前言:中文期刊网精心挑选了人工智能技术的本质范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
人工智能技术的本质范文1
关键词:机械电子工程;人工智能技术;应用
中图分类号:TP18 文献标识码:A
在现代经济社会发展速度不嗉涌斓谋尘跋拢社会生产力水平明显提高。对于我国而言,在工业机械工程发展过程中,现代电子技术的应用促进传统机械工程逐步过渡至现代电子机械工程,而随着计算机技术以及信息技术的蓬勃发展,机械工程开始呈现出智能化、自动化的发展方向。特别是人工智能技术发展以来,此项技术在机械电子工程领域中的应用日益广泛,对提高生产力水平的意义同样非常确切。本文即围绕机械电子工程领域中人工智能技术的相关应用问题进行分析与探讨,望能够引起各方重视与关注。
一、人工智能的概述
人工智能是研究、开发用于模拟、延伸以及扩展人的智能的理论、方法、技术以及应用系统的全新学科。作为计算机科学的重要分支之一,人工智能技术所追求的是了解智能的本质,并研发出一种与人类智能高度相似的智能机器。从人工智能诞生以来,相关理论与应用技术不断成熟,人工智能技术的应用范围也明显扩大。可以预见的是,未来人工智能技术下所带来的一系列科技产品将成为人类智慧的“容器”。
二、人工智能技术的作用分析
人工智能技术的应用对意识结构的变化有非常重要的影响,使意识论研究领域明显扩大。人工智能终端作为一种全新形态的机器设备进入人意识器官范畴中。人工智能技术下,除了能够完成人脑的一部分意识活动以外,甚至在部分功能上较人脑有着更为明显的优势,如对信息进行处理,以及采取行动的速度,以及对动作和记忆的准确性等方面。除此以外,通过对人工智能技术的应用与发展,还为未来ICT等网络技术的发展提供了方向与指导,包括云计算、深度学习、以及智能算法等在内的大规模网络应用成为ICT产业重要的发展方向之一,深度学习作为人工智能研究领域中的重点关注对象之一,可通过构建模拟人脑进行分析学习的神经网络的方式,促进互联网领域的飞跃式发展。
三、机械电子工程及人工智能分析
1.机械电子工程特点
机械电子工程是将电子工程、机械工程以及自动化工程结合起来的综合性学科,在机械电工工程中占据非常重要的地位。现阶段机械电子工程主要具有以下几个方面的特点:(1)机械电子产品结构相对简单。机械电子产品构造复杂程度不高,产品占地面积有限,能够改变传统意义上机械电子产品占地面积大且外观笨拙复杂的特点,对优化机械电子产品工作性能也有重要意义;(2)机械电子工程设计方案合理性高。在电子工程、机械工程以及自动化工程相互融合的背景下,设计人员能够更为全面的决策设计方案,促进机械电子工程的不断进步与发展。如,将机械电子工程技术与管理技术相结合,一来能够促进机械电子工程在管理体制层面的发展革新,二来能够促进机械电子技术在管理层面的发展进步,综合价值突出。
2.人工智能特点
人工智能是研究、开发用于模拟、延伸以及扩展人的智能的理论、方法、技术以及应用系统的全新学科。作为计算机科学的重要分支之一,人工智能技术所追求的是了解智能的本质,并研发出一种与人类智能高度相似的智能机器,研究对象包括图像识别、语言识别、机器人、自然语言处理以及专家系统等多个部分。人工智能技术的应用具有以下几个方面的特点:(1)人工智能技术使人与人之间的沟通交流更加密切。人工智能技术作为高新科学技术,为大众间的沟通交流提供了极大便利,实现与不同群体的沟通,在促进人类社会进步的同时还对人工智能技术的改革创新提供动力;(2)人工智能技术对促进经济增长有重要意义。应用人工智能技术能够促进社会消费,扩大国内市场需求,对实现经济平稳健康发展有积极价值;(3)人工智能技术的应用有助于企业经济目标的快速实现。人工智能技术大量应用会促进行业市场的扩大,吸引投资,提高企业经济效益。
四、机械电子工程中人工智能应用
1.机械电子工程与人工智能的关系
不稳定性是机械电子工程普遍面临的问题之一,该特点的存在导致机械电子工程系统信息输入与信息输出之间的关系难以准确地描述出来。由于建设规则库方法、学习并生成知识描述法以及数学方式推导法这3种传统机械电子工程系统描述方法在严密性与精确度方面存在一定的局限,因此往往难以满足机械电子工程系统日益复杂的描述需求。但从信息处理的角度上来说,人工智能技术的应用及其与机械电子工程系统的融合对于解决系统不稳定性、不确定性以及复杂性问题有非常确切的优势。从这一角度上来说,将人工智能技术与机械电子工程相结合已成为机械电子工程领域发展的必然方向与趋势之一。
2.模糊系统及神经网络系统
模糊系统的理论基础与模糊集合,设计工具为模糊理论。模糊推理系统具有模糊信息的处理功能,在自动化控制、数字处理等诸多领域中得到了大量的应用,所取得的效果非常显著。模糊推理系统创建模拟人脑的相关功能,并分析语言信号,在网络结构的依托下无限接近连续函数,并遵循域至域的映射规则对信息进行储存。但模糊推理系统在应用中具有连接性不固定的特点,计算量偏小,因此应用范围存在一定的限制。
神经网络系统是人工智能技术领域中的关键分支之一,神经网络将信息分布于网络上的主要模式是神经元的兴奋模式。在神经网络系统干预下,可实现对信息的分布储存以及对动态信息的协同处理。神经网络系统可在确保行为丰富的前提下最大限度地精简结构,利用神经网络系统功能直接模拟大脑结构,并分析数字信号,在各个神经元间构成点对点的映射关系,进而达到提高信息数据输入、输出精度,并提高计算量的目的。
结语
综上所述,人工智能技术的应用与人工智能系统的构建、发展在很大程度上促进了现代机械电子工程的快速发展与进步。现代机械电子工程设计必须以人工智能技术的合理应用为依托,达成双赢的理想局面。在这一过程中,相关人员必须充分关注机械电子工程与人工智能技术的融合,不断开拓全新的人工智能技术,把握两者发展中的相通点与共同点,以促进两者的共同发展与进步。
参考文献
[1]梁国强.试论人工智能技术在供水设备机械电气自动化控制中的应用[J].中小企业管理与科技,2015(27):252.
