速度提高,收敛过程加快,就在一般网络模型的权值更新环节添加了一个动量项因子即:

(1)

在这个式子中,W表示BP神经网络中每一层的权值矩阵,O则表示神经网络中每一层的输出向量矩阵,α则被称为该神经网络的动量系数因子,其取值范围在0到1之间,在该网络在进行训练的过程中,如果其误差梯度网线出现了局部极小值现象,虽然在这里的第一项会趋搂于零,但是这一项,

这样就会使该训练过程避免了限入局部极小值区域的形势,从而加快了其训练速度,使该神经网络收敛速度加快,因此这种带有动量项因子的BP神经网络算法应用到了很多的BP网络中。

2)学习速度的自适应调节方法。学习速度η在一个标准的BP神经网络中是以一个常数出现的我们也称为之步长,而在实际的运算过程中,很难找到一个数值作为最优学习速度。我们从误差曲面图形中可以看出,当曲面中区域处于一个平坦区域时,我们需要设置一个比较大的η值,使它能够跳出这个平坦的区域;而当曲面中的区域处于变化比较很大的区域时,这时的η的数值我们又需要将其进行减小或者增大操作。自适应调整学习速度η则可以根据网络的总误差来进行自我调整,在网络经过多次调整后,如果E总继续上升,则表明这里的调整是无效的,且η=βη, ;而经常调整这里的E总下降了,则表明这里的调整是有效果的,且η=αη,。

3)引入陡度因子(防止饱和)。在网络训练的过程中,由于其误差曲面具有平坦区,当处于这个区域时,由于S型激活函数有饱和特性,促使权值的调整速度放慢,从而影响了调整的速度。在训练的过程中,如果算法调整进入了这个区域,我们可以减小神经元的输入量,使其输出值迅速脱离激活函数的饱和区域,这里误差函数的数值则会随之发生改变,其权值的调整也就脱离了该平坦区。想要实现以上思路则需要在激活函数中引入一个陡度因子λ。

(2)

当趋近于0时,而数值较大时,调整其进入误差曲面中的平坦区,此时λ的值应选择大于1的数值;而当调整脱离平坦区域后,再设置λ大于1,使激活函数能够恢复到原始数值。

4 总结

综上所述,设计一个人工神经网络应用到实际问题中,可以归结为网络自身权值参数的学习与合理的设计网络拓扑结构这两大类优化问题。由于人工神经网络的训练是一个非常复杂的问题,使用传统的学习算法进行训练则要花费很长的时间,BP算法用到了梯度下降法,才只能在一定范围内找到合适的参数值及其模型结构。因此,为了更好的提高神经网络的泛化能力,及将网络拓扑结构设计的更加合理,大量关于神经网络的优化算法相继产生。

参考文献

人工神经网络改进范文3

【关键词】图像分割;细胞特征;人工神经网络

据统计,在各种癌症中,子宫颈癌对妇女的威胁仅次于乳腺癌。全世界每年因子宫颈癌死亡的人数为30万,确诊和发现早期症状者各为45万。虽然确诊病人的年龄一般都在35岁以上,但存在这种疾病诱因的妇女却往往远在这一年龄以下。如果及时得到诊断,早期子宫颈癌是可以治愈的。因此借助于现代先进的计算机技术结合病理专家的实践经验,开发出计算机辅助细胞学诊断系统,才是解决这一问题的关键所在。

本文从图像识别领域出发,应用人工神经网络模型对子宫颈癌细胞图像诊断进行探索。首先,对获取的子宫颈癌图像进行灰度转换。由原来的24位彩色图像转化为灰度图像。在对灰度图像进行分割,主要采取基于门限阈值化的分割方法。分别对细胞,细胞核进行了分割。分割后转化成为二值图像,采用八向链码算法对包括周长,面积似圆度,矩形度,核浆比等15个主要形态学参数进行测量。在取得了大量的数据样本后进行人工神经网络的训练。

