常用的人工智能技术范例6篇

前言:中文期刊网精心挑选了常用的人工智能技术范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

常用的人工智能技术

常用的人工智能技术范文1

论文关键词:人工智能技术,电气自动化,自动化控制,策略

智能化技术是技术领域的一种革新,使得各个行业都实现了全面发展。在电气自动化控制中应用人工智能技术,可以使得电气设备的系统运行更加简单智能,对系统可以进行优化处理。与此同时,人工智能技术的应用也为电气自动化控制提供了技术保障和安全保障,减少了各种电气设备操作对人员带来的伤害,在节省人力和物力的基础上提高了工作质量。在电气行业的发展过程中,自动化发展就必须要利用人工智能技术。

1 人工智能技术概述

1.1 人工智能技术的定义

人工智能技术指的是借助计算机技术对人脑进行模拟,并且发出类似人类的行为指令,从而对各种操作进行完成的过程。人工技能技术是多个领域的研究结果的融合,比如传统的数学和计算机,同时还结合了人文学科、自然和社会学科的知识,在很多领域中都有十分广泛的应用。计算机技术可以实现对人脑的有效模拟,因此使得工作的效率更高,系统的运行更加灵活也更加稳定,能够增强各种设备的自动化处理水平。

1.2 人工智能技术在电气自动化应用中的功能

第一,实现数据的采集和处理。人工智能技术在电气自动化控制中进行应用的时候,可以实现对设备中的一些数据进行采集,根据功能的不断完善,还能对一些数据进行存储。

第二,监视运行系统,并及时发出报警。人工智能技术可以对电气设备在使用过程中出现的一些问题进行有效地监控,而且还能对电气系统进行有效地模拟,对设备的开关量进行监视,防止出现异常情况,一旦出现了异常情况,要自动启动报警装置,同时还能对一些电气设备进行切断,从而使得电气设备处于安全状态。

第三,对电气设备的操作进行控制。电气自动化过程中,人工智能技术的应用,可以使得电气设备的操作过程变得更加简单,通过鼠标和键盘可以实现对断路器和电动隔离开关的控制,还可以对励磁电流进行调整。通过这种技术的应用,就可以极大地减少工作人员的工作量,降低劳动强度。

2 人工智能技术在电气自动化过程中的应用

2.1 在电气设备中的应用

电气设备的设计要符合自动化操作的要求,在进行设计的过程中,也应该要加强对人工智能技术的应用。由于电气设备的系统比较复杂,包含了很多方面的知识和技能,因此在进行设计的时候,有的系统设计也可以借助人工智能技术来完成,比如可以通过计算机设置一些算法,对电气设备系统设计中的一些参数进行计算,从而便于电气设备控制系统的设计,极大程度地提高设备的工作速率与质量。

2.2 在电气控制工作中的应用

在电气领域内,对电气设备进行控制是一个十分重要的部分,自动化设备是当前电气行业的主要发展方向,在设备的控制上,也要逐渐实现智能化,可以极大程度增强工作效率,缩减资金成本,并且降低从业者的劳动强度。比如人工智能技术中的模糊控制、神经网络控制、专家系统等,都是比较先进的控制技术,可以实现对各种设备的有效控制,韩剧热的反思而且控制的效果很好,产生的误差较小。比如在模糊控制中,较为常用的模糊控制方法有Sugeno与Mamdani两种技术,后者主要是应用在对设备的速度调节的控制上,模糊控制的方法能够以一种更高的效率来处理交流传动控制的相关问题,从而使得电气设备的工作质量和工作效率有很大的提升。

2.3 在电气设备的日常操作过程中的应用

电气行业与民众的日常生活与工作都存在紧密的关联,各种电网十分复杂、电气设备繁多,日常的控制工作也十分繁琐。传统的日常操作比较复杂,而且也会增加电气系统控制的时间,降低控制效率。对此,要积极加强对人工智能技术的应用,在日常工作过程中,可以通过人工智能技术设置一些基本的控制算法,应用在日常系统操作期间,能够将复杂的操作流程变得简洁,而且仅仅需要电脑就可以实现对各种操作的控制,最重要的是,通过人工智能技术的深化,还能实现远程控制,可以将操作界面进行简化,及时处理并保存相关重要数据,为将来的查找与应用提供方便。在日常操作过程中,对于很多数据都要进行记录,比如电气设备的损耗情况、电量等,如果采用人工记录,则会有巨大的工作量,还容易出错,但是应用人工智能技术编制相应的表格和数据采集系统,则可以实现对数据的采集和有效保存,降低了工作强度,同时提高了工作效率。