[2]韩斌.机械电子工程与人工智能的关系分析[J].数字技术与应用,2013(6):254-254.
[3]孙伟.电气自动化控制中人工智能技术的应用研究[J].科技创新与应用,2014(7):70-70.
人工智能技术的本质范文2
【关键词】人工智能技术;电气工程;自动化;发展方向
前言
随着现代社会尖端领域中的人工智能技术迅速的发展,尖端高科技技术正在逐渐渗透到每个人的生活当中。当现有的电气自动化技术已经难以与现在的高科技飞速发展的多样化需求相匹配的时候,相关的电气工程技术就需要不断地进行相应的更新换代,从而为社会市场经济经济创造更大的市场价值。因此,在电气自动化控制中引进尖端领域中的人工智能技术对于电气设备的设计与应用而言具有不可或缺的重要意义,在掌握电气自动化的人工智能技术相关理论的基础上,相关企业更需要探究在不同角度里电气工程自动化的人工智能技术应怎样进一步合理实现,并对此做出进一步的完善与改进。
1 电气自动化的人工智能技术相关理论概述
随着近年来社会市场经济模式及体系的迅速转变,大量相关的科研单位已经将电气自动化的人工智能技术作为尖端科技领域内的重点研究工作。人工智能属于技术科学所研究的范畴,其主要内容包括学习、模仿和完善人的一种新型智能方法,而另一方面,人工技能的本质实际上也是计算机学科的分支,无论是在工业生产还是实际生活方面,人工智能技术的大规模应用要归功于21世纪微型计算机的普遍应用,模拟信息技术与智能算法模式在计算机上的广泛应用上成为人工智能信息运输传播有利的推动力。而在电气自动化的实际应用中,相应的人工智能技术多是使用计算机的软件创造并对人类的相关智能行为进行进一步完善,并辅以相应的数学、心理学、电力工程学等相互交叉并有所关联的学科范畴加以总结,最终生产出的有利于电气工程自动化不同应用领域的新型人工智能。而在电气自动化现有的体系与模式当中,同样也正是利用这些人工智能技术原理来提高生产效率,为企业创造更大的市场经济效益。在电气设备控制系统的相关应用上,人工智能技术取得了卓越的进展。以电气设备系统的结构设计为例,现阶段在电路、电磁、电机电气等方面均能看到使用人工智能技术的实例,同时,由于数字技术等尖端产业在21世纪已经步入了创新发展的崭新时代,电气产品及其相关的应用已经从传统的工厂设计转向成为更多的计算机辅助设计,使得新产品与新系统的创造周期与生产周期相较于以前有了显著的缩短,在此前提下加入人工智能技术,系统设计的质量以及速度都将会得到大幅度的提升。另一方面,电力系统中分布着大量的自动控制和手动控制装置,如继电气、断路器、隔离开关等,这些相对简单的局部控制的协同作用构成整个电力系统复杂的实时控制,电力系统的保护实时控制有离散和连续两种控制类型,由于人工智能技术具有清晰的逻辑思维和快速的处理能力,因此同样将成为未来电气工程自动化技术重要的发展方向。
2 现阶段电气自动化人工智能技术应用情况
2.1 利用人工智能技术对电气设备进行故障诊断与排查