人工神经网络是在对人脑神经网络的基本认识的基础上,从信息处理的角度对人脑神经网络进行抽象,用数理方法建立起来的某种简化模型[1]。通过模仿脑神经系统的组织结构以及某些活动机理,人工神经网络可以呈现出人脑的许多特征,并具有人脑的一些基本功能[2]。1988年,Rinehart等人提出了用于前向神经网络学习训练的误差逆传播算法(Back propagation,简称BP算法),成功解决了多层网络中隐含层神经元连接权值的学习问题[3]。BP算法是由教师指导的,适合于多层神经网络的学习训练,是建立在梯度下降算法基础上的。主要思想是把学习过程分为两个阶段:第一阶段(信号正向传播过程),输入信号通过输入层经隐含层逐层处理并计算每个节点的实际输出值;第二阶段(误差修正反向传播过程),若在输出层未得到期望的输出值,则逐层递归地计算实际输出与期望输出之间的误差,并已据此误差来修正权值。在学习过程中,对于每一个输入样本逐次修正权值向量,若有n个样本,那么一次学习过程中修正n次权值。

但是BP算法也存在一定的缺陷,如多解问题、学习算法的收敛速度慢以及网络的隐含节点个数的选取尚缺少统一而完整的理论指导。为了优化BP算法,我们采用加入动向量的方法对BP算法进行改进。基于BP算法的神经网络,在学习过程中,需要不断地改变权值,而权值是和权值误差导数成正比的。通常梯度下降方法的学习速率是一个常数,学习速率越大,权值的改变越大。所以要不断地修改学习速率,使它包含有一个动向量,在每次加权调节量上加上一项正比例与前次加权变化量的值(即本次权值的修改表达式中引入前次的权值修改量)。设计模型时,人工神经网络的输入输出变量是两个重要的参数。输入变量的选择有两个基本原则:其一必须选择对输出影响大并且能够检测或提取的变量,其二要求各个输入变量之间互不相关或相关性很小。我们将细胞的形态学特征值作为人工神经网络的输入变量。输出变量代表系统要实现的功能目标,这里以TBS分类法为依据,确定了人工神经网络的三个输出变量NORMAL(正常细胞),LSIL(低度鳞状上皮内病变),HSIL(高度鳞状上皮内病变)[4]。在人工神经网络的输入、输出确定后,就可以得到网络的结构图,从而对测得的细胞特征值进行分类。

本文中所设计的神经网络分类器,输入层15个节点、隐含层30个节点、输出层2个节点。细胞样本共161例,使用87例细胞样本数据对人工神经网络的权值进行训练。当误差小于规定值后,再用剩余的74例数据样本对人工神经网络进行测试。主要采取的算法是增加动量的BP算法。经实验,应用人工神经网络模型识别每张图片每个细胞,选出128个最有可能的异常细胞图。通过大量实验对比训练样本识别率最高达96.6%,测试样本识别率最高达87.8%,总体样本识别率最高达92.5%。

由实验可以看出增加动量的BP算法(BP标准算法)的学习次数适中,分类基本准确。增加学习速率可以加快收敛的速度,但同时也看到由于学习速率过大,而导致系统的不稳定,引起震荡。所以在增加学习不长的同时,动向量不能够过大,否则会引起震荡,影响分类的准确率。使用增加动量的BP算法对子宫颈癌细胞的识别效果比较理想,这在医学研究以及临床诊断方面具有一定的现实意义及比较广阔的应用背景。

参考文献

[1]何苗.径向基人工神经网络在宫颈细胞图像识别中的应用[J].中国医科大学学报,2006,35(1).

[2]刑仁杰.计算机图像处理[M].浙江:浙江大学出版社,1990:32-67.

[3]时淑舫.计算机辅助细胞检测方法在宫颈细胞学检查中的应用价值[J].临床和实验医学杂志,2003,2(2).

人工神经网络改进范文4

关键词:车牌字符;BP人工神经网络;图像识别;模式识别

引言

近年来,神经网络的智能化特征与能力使其应用领域日益扩大,潜力日趋明显。许多用传统信息处理方法无法解决的问题采用神经网络后取得了良好的效果。其中,神经网络在车牌字符识别中的应用效果尤为明显。目前,车牌字符识别主要采用两种方法,即模式匹配法和神经网络法。由于神经网络模式识别方法能够实现基于计算理论层次上的模式识别理论所无法完成的模式信息处理工作,这种方法是选用适当的字符图像特征提取方法,然后使用训练样本训练网络并构建一个识别网络作为分类器。所以,相信未来一段时期内神经网络在车牌字符识别领域中的应用还会是趋于主导地位。