2.4 在故障诊断过程中的应用

在电气运行过程中,无论是客观因素还是其他的主观因素,都会造成电气设备的故障以及事故,如果对于这些故障没有及时进行处理,找不到相应的原因,则很有可能造成更严重的危害,会有较大的经济损失。电气自动化过程中,对设备的使用性能、故障等方面的诊断也要逐渐实现自动化,而人工智能技术的应用,将使得故障诊断过程变得更加简单。神经网络、模糊理论及专家系统是人工智能技术在电气诊断过程中应用的三种方式,这三种方法在故障的诊断以及事故的发生过程中发挥了十分重要的作用。借助智能技术,将神经网路、模糊理论等系统的结合在一起,就能够处理电气故障检测耗费时间长、等待结果时间长等问题,可以对各种故障进行精准的判断,并且为后续的故障处理提供更多充足的时间和依据。

2.5 在简化自控流程中的应用

电气领域的自动化控制是一个十分复杂的过程,对于各个步骤的要求都比较严格,一旦某个环节出现了纰漏,则会造成严重的后果,引发较大的经济损失。人工智能技术的应用可以对各种设备使用情况、故障情况等进行分析,进而设计出合理的故障处理方法,尽可能确保电气自控工作的质量。而且这种技术的应用,还可以实现远程维修,简化了过程。

3 结语

综上所述,人工智能技术在电气自动化过程中的应用包括多方面内容,比如电气设备的操作、故障的诊断、自动控制流程的简化等,都可以借助人工智能技术,使得各个过程变得简单、快捷,促进电气设备的自动化水平不断提升。

【参考文献】

[1]胡燕来.浅谈电气自动化控制中的人智能技术[J].建筑·建材·装饰,2015(03).

常用的人工智能技术范文2

关键词:人工智能;电气工程;自动化

引言

我国电力行业发展迅速,为人们的生产生活提供了便利,随着人们生活水平的不断提升,人们对于电气工程自动化的要求也越来越高。在电气工程自动化中引入人工智能技术,由机器人代替人工完成电气工程操作工作,能够实现智能控制,不仅节省了人力,也有效减少了电气工程运行中产生的误差,其良好的技术优势获得了一致好评。由此,在电气工程自动化中应用智能技术,有效满足了人们对于电力的需求[1]。

1人工智能技术及电气工程自动化含义

1.1人工智能技术

在传统的电力行业中,所有工作都是依靠人力完成。人工智能技术出现后,替代了手工劳动,减少了工作量。人工智能技术借助编程对人类的行为和思维模式进行模仿,使机器拥有人类相同的行为、思维和感知能力,利用机器完成人类的劳动任务。人工智能应用领域较多,如语言学、计算机科学等,其属于思维科学技术,发展中离不开数学的支持,只有将数学与人工智能联系起来,才能够促进人工智能技术的不断发展和进步[2]。

1.2电气工程自动化

电气工程需充分利用电能、电气技术和相关设备改善并维持一些限定空间、环境,主要研究方向是如何转化利用电能。电气工程及自动化技术在很多领域都有应用,如电力电子技术、计算机技术和网络控制技术、信息技术等,综合性较强。电气工程自动化技术常应用在电气设备制造公司或者供电、发电企业中,对人民生活质量和国民经济水平有一定影响[3]。

2电气工程自动化中人工智能技术的优势

2.1误差小

人工智能技术在电气工程运行中的应用,能够促使电气工程控制器抗干扰能力得到有效增强,最大化避免电气工程运行误差的出现,对于与电气工程相关产品的规范性和一致性的提升有一定帮助。人工智能技术在应用过程中,需要将相关的参数和数据一起输入到控制器中,机器就能够实现自动化生产,避免了电气工程运行中许多干扰因素的影响。此外,人工智能技术也能够科学有效地评估电气工程,促使电气工程获得更为长远的发展。