由于21世纪高新科技的迅速发展,新工艺和新设备将会在电气工程企业的运行过程中拥有更为广泛的应用,但随之而来的同样也是企业所面对的各种技术难题。新型设备往往也会拥有更为前进的技术,但其故障的检修往往也会更为复杂,这就对相应的检修员工的专业技术提出了更为过硬的技术要求,同时,由于电气设备出现故障具有很大的不确定性和非线性可能,相应的故障诊断与排查也将会更为艰难。通过利用人工智能技术可以很好解决这一问题,对于电气设备故障的诊断与排查,可以利用人工智能技术进行仿真系统的模糊逻辑诊断,例如在排查发电机组或电动机组故障时,通过利用人工智能技术中的仿真系统,将通用机型的发电机组构造、工作原理、检修工艺、检修标准化作业指导书,以及区域检修公司完成的机组检修参数、存在问题、解决办法、检修效果等数据(文档)等录入智能系统,进行模糊逻辑诊断,结合相应的实际应用经验,将会实现对于电机故障的全面排查,也会大大提高了检修故障的精确程度。
2.2 利用人工智能技术对电气设备进行优化设计
电气设备的优化设计及相关的工作实际是一项极其复杂和繁琐的工作,传统的设备设计都是采用简单的实验加上实际操作经验的传统手工方式进行的,所以这就很难获得最合理的方案。伴随着21实际计算机科学技术的发展,电气设备的设计已经渐渐从传统的手工设计向计算机辅助设计方面转型,通过人工智能技术的引进,使得传统的计算机及辅助设计有了新的转变,可以将大量复杂的的计算过程和模拟过程通过计算机软件进行完成,从而极大地提高了设计的效率和设计的精确度,这需要工作人员根据实际情况和应用需求对相关人工智能软件进行科学化的筛选,但同时也需要对人工智能软件技术的常用方法具有广泛的了解和实践能力。
2.3 利用人工智能技术进行设备的实时检测
在电气自动化的工程中,也可以利用人工智能技术对于骨干设备和子系统的运行状态进行智能实时监测,通过模拟虚拟画面,真是再现设备和子系统的运行状态,同时,通过录入相应的模拟量,人工智能技术也可实现相应的数据采集和处理,开关量模拟实时数据,电流电压全程模拟,电流自动断电保护等复杂功能。同时,实时监测也会加强相关企业的安全程度,通过在线分析连接报警器可以及时预报相应的突然性灾害,保证相关安全问题的有效落实。
3 不同领域中电气自动化人工智能技术的进一步完善
3.1 建立电气工程自动化的系统架构,合理设置智能化管理监测模块
在对电气工程自动化相关智能化应用进行使用与架构时,应当充分了解使用人工智能相应的实际特点,避免因不熟悉造成相关安全事故的发生。同时,建立电气工程自动化的系统架构对于使用电气自动化人工智能技术的相关企业也是不可或缺的,这将使得企业能够进一步避免潜在的不安全因素发生。同时,在智能化电气自动化系统的架构过程中,还应对部分系统重点采取设置智能化管理监测模块的方式,并制定相应的管理策略,达到提升资源利用率的有效目的。
3.2 选用优质的自动化设备,确保相关应用的合理控制
电气工程自动化人工智能技术应用的相关基础多为电气工程自动化的相关基础设备,因此,工程自动化设备选用的质量高低将会直接决定了整个人工智能的科学性和效率等等。相关的设备采购人员应保障自动化设备的高效选取,确保相关应用的合理控制,保障相关应用质量的有效落实。
4 结束语
随着电气自动化领域的不断发展,电气自动化中的人工智能技术作为电气工程中不可或缺的重要工具,对21世纪未来的发展方向已然提出了崭新的要求。企业应当立足于人工智能技术的应用现状,要求相关员工熟练掌握人工智能技术的的相关理论,并对人工智能技术在电气自动化各种具体的应用方式进行了详细的探讨与拓展,以期望将电气自动化的人工智能技术在不同领域进一步地发展,为当今的社会市场经济创造更好的经济效益。
参考文献:
[1]刘大卫.人工智能技术在电气自动化控制中的应用[J].电气工程及相关理论,2013(20).