1 人工神经网络简介

人工神经网络来提取特征向量,把字符平均分成8份,统计每一份内黑色像素点的个数作为8个特征, 即分别统计这8个区域中的黑色像素点的数目,可以得到8个特征。然后统计水平方向中间两列和竖直方向中间两列的黑色像素点的个数作为4个特征,最后统计所有黑色像素点的个数作为第13个特征。如下图所示:

                         

 图3 13特征提取法

人工神经网络改进范文5

关键词:模糊控制;人工神经网络;人脸识别

中图分类号:TP18 文献标识码:A文章编号:1009-3044(2011)16-3904-03

随着人工智能技术的飞速发展,机器视觉已经成为当前人工智能研究领域的一大热点,很多国家的研究人员都开展了对机器视觉的研究,其中以机器视觉识别人脸最为困难,这主要是因为人的面部带有表情,不同的人具有不同的脸,而不同的脸具有不同的表情,不同的表情则具有不同的面部特征,如何让计算机通过机器视觉高效率的识别人脸,成为当前机器视觉和智能机器人关键技术领域的技术难题。

随着模糊逻辑控制算法和人工神经网络算法的发展,对于机器视觉识别人脸特征的算法也有了新的发展,目前多数研究算法所采用的人脸识别从实现技术上来说,主要可以分为以下几个类别:

1) 基于人脸几何特征进行的识别算法,该算法运算量较小,原理简单直观,但是识别率较低,适合应用于人群面部的分类,而不适宜于每一个人脸的识别。

2) 基于人脸特征的匹配识别算法,这种算法是预先构建常见的人脸特征以及人脸模板,构成人脸特征库,将被识别的人脸与特征库中的人脸进行逐一比对,从而实现人脸识别,该算法识别效率较高,但是应用有一定局限性,只能够识别预先设立的人脸特征库中的人脸模型,因此人脸特征库就成为该算法实现的技术关键。

3) 基于统计的人脸识别算法,该算法将人脸面部进行特征参数的划分,如两眼距离大小,五官之间距离等,通过构建统计特征参数模型实现对人脸模型的识别,该算法识别率较高,但是算法实现起来运算量比较大,且识别效率较低。

4) 基于模糊逻辑的人脸识别算法,这一类算法主要结合了模糊逻辑和神经网络能够自我训练学习的机制实现对人脸的识别,识别率较高,且算法运算量适中,但是算法的原理较难理解,且模糊逻辑控制规则的建立存在一定技术难度。

本论文主要结合模糊人工神经网络方法,将其应用于计算机人脸识别,以期从中能够找到有效可靠的人脸识别方法及其算法应用,并以此和广大同行分享。

1 模糊逻辑及人工神经网络在图像辨识中的应用可行性分析

1) 人脸识别的技术难点

由于计算机只能够认识0和1,任何数据,包括图像,都必须要转化为0和1才能够被计算机识别,这样就带来一个很复杂很棘手的问题:如何将成千上万的带有不同表情的人脸转变为数字信号并被计算机识别。由于人的面部带有表情,不同的人具有不同的脸,而不同的脸具有不同的表情,不同的表情则具有不同的面部特征,因此这些都成为了计算机识别人脸特征的技术难点,具体来说,人脸实现计算机识别的主要技术难度包括:

① 人脸表情:人有喜怒哀乐等不同表情,不同的表情具有不同的面部特征,因此如何分辨出不同表情下的人脸特征,这是首要的技术难点;

② 光线阴影的变换:由于人脸在不同光线照射下会产生阴影,而阴影敏感程度的不一也会增加计算机识别人脸特征的难度;

③ 其他因素:如人随着年龄的增长面部特征会发生些微变化,人脸部分因为装饰或者帽饰遮挡而增加识别难度,以及人脸侧面不同姿态也会对计算机识别带来技术难度。

2) 模糊人工神经网络在人脸辨识中的应用可行性

如上分析所示,计算机识别人脸,需要考虑的因素太多,并且每一种因素都不是线性化处理那么简单,为此,必须要引入新的处理技术及方法,实现计算机对人脸的高效识别。根据前人的研究表明,模糊人工神经网络算法是非常有效的识别算法。