2.2强化控制效果

人工智能技术在电气工程运行中的应用,能够有效提升电气工程的控制效果,保证电气工程能够规范性、一致性地运行。当前,我国电气工程自动化水平相对较低,传统电气工程控制上,需要将电气工程控制对象预先设计好,根据实际情况开展控制策略,虽然取得了一定效果,但是无法准确地控制对象,影响电气工程的运行效果。情况严重时,还会对电气工程的操作水平产生影响。而人工智能技术的应用,能够促使电气工程设备的运行效果得到显著提升[4]。

2.3不会过多受到外界因素限制

传统的电气工程在运行中会因外界因素的变化而产生影响,不仅电气工程的运行质量会受到影响,且会对设备安全造成威胁。基于此,在电气工程中,需要重点应用人工智能技术,借助机械手段完成人工操作难以完成的工作,甚至代替人工工作,电气工程自动化水平就会得到全面提升[5]。在实际应用过程中,可以借助控制器操作电气工程,建立电气工程自动化模型并完成计算工作,确保电气工程能够顺利完工。在传统的电气工程运行中,仍然使用低端的控制器,因数值计算类型与模型的参数出现问题,导致数值计算产生错误,引发电气工程出现多种问题。而人工智能技术在应用后,有效减少了电气工程故障,自动化模型的准确性也有了显著提升,且对模型参数和自动化模型的要求也相应有所降低。

2.4操作流程有所优化

传统的电气工程中,自动化控制器在操作上较难掌握,且要求操作人员具备专业的知识,一旦工作人员出现操作失误,会导致电气工程无法正常运行。而人工智能的应用,能够有效简化操作流程,且不需要操作人员掌握更多的专业知识,只需要按照操作程序和语言完成相关操作即可,能够有效避免工作人员在操作上的失误。

2.5减少了后续维护工作

传统的电气工程运行涉及变压器和线路等多种电气设备,多种设备同时运行会加大工作负担,同时也对后期的维护工作造成不良影响。如果电气设备长时间未得到维护,会导致设备老化,影响正常运行。在维护、保养过程中,需要聘请多名专业人员同时操作,这会直接增加维修维护成本。如果电气工程自动化中加入人工智能技术,就能够有效减少设备的使用数量,后期的维护工作压力也会减小,对于企业提升经济效益、减少成本有一定积极意义[6]。

3电气自动化中人工智能技术的实践应用

3.1人工智能与电气设备的融合

人工智能技术在电气工程中的应用,能够改变传统电气设备的设计和运行方法,满足电气工程的实际需求,代替传统电气设备完成更复杂的程序,全面提升电气设备的稳定性、可靠性,电气维修的成本也会显著降低。电气工程中电气设备与人工智能的结合,能够提升工作效率,降低运行成本,简化操作流程,保证满足人们的各项需求。人工智能技术通过简化电气工程操作界面,利用各项指令指挥电气设备完成工作,工作效率和查询效率得到显著提升。

3.2能够有效排除故障

如果发电机和发动机等电气设备长期处于运行中,会加重设备运行负荷,出现安全隐患。在电气设备运行中,需要根据实际运行情况进行分析,避免安全事故出现。在排除故障问题上,传统方法不仅耗费大量时间,且需要利用变压器油气体进行故障查找,在收集和检验环节耗费大量的人力、物力和财力,检验准确率也相对较低。人工智能的应用,可以借助模糊理论技术和神经网络诊断出电气设备存在的安全问题,并进行自动诊断,能够有效排除各项故障[7]。人工智能技术也能够对设备运行故障问题进行诊断,当前常用的诊断方法主要包括三种,分别为基于案例诊断、基于故障推理和利用故障树模型进行诊断。三种方法可以联合使用,也可以只使用一种。在诊断上,积极开发了人工智能算法,并充分结合数据采集技术和传感技术,设计出了故障诊断系统,能够及时并精准地找到故障点。诊断系统包括故障诊断规则库、故障推理机、故障诊断过程解释机、故障诊断数据库等,相比于传统查找方法,人工智能系统的应用有效缩短了查找时间,降低了维修成本。案例库收集与故障相关的知识和案例,可以直接提取相关参数,参考案例特征对案例进行归纳整理,为系统推理提供参考基础。故障诊断阶段提取故障特征,利用人工智能敏感特征对比方法进行诊断,能够有效发现设备存在的故障,并做出有效的处理[8]。