人工智能技术的本质范文3
社会的快速进步和人们对生活质量的要求不断提高,都对智能化水平产生了迫切需要,从而节省宝贵的时间,提高生产力,也极大的方便了人们的生活,提高舒适度和生活质量。电气工程自动化的领域中若想进行改革,就需要人工智能的广泛参与,在此过程中,人工智能在电气工程自动化控制方面的优势也得到了极大的发挥,不仅促进了自动化的发展和创新,也推进了人工智能理论在自动化控制领域中的应用,并大量解决了以往的传统技术难以解决的问题。本文中所提到的人工智能主要包括一下三个方面,即思维能力、行为能力、感知能力,人工智能主要是由人们创造出来的机器、设备等传递出的智能化技术,为人们提供便捷服务、帮助计算机做辅助工作、为企业的电气设备做自动漏洞修复等,充分体现了电气工程自动化的优点和特征。
1人工智能概述
人工智能的概念早在1956年就以问世,并随着经济和科技的快速发展得到越来越多的关注和重视,形成了以计算机为主题,以自动化技术、控制论、信息论、生物学科、仿生学科、心理学科、语言学科、数理逻辑学科、哲学论、医学等为主要内容的综合性技术,以方便人们的生活和设备的生产力为主要目的。在人工智能领域中,其技术可以使研制的机器设备拥有与人类的大脑智力和思考过程相近或一部分规定的技能的系统,从而帮助人们去完成一些辅助工作,方便人们的生活,提高整体生产力。人工智能是主要用于开发和研究如何更好的延伸和模仿人类的智能的理论。作为计算机科学技术的新兴起的一个分支,人工智能技术更好的诠释了智能的本质,并在此基础上研究生产出一类具有部分或相近的人们的智能的机器或设备,现已研究出的领域较多并已开始广泛应用,其中主要包括:图像识别、语言识别、机器人、专家系统、自然语言处理分析等多种系统。电气工程自动化技术领域涉及面较宽,主要研究的是自动控制技术、系统运行技术、信息处理技术、电子技术、研制开发技术、信息处理技术、计算机与电子应用技术等。随着我国在自动化领域研究课题的不断增加和发展,人工智能技术已开始应用在人们生活中的方方面面。
2人工智能技术应用于电气工程的优点
人工智能技术较传统技术更不容易受到其他因素的影响。在电气工程中,传统的控制器在运行中非常容易受到不利因素的影响,而人工智能技术由于具有一定的智能,从而具有一定的自身调整能力,并具有自身修复和抗压能力,因此受其他因素的总体影响较小。人工智能技术具有操作简便,效率较高。近年来的研究显示,电气工程自动化中的人工智能技术的应用主要有三种方法,即模糊控制、神经网络控制、家电系统控制。这三种技术的应用使设备能够自动对开关量、模拟量等数据进行收集,并快速进行相应的处理,并将数据进行存档。另外,人工智能技术可以使设备具有良好的界面显示功能,并帮助使用者完整的了解电气设备的整体运行状态,同时,也使设备带有了自动报警功能,提示工作人员进行处理,而不需要时刻进行检测,节省了人力物力。
3电气工程自动化中人工智能的运用
人工智能是利用计算机技术去完成以往只能由人们去完成的技术,可以说是对以往仍能够操作的颠覆。人工智能随着应用的广泛已家喻户晓,不再陌生,也经常出现在寻常百姓家,其工作的原理也较为简单,主要是通过对人的智能和思考规律进行摸索总结,找到关键点,再对设备或机器安装程序,使其具有与人类相同的感知能力、思维能力以及行为能力,进而达到模仿甚至代替人类进行工作或操作某项活动的目的。随着电气工程自动化的快速发展,计算机在电气工程领域的应用越来越广泛,人工智能作为新兴的技术也开始投入到电气控制领域,在电气工程中帮助人类进行信息的采集、数据的处理以及信息的反馈等功能,实现电气工程领域中某些设备的自动化生产,另外,由于投入了人工智能设备,使人们可以根据需要来随时调整和控制其运行的程序参数,达到低成本、低人力投入的成本最小化初衷,并实现提高生产力,获得最高的经济效益的目标。目前,我国的电气工程自动化的许多环节中都应用了人工智能技术,并得到了良好成效。本文主要对人工智能在电气设备的控制、故障诊断两大方面具体描述人工智能在电气工程自动化中的运用。在电气工程自动化中,为了充分实现信息的传递、交换、数据处理和提高生产力,就需要使用人工智能来进行设备控制,从而降低人力、物力和财力的投入,增强设备的运行质量以及工作效率。例如:食品公司的一体化生产流水线,它从食品的材料压制磨碎,到食品的烘焙和制作,以及成品的分块、包装等,都充分利用计算机编程软件,使设备达到自动化运行的目的,在此过程中,设备可以根据固定的参数和定值对食品材料进行选择和城中,减少了人为失误,提高了生产效率。由此可见,人工智能在电气设备的控制中具有良好的应用前景。
4结束语
人工智能技术的本质范文4
关键词:电气工程;智能化技术;理论基础;技术优势;应用
中图分类号:F40 文献标识码:A
智能化技术是计算机技术与人工智能理论的完美融合,是最近才兴起的一个高新技术领域。但是从出现到发展的短短数年间,智能化技术就受到了普遍的关注和广泛的应用,其未来前景不可限量。
1 人工智能理论