模糊理论和神经网络技术是近年来人工智能研究较为活跃的两个领域。人工神经网络是模拟人脑结构的思维功能,具有较强的自学习和联想功能,人工干预少,精度较高,对专家知识的利用也较少。但缺点是它不能处理和描述模糊信息,不能很好利用已有的经验知识,特别是学习及问题的求解具有黑箱特性,其工作不具有可解释性,同时它对样本的要求较高;模糊系统相对于神经网络而言,具有推理过程容易理解、专家知识利用较好、对样本的要求较低等优点,但它同时又存在人工干预多、推理速度慢、精度较低等缺点,很难实现自适应学习的功能,而且如何自动生成和调整隶属度函数和模糊规则,也是一个棘手的问题。如果将二者有机地结合起来,可以起到互补的效果。

模糊逻辑控制的基本原理并非传统的是与不是的二维判断逻辑,而是对被控对象进行阈值的设计与划分,根据实际值在阈值领域内的变化相应的产生动态的判断逻辑,并将逻辑判断规则进行神经网络的自我学习,逐渐实现智能判断,最终实现准确的逻辑判断。相较于传统的线性判断规则,基于模糊规则的神经网络是高度复杂的非线性网络,同时由于其广阔的神经元分布并行运算,大大提高了复杂对象(如人脸)识别计算的效率,因此,将模糊神经网络算法应用于人脸的智能识别是完全可行的。

2 基于模糊人工神经网络的人脸识别方法研究

2.1 基于模糊神经网络的人脸识别分类器设计

1) 输入、输出层的设计:针对模糊神经网络层的输入层和输出层的特点,需要对识别分类器的输入、输出层进行设计。由于使用BP神经网络作为识别分类器时,数据源的维数决定输入层节点数量,结合到人脸的计算机识别,人脸识别分类器的输入输出层,应当由人脸特征数据库的类别数决定,如果人脸数据库的类别数为m,那么输入、输出层节点数也为m,由m个神经元进行分布式并行运算,能够极大提高人脸识别的输入和输出速度。

2) 隐藏层结点数的选择:由于一般的BP神经网络都是由3层BP网络构成:输入层,隐藏层和输出层,隐层的数量越多,BP神经网络越复杂,那么最终能够实现的运算精度就越高,识别率也就越高;但是随着隐层数量的增加,随之而来的一个突出的问题就是神经网络变的复杂了,神经网络自我训练和学习的时间变长,使得识别效率相对下降,因此提高精度和提高效率是应用模糊神经网络的一个不可避免的矛盾。在这里面向人脸识别的分类器的设计中,仍然采用传统的3层BP神经网络构建人脸识别分类器,只设计一层隐层,能够在保障识别精度的前提下有效的保障神经网络学习和训练的效率,增加人脸识别的正确率。

3) 初始值的选取:在设计了3层BP神经网络的基础上,需要确定神经网络的输入初始值。由于模糊神经网络是非线性的,不但具有线性网络的全部优点,同时还具有收敛速度快等特点,而初始值的选取在很大程度上影响神经网络的学习训练时间的长短,以及是否最终能够实现收敛输出得到最优值。如果初始值太大,那么对于初始值加权运算后的输出变化率趋向于零,从而使得神经网络自我学习训练趋向于停止,最终无法得到收敛的最优值;相反,我们总是希望初始值在经过每一次加权运算后的输出都接近于零,从而能够保证每一个参与运算的神经元都能够进行调节,最终实现快速的收敛。为此,这里将人脸识别的初始值设定在[0,0.2]之间,初始运算的权值设定在[0,0.1]之间,这样都不太大的输入初始值和权值初始值能够有效的保证神经网络快速的收敛并得到最优值。

如果收敛速度太慢,则需要重新设置权值和阈值。权值和阈值由单独文件保存,再一次进行训练时,直接从文件导出权值和阈值进行训练,不需要进行初始化,训练后的权值和阈值直接导入文件。