人工智能,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,是计算机科学的一个分支。通过人工智能本质方向的了解,生产出了一个与人类大脑做出雷同反应的智能化机器,这个主要包含语言识别、自然语言处理、机器人、专家系统和图像识别等。“人工智能”一词是在1956年Dartmouth学会上提出的,人工智能发展迅速,成为以计算机主流,涉及信息论、控制论、自动化、生物学、心理学、语言学、医学和哲学等多版学科。对于其主要的目的就是通过使用机器设备能够达到智能效果,依赖机器来完成复杂性的工作。智能化的电气自动控制系统主要就是为了加强整个劳动分配过程,实现了计算机智能化,这样一来大大的减少了人为劳动过程,加强了工作效率,譬如:铝电解生产中的模糊自适应控制技术,就是大量使用了人工智能技术。在我们国家主要是通过廉价输出的劳动力来得出的经济数值,但是远远没有达到其他较发达的国家经济水平。在我们电气自动化控制中加强人工化智能的使用,研制出一个能类似于人类判断系统、处理功能的控制系统,加强我们生产的能力,推动我们国家的经济发展。
2 人工智能的优点
针对不同的人工智能控制,需要使用不同的方法进行讨论。但是一些人工智能控制器,例如:模糊神经、模糊、遗传算法和神经都是一种类非线形的函数近似器。采取这种的分类有利于对总体的了解,同时会促进对控制策略的综合性开发。上述的人工智能函数近似器具有常规的函数估计器所不具备的优势。首先,在很多情况中,精确的掌握控制对象的动态方程是很复杂的,因此控制器在设计实际控制对象的模型时,往往会产生很多不确定的因素,例如:非线性时、参数变化等,这新信息通常无法掌握。而人工智能控制器在设计的时候可以不需要控制对象的模型。依据下降时间、鲁棒性和响应时间的不同,人工智能控制器通过适当的调整可以提高自身的性能。例如:在下降时间方面,模糊逻辑控制器比最优秀的PID控制器要快4倍。在上升时间方面,模糊逻辑控制器比最优秀的PID控制器要快2倍。与古典控制器相比,人工智能控制器具有更容易调节的特征。即使缺乏专家的现场指导,人工智能控制器也能够使用响应数据来进行设计。还可以通过相应信息、运用语言等方式来进行设计。人工智能控制器具有很强的一致性,输入陌生的数据就能够产生很高的估计,可以忽略驱动器对它产生的影响。对于某些控制对象来说,虽然暂时没有采用人工智能控制器也可以产生良好的效果,但是对其他的控制对象来说,不一定会产生相似的良好效果,因此在设计上必须坚持具体问题具体分析的原则。在反模糊化和模糊化的过程之中,如果采用规则库、隶属函数和适应模糊神经控制器,能够精确的进行实时确定。在实现这个成果的众多方法之中,只有通过系统技术的使用才能得到稳定的解,配合简单的拓扑的结构配置,能够实现迅速的自学习和快速收敛。
3 智能化技术在电气自动化控制中的应用
研究结果表明:智能控制、优化设计以及故障诊断的合理使用是实现电气工程自动化控制的前提条件。
3.1 智能控制
电气自动化的控制工作中加入智能化技术可实现电气工程控制的无人操作化、高效化、远程化以及自主化,给智能化控制创造了良好的发展空间,智能化控制在电气自动化技术中的广泛应用更加验证了智能化技术的优越性,并使智能化技术在其他领域的发展打下了良好的基础。
3.2 优化设计
在电气工程自动化控制过程中,经常会涉及到电气设备的设计,而设计的过程又相当的繁琐,它不仅要求设计人员对磁力、电气、电路等学科的知识要有足够的认识并能恰当的运用到设计工作中,而且它对设计人员的工作经验也有比较高的要求。传统的设计方式是利用实验与经验相结合的手工设计来完成的,因此方案的达标率低,修改的难度较大;而现在的方案设计是利用CAD技术以及计算机辅助软件来完成的,不仅减少了设计所需的时间,而且设计出来的方案无论是质量还是使用性能都相对较好。遗传算法是优化设计的过程中智能化技术应用的具体形式之一,它具有非常强的实用性和先进性,它的使用在一定程度上对设计进行了优化。
3.3 故障诊断
电气工程系统的运行过程中,电气设备发生故障的情况不可避免,而在故障发生前必定会有一系列与故障本身存在一定联系的征兆出现,利用智能化技术,就可以对其进行全面、准确的诊断。由于变压器在电气设备中具有十分重要的作用,因此电气设备监测人员对它的运行状况格外的重视,经常对其进行不定时的检测、维修,不过这样做也不能完全避免电气故障的出现,为了及时地将故障诊断出来,把电气故障造成的损失降到最低,智能化技术无疑是最佳的选择。在运用智能化技术对变压器的故障进行诊断的过程中,最主要的诊断方式就是通过对变压器中渗漏油的分解气体进行分析,快速找到变压器发生故障的大致范围,然后再把范围逐步缩小找出发生故障的具置并对其进行检修。这样做不仅加快了对故障的诊断以及检修速度,而且它还避免了故障对电气设备造成损害的情况出现,使得电气设备的运行经济效益在某种程度上得以提升。
结语
随着科技的不断进步,人工智能技术的发展越来越迅速,在人工智能技术的应用下,各种施工变的更加的智能化。而机械企业在电气自动化不断成熟的今天,引进人工智能技术更是对生产起到了良好的促进作用,促进企业的更好更快的发展。
参考文献
[1]耿英会.智能化技术在电气工程自动化控制中的应用[J].科技创新导报,2012(2):66~66.