2.2 人脸识别的神经网络训练算法步骤

1) 神经网络的逐层设计步骤:神经网络需要按层进行设计,构建信号输入层、模糊层以及输出层,同时还要构建模糊化规则库,以构建神经网络模糊算法的完整输入输出条件。具体构建人脸识别的神经网络层可以按照下述步骤执行:

Step 1,构建信号输入层,以视觉摄像头为坐标原点构建人脸识别坐标系统,这里推荐采用极坐标系统构建识别坐标系,以人脸平面所处的角度与距离作为信号的输入层,按照坐标系的变换得到神经网络信号输入的距离差值和角度差值Δρ,Δθ,作为完整的输入信号。

Step 2,构建模糊化层,将上一层信号输入层传输过来的系统人脸识别信号Δρ与Δθ进行向量传输,将模糊化层中的每一个节点直接与输入信号向量的分量相连接,并进行信号矢量化传输;同时在传输的过程中,根据模糊化规则库的条件制约,对每一个信号向量的传输都使用模糊规则,具体可以采用如下的隶属度函数来进行模糊化处理:

(1)

其中c ij 和σij分别表示隶属函数的中心和宽度。

Step 3,构建信号输出层,将模糊化层经过模糊处理之后的信号进行清晰化运算,并作为最终结果输出。

关于模糊规则库的建立,目前所用的方法都是普遍所采用的匹配模糊规则,即计算每一个传输节点在模糊规则上的适用度,适用就进行模糊化规则匹配并进行模糊化处理,不适用则忽略该模糊规则并依次向下行寻找合适的模糊规则。当所有的,模糊规则构建好之后,需要对每条规则的适用度进行归一化运算,运算方法为:

(2)

2) 人脸的识别算法按如下步骤执行:

Step 1:一个样本向量被提交给网络中的每一个神经元;

Step 2:计算它们与输入样本的相似度di;

Step 3:由竞争函数计算出竞争获胜的神经元,若获胜神经元的相似度小于等于相似度门限值ν,则计算每个神经元的奖惩系数γi,否则添加新的神经元;

Step 4:根据学习算法更新神经元或将新添加的神经元的突触权值置为x;

Step 5:学习结束后,判断是否有错误聚类存在,有则删除。

其中,

(3)

di是第i个神经元的相似度值,β为惩罚度系数,ν为相似度的门限值。γ的计算方法是对一个输入样本x,若竞争获胜神经元k的相似度dk≤ν,则获胜神经元的γk为1,其它神经元的γi=-βdi/ν,i≠k;若dk >ν,则添加新的神经元并将其突触权值置为x。

实际上,网络训练的目的是为了提高本算法的权值实用域,即更加精确的实现对人脸特征的识别,从而提高算法的人脸识别率,当训练结束后,即可输出结果。

2.3 算法仿真测试

为了验证本论文所提出的人脸识别模糊神经网络算法的有效性和可靠性,对该算法进行仿真测试,同时为了凸显该算法的有效性,将该算法与传统的BP神经网络算法进行对比仿真测试。

该测试采集样本500张人脸图片,分辨率均为128×128,测试计算机配置为双核处理器,主频2.1GHz,测试软件平台为Matlab,分别构建BP神经网络分类器与本算法的神经网络分类器,对500幅人脸图片进行算法识别测试。

如表1所示,为传统BP神经网络算法和本论文算法的仿真测试结果对比表格。

从表1所示的算法检测对比结果可以发现:传统的算法也具有人脸特征的识别,但是相较于本论文所提出的改进后的算法,本论文提出的算法具有更高的人脸特征识别率,这表明了本算法具有更好的鲁棒性,神经网络模糊算法的执行上效率更高,因而本算法是具有实用价值的,是值得推广和借鉴的。

3 结束语

传统的图像识别技术,很多是基于大规模计算的基础之上的,在运算量和运算精度之间存在着不可调和的矛盾。因人工神经网络技术其分布式信息存储和大规模自适应并行处理满足了对大数据量目标图像的实时处理要求,其高容错性又允许大量目标图像出现背景模糊和局部残缺。相对于其他方法而言,利用神经网络来解决人脸图像识别问题,神经网络对问题的先验知识要求较少,可以实现对特征空间较为复杂的划分,适用于高速并行处理系统来实现。正是这些优点决定了模糊神经网络被广泛应用于包括人脸在内的图像识别。本论文对模糊神经网络在人脸图像识别中的应用进行了算法优化设计,对于进一步提高模糊神经网络的研究与应用具有一定借鉴意义。

参考文献:

[1] 石幸利.人工神经网络的发展及其应用[J].重庆科技学院学报:自然科学版,2006(2):99-101.