人工智能技术的本质范文5
【关键词】电气工程自动化智能化技术
中图分类号:F407.6 文献标识码:A 文章编号:
近年来,随着我国建筑工程的不断增多,建筑施工技术也不断进步。越来越多的技术在电气工程中应用开来,这也充分天线了现代科学技术的发展。在建筑工程中,较为重要的一个施工项目是电气工程,建筑电气工程主要包括建筑施工工程中与电气有关的设备、装置等的施工工程。建筑电气工程影响着建筑的投放使用,目前,在建筑电气工程中,智能化技术开始应用。智能化技术是综合了精密传感技术、计算机技术以及 GPS 定位技术的一种新兴技术。在建筑电气工程中应用智能化技术,可以有效地减少人工操作量,提高操作速度以及操作精准度,提高工程的可靠程度,并且能够降低成本,方便工程完成后的检修维护工作。
随着人们对生活水平的要求不断提高,建筑物中,尤其是居民建筑物中,对建筑电气工程的要求越来越高,新技术在电气工程的应用越来越广泛,对电气工程的质量要求也越来越高。建筑电气工程的主要施工工序主要包括:安装成套配电柜及其控制装置,安装电缆桥架及架上电缆,安装电线杆上电气设备以及架空线路,安装变压器,安装动力装置以及照明配电装置,安装柴油发电机组,安装不间断电源,安装低压电动机、电动执行机构以及电加热器并进行接线,试运行低压电气动力设备,安装开关插座等,安装接地装置,安装母线(包括封闭母线、裸母线以及插接式母线等),铺设电缆线路并制造电缆头,铺设导管、穿管及线槽,对钢索、槽板进行配线,测试线路等的绝缘性,安装灯具及其他照明装置,试运行所有照明装置,铺设避雷设施,连接等位点以及安装接闪器,建筑电气工程的验收等。
作为新兴的计算机科学的重要领域之一,人工智能理论的研究与延伸,对人工智能技术的本质进行了解释,基于此生产出的与人类智能类似的智能机器即为人工智能技术。该领域研究的对象主要包括:语音识别、图像识别、专家系统、机器人及自然语言处理等。对于电力系统而言,电气工程方面主要包含自动控制、信息处理、系统运行、研制开发、电子电气技术及计算机与电子应用等方面。人工智能技术在电气工程自动化中的实际应用中,还存在一些问题,要对这些问题进行分析和解决,才能促进我国电气工程自动化的发展。
人工智能概念在1956年的时候首次提出后,其发展的状态一直良好,并且逐渐形成以计算机为核心,包括哲学、医学、生物学、心理学、自动化、控制论、信息论与数理逻辑的综合性科学,其属于计算机科学中重要的分支,对智能本质有较好的阐述,且生产了与人类的智能机器相仿的机器,实现了多种研究。随着科技的发展与进步,计算机编程技术可模仿人类的大脑,例如分析、收集、回馈、处理以及交换信息,因而,计算机以模仿人类大脑的形式,在一定的程度上促进电气工程的自动化发展的步伐。在日常生产、分配、流通与交换中,均需电气工程的自动化控制,并且通过电气工程自动化的控制,可有效实现自动化电气工程,提高工作的效率,进而促使生产与工作总体的效率有所提升。
对于不同人工智能的控制,需运用不同方式进行探讨,由于部分人工智能的控制器,例如神经、模糊、模糊神经以及遗传算法均属于类非线形函数的近似器;采用此分类有利于了解总体,以及促进对人工智能控制策略综合性的开发,以上人工智能的函数近似器具备常规函数的估计器不具有的优点。
首先,在多数情况下,精确了解控制对象动态方程是相对比较复杂的,所以控制器设计实际的控制对象模型,通常会出现许多不确定因素,例如参数变化与非线性时等,往往无法掌握新的信息。但人工智能的控制器设计,可不需参照控制对象模型。按照鲁棒性、响应时间与下降的时间不一样,人工智能的控制器可经过适当调整以提升自身性能,例如,在下降的时间上,模糊逻辑的控制器可比PID控制器还要快四倍;在上升的时间上,模糊逻辑的控制器可比PID控制器还要快两倍。同古典的控制器比较,人工智能的控制器更具备易调节的特点。尽管缺少专家现场的指引,人工智能的控制器也可以采取响应数据进行设计。
此外,还可由相应的信息以及语言等形式开展设计工作,人工智能的控制器一致性极强,输入陌生数据便可以出现很高的估测,还可忽视驱动器对控制器的影响。针对部分控制对象而言,尽管目前未采取人工智能的控制器,也能有良好效果,不过对其他控制的对象而言,不一定能产生良好的效果,因而,设计时需遵守具体问题应具体分析原则。在模糊化与反模糊化的过程中,若运用隶属函数、规则库以及适合模糊神经的控制器,便可精确进行实时的确定。