[2] 胡小锋,赵辉.Visral C++/MATLAB图像处理与识别实用案例精选[M].北京:人民邮电出版社,2004.

[3] 战国科.基于人工神经网络的图像识别方法研究[D].北京:中国计量科学研究院,2007.

[4] 王丽华.基于神经网络的图像识别系统的研究[D].北京:中国石油大学,2008.

[5] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[6] 金忠.人脸图像特征抽取与维数研究[D].南京:南京理工大学,1999.

人工神经网络改进范文6

【关键词】人工神经网络 BP算法 故障诊断 发动机

近年来,汽车越来越多地出现在普通百姓家庭。发动机系统是汽车的心脏,大部分零件处于高温、高压的工作环境且处在高速运动当中,设备复杂、参数多,其故障的发生率高,诊断起来困难繁琐,本文针对这一问题,在掌握发动机运行流程后,引入了BP神经网络故障诊断方法,并适当改进,测试结果表明,该方法可靠有效实用。

3 自适应BP网络实例应用

3.1 网络输入输出向量及参数的选取

由汽车维修专家提供典型发动机系统故障现象及相应的故障原因实例作为训练样本。以故障类型X=(x1,x2,x3,x4)作为输入,故障原因R=(r1,r2,…,r12)作为输出,建立故障模式与故障原因之间的映射关系。如表1所示。

3.2 网络的创建、训练与检验

按照样本的模式对,确定输入层节点个数为4,输出层节点个数为12。输出节点值的大小反映了故障出现的可能程度。而隐含层节点的个数可参照经验公式选取:其中为输出节点数,n为输入节点数,为1至10的常数。

将故障类型及原因分析表中的文字描述进行转换并编码,就得到样本训练表,如表2所示。

选取网络的初始学习率=1,动量因子=0.01,初始学习率调整因子β=1,训练过程中根据误差变化实时调整学习率,取β=0.9(误差变大时),β=1.1(误差变小时)。

采用Matlab软件编写程序对样本进行训练。

3.3 误差分析与判定

利用同一组样本对改进的BP算法和传统BP算法分别进行测试,并对照研究,进行误差分析。表3为阶段性均方误差所需要的训练次数对比,图1为增加动量项的BP算法对网络训练误差的影响,图2为采用自适应学习率BP算法对网络训练误差的影响,可以直观地看出,两种方法都可以极大地加快网络的训练过程,将两种方法结合到一起,则效果更好,如图3所示。

需要注意的是,建议学习率调整率不能取值太大,使步长平稳,同时设定学习率的最大值,超过后就不再调整,防止出现过调。

4 结论

本文把基于BP神经网络的故障诊断技术引入汽车发动机故障诊断系统,通过增加动量项和自适应调节学习率两种方法来对基本的BP网络学习算法进行改进,可以极大地加快BP 神经网络收敛过程,提高学习速度。通过分析,人工神经网络能够在发动机系统的监测及诊断中发挥较大的作用,并且在设计诊断工具和改进诊断方式中有一定的借鉴功能。

参考文献

[1]韩力群.人工神经网络理论、设计及应用[M].北京:化学工业出版社,2002.

[2]黄勇,郭晓平.基于改进BP神经网络的柴油机故障诊断研究[J].汽车科技,2009(03).

[3]张冉,赵成龙.改进BP网络在汽轮发电机组故障诊断中的应用[J].计算机仿真,2011(07).

[4]张延林,佟德军.BP神经网络的汽车故障诊断研究[J].自动化仪表,2009(04).

[5]禹建丽,卞帅.基于BP神经网络的变压器故障诊断模型[J].系统仿真学报,2014(06).

[6]姜蕊.基于改进BP神经网络的速度预测模型[J].交通工程,2013(04).

[7]陈怀琛,吴大正,高西全.MATLAB及在电子信息课程中的应用[M].北京:电子工业出版社,2006(03).