采用人工智能技术,可以实现以下控制功能:首先,对数据信息进行采集与处理,实时采集所有的开关量与模拟量,根据要求进行处理与存储。其次,画面显示,系统与设备的运行通过模拟画面真实的反应出来,对电压、电流实时的显示出来,根据模拟量、计算量、隔离开关及断路器等,自动生成趋势图。第三,运行管理。专家系统在操作系统中的运用,实现日志、报表的生成,运行曲线、数据存储等操作。第四,故障录波。实现了模拟量的故障录波、顺序记录、波形捕捉及开关量变位等。第五,操作控制,利用键盘及鼠标对断路器及隔离开关进行控制,实现停机操作,通过设置,对操作人员的权限系统可以进行限制,对值班管理进行加强。第六,在线分析。在线进行参数修改与设定。对不对称的运行进行在线分析及负序量进行计算。第七,运行监控,对模拟量数值及开关量状态实现智能实时监控,通过声光、语音等形式自动报警,对事件的顺序进行记录。
由人工智能的技术不断发展,运用智能化技术控制的领域也逐渐广阔,包含人工智能运用在电气产品的优化设计、控制及保护、故障的预测与诊断等方面。
建筑电气工程的智能化技术应用分析:在建筑电气工程中,智能化技术主要应用于建筑电气工程的自动化控制、建筑电气设备故障预测分析以及建筑电气设备的优化设计等。所以建筑电气工程的智能化技术应用分析主要包括:智能化技术在建筑电气工程自动化控制中的应用;智能化技术在建筑电气工程故障检测分析中的应用以及智能化技术在建筑电气工程电气设备优化设计中的应用等。
智能化技术在建筑电气工程自动化控制中的应用:在建筑电气工程中,需要有自动控制和保护系统,以便在发生一些意外时,可以进行自我控制和保护,防止事故的发生。而这些自动保护以及控制系统中则可以运用智能化技术。首先在计算机控制系统中,应用 GPS 定位功能,对整个建筑电气工程的电气设备、线路以及装置配件等进行定位,并利用传感技术进行将电气工程的施工或者工作状况传输给计算机系统,即进行电气工程施工或运行的数据采集,然后计算机系统利用电机设备、电磁场以及电路等学科知识对所收集到的数据进行综合分析,然后按照设定的系统程序,如果出现了哪种数据,就该进行何种控制措施。这样就可以对建筑电气进行智能自动化控制。
电力系统中,对人工智能技术的应用主要涵盖神经网络、专家系统、启发式搜索及模糊集理论等方面,而专家系统是应用最广泛的一项。专家系统是一个复杂的程序系统,它集合了大量的经验、规则及专业知识,依靠特定领域专家的知识和经验,进行分析和判断,模拟出专家的决策过程,对各种难题进行解决和处理。专家系统主要由知识库、推理机、数据库、知识获取、咨询解释及人机接口等部分构成,常用“If-Then”规则,也就是对 If 条件进行满足的基础上对 Then 之后的操作进行执行。在该系统的使用中,要根据实际情况对系统规则库及知识库不断进行更新,才能适应发展的需要。
结语:
当前,很多行业中都广泛的采用人工智能技术,智能化技术运用于电气工程的自动化中,可发挥巨大的作用,促进电气优化的设计,及时诊断故障,并且还可实现智能控制,不断提升电气工程的效率,更好地服务于社会。
参考文献
[1]娅.智能化技术在电气工程自动化控制中的应用[J].科技致富向导2012(27):217-217
人工智能技术的本质范文6
关键词:智能技术;电力系统;自动化;控制
中图分类号:F407.61 文献标识码:A 文章编号:
1 人工智能定义概述
“人工智能”被认定为一门前沿科学技术是始于上世纪的五十年代的1956年,由Dartmouth学会向科学领域所提出的。但在1936年,它的模糊概念就已经被阿兰.麦席森.图灵(AlanMathison Turing)所提出,所以后世不少人仍然记得这位曾为人工智能科学研究做出巨大贡献的“人工智能之父”。从现代来看,人工智能是一项综合学科,研究的是各类机械器具、相关操作系统程序、设备模拟作业、以及研究完善现有人工智能技术的一项综合学科技术。而向计算机技术、自动化控制技术等的研究深入,仅是人工智能体系技术探究的一个分支。也就是说,这些技术的推广与应用能够渗透到当前各组织领域,相互之间也存在着紧密的关联性与互补性。
电气自动化控制系统中渗透了人工智能技术,能够使专业电气工程的功能逐步分解到各自动化板块系统中,进而也就强化了设备运行时的处理能力,实现精准、高效处理,降低人力资源消耗成本。此外,人工智能技术在应用到电气控制系统中时,也能够抑制一些不稳定、不确定的因素发生,也就是当前电气自动化系统应用时所普遍强调的模糊动态控制。也就是说,凭借系统中的特定程序设置及参数设定、变量控制等可显著增强控制系统的应用功能,使电气设备在运营阶段时的操作、自动化控制功能发挥更加高效。如,将人工智能应用于电气自动化中的报表生成及打印环节中,可以极大的提高各类报表的制表计算速度及准确性。
2 智能技术在电力自动化控制系统中的应用研究
电力自动化控制系统中引入智能技术在目前看来其应用前景非常广,并且技术运用成果相对突出,其中本文以几种最为常见的典型技术对其进行了研究。
2.1 模糊理论应用
模糊理论别名也称为集合理论,它主要利用语言变量和推理逻辑理论作为电力智能设施的实践基础。此外,运用模糊理论的电力自动化控制系统,能够具备体系完整的推理逻辑性,以及能够模拟人为决策等形式的模糊推理过程。而决定这一推理、逻辑过程的是其技术的数据规则控制。也就是说,应用模糊理论可以直观对模糊输入量进行推理,进而按照其程序的控制原则实现应有的模糊控制输出,而具体的输出成果则是模糊化、推理过程、推理判决。所以,电力自动化控制系统中如果通过模糊理论下的模糊量输出,能够将语言变量进行充分表达,进而实现类似于人的逻辑性能。此外,其鲁棒性也很强,能够使控制系统具备一定的自学、容错能力,即使系统内部出现因网络拓扑或者环境变量改变而引起的系统问题,凭借模糊理论的应用成果,也能够及时寻求出最为合理的解决途径。
2.2 专家系统应用
智能技术体系中的专家系统应用范畴较为广阔,尤其是应用在电力系统自动化中所体现的成果也相当强大。如电力系统的预警状态辨识、系统紧急处理、系统控制性能恢复、系统状态切换、故障点排查及隔离、系统短期负荷提示、以及电压无功控制等方面都会存在智能技术中专家系统的影子。由此可见,专家系统在电力自动化控制系统中的广泛程度非常明显,并在各方面的应用实践取得了一定成果。但值得指出的是,专家系统同样具备约束性。如难以模仿电力专家的创造性;仅采用了浅层知识而缺乏功能理解的深层适应;缺乏有效的学习机构,对情况的处理解决能力非常有限,知识库的验证困难;对复杂的问题缺少好的分析和组织工具等。因此,在开发专家系统方面应注意专家系统的效益分析方法问题,专家系统软件的应用成果及试验性能问题,知识获取问题,专家系统与其他常规工具或系统相结合的协调等问题。
2.3 神经网络的应用
神经网络是人工智能技术体系中的一部分,通过近七十年来的不懈努力与致力钻研,其在模型构造、模型计算及算法等相关方面着实取得了不小研究成果。而神经网络技术自兴起直至被人们接受与高度重视以来,之所以取得不少成就必然与人为的努力研究有直接关系,同时还与其理论的实践性强大有重要关系。即其本质具备非线性特性、系统能力及鲁棒性体现明显、以及自发学习能力功能等非常显著等,都决定了其理论与实践技术应用的开拓程度。当然,其具体作用形式是以大量信息为准;主要通过神经网络将大批量、大规模的信息隐含在连接权值上,并结合与之配套的算法去调节权值,进而能够将神经网络实现一种复杂非线性映射,即神经网络由m维的空间向n维空间的复杂非线性映射,进而更加利于神经网路模型的深入研究。
2.4 综合智能系统应用
综合智能控制系统主要指智能控制性能的综合体现,即集结了现代智能控制技术方法、以及不同智能控制方法的融合和交叉,是种具备综合性能的智能系统。而这种综合性能系统对电力自动化控制系统而言,无疑更具发展潜力与增值空间。也就是说,当前电力市场中具备很多的神经网络和专家系统相结合的系统产物;同理,包括专家系统和模糊理论结合、神经网络和模糊理论相结合等的综合产物。此外,综合性能系统也是根据主要智能技术的性能效果去加以区分、谋划而生成的一种智能技术。如,神经网络的使用范畴往往针对于非结构化知识,但模糊理论则更加适用于一些结构化信息的处理。因此,这两种技术的融合正好能够形成技能互补、低高层计算的逻辑处理等,进而使以低层计算方法为主的神经网络能够与以具备高度推理逻辑的模糊逻辑实现有机结合与协调,为神经网络系统下的大量信息、数据处理的解释和处理提供了有利实施基础。
2.5 线性最优控制
线性最优控制是目前诸多现代控制理论中应用最多,最成熟的一个分支。相关学术界人士曾提出了利用最优励磁控制手段提高远距离输电线路输电能力和改善动态品质的问题,取得了一系列重要的研究成果。该研究指出了在大型机组方面应直接利用最优励磁控制方式代替古典励磁方式。电力系统线性最优控制器目前已在电力生产中获得了广泛的应用,发挥着重要的作用,尤其是局部线性模型的设计及分析,效果比较理想。
结语:
总体而言,目前国内大量电气自动化设备的运行系统已经广泛应用到了人工智能先进技术,最基本的系统控制方法也主要以模糊控制、专家系统、神经网络控制等的应用为主,进而有效推动了电力系统自动化发展的历史进程,并且随着未来产业技术的不断革新,它们的技术关系在未来也势必会加紧密,故而为智能技术应用在电力系统自动化中提供了有利保障,使相关技术应用范畴会更加广泛。
参考文献
[1] 张梓奇,苏健祥. 人工智能技术在电力系统中的应用探讨[J]. 科技资讯, 2007,(21) .
[2] 毕轶慧,尹琳娟. 人工智能在电力系统无功优化中的应用探讨[J]. 中国科技信息, 2008,(20) .
[3] 王艳. 浅谈人工智能在电气自动化控制中应用[J]. 科技致富向导, 2010,(26) .