3.3在产品设备中的实践应用

电气设备的设计工作涉及多种学科和内容,对设计人员的专业水平有较高的要求。为了保证设计的电气产品具有科学性、可靠性特点,需要在设计中积极融合科学设计和知识、经验。人工智能的应用有效解决了以上问题,不仅能够代替人脑解决繁琐的计算工作,也能够模拟程序,有效提升工作效率,缩短设计周期,最终设计出的产品也具备科学性特点,实用性较强。但是,其对设计工作有一定要求,要求设计人员对于智能软件的应用和设计有丰富经验,设计出符合不同需求的产品[9]。

3.4能够实现电气工程的保护功能

利用人工智能技术控制电气工程时,操作人员采取特殊的控制工具能够远程控制电气设备的运行情况,确保电气设备实现停止和复核操作。在人工智能技术的控制上,需要技术操作人员设置好数据,确保数据设置的科学性,从而有效管理电气工程。在设备运行中,操作人员收集并整理好电气工程相关的运行数据,为了保证软压板在运行中不会受到影响,使用时需要修改相关参数。在电气设备运行过程中,人工智能技术能够依据运行日志自动制作成表格和曲线,通过查看曲线和表格,工作人员就能够对设备的运行情况有一定了解,从而高效地管理设备运行状况。人工智能技术也能够实时检测电气设备的运行情况,一旦数据出现异常,能够第一时间作报警处理,并记录好异常的数据。电气工程运行过程中,会有多种故障出现,导致电气工程自动化水平受到影响,也会影响电气工程的正常运转。应用人工智能后,电气工程的整体工作流程能够得到优化,并实时追踪设备的运行情况,保障设备能够实现良好运转。为了能够共享电气设备的运行情况,需要借助人工智能技术构建云平台,监测设备的运行情况,并将相关数据传送到云平台上,管理人员就能够通过云平台对每一台设备进行监控。与传统的人工巡航相比,人工智能技术的实效性更强,能够实现大规模的监控工作,有利于全面提升电气工程的运转效率,提升企业的经济效益。

常用的人工智能技术范文3

的有关内容。

关键词电气;控制;智能;技术;理论;应用;自动化;

中图分类号:F407.6文献标识码:A 文章编号:

引言

人类智能的特殊性在于它拥有感知能力,思维能力和行为能力三种能力,因此发展潜力巨大。而人工智能是指由人类制造出来的“机器”所表现出来的智能。它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式作出反应的智能机器。电气自动化是电气信息领域的一门新兴学科,它主要运用运动控制、工业过程控制、电力电子技术、检测与自动化仪表、电子与计算机技术、信息处理、管理与决策等领域。人工智能技术的运用极大地促进了电气自动化学科特别是自动控制领域的发展,提高了电气设备运行的智能化,增强了控制系统的稳定性,是对生产技术的又一次巨大革新。

一、人工智能应用理论分析

人工智能(Artificial Intelligence),英文缩写为 AI。人工智能也称机器智能,是一门边沿学科,属于自然科学和社会科学的交叉。自从1956 年“人工智能”一词在 Dartmouth 学会上提出以后,人工智能研究得到了飞速发展。二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪(基因工程、纳米科学、人工智能)三大尖端技术之一。人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能是包括十分广泛的科学,它由不同的领域组成,它是哲学,认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论,仿生学等多种学科互相渗透而发展起来的一门综合性学科。主要应用于智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂等。总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。人工智能不是人的智能,更不会超过人的智能。

目前,随着科技的进步和计算机技术的广泛使用,传统的劳动密集型生产也不能满足社会生产的需要,效率更高的技术密集型生产也扮演着越来越重要的角色,目前,劳动密集型产业仍是我国产业经营的主要形式,与西方发达国家相比生产力还比较落后,生产线的自动化水平还比较低,生产效率不高。随着社会经济发展水平的不断提高,劳动密集型产业逐步向技术密集型产业转变已是经济发展的客观要求,生产自动化已成为大势所趋。人工智能应用于电气自动化控制领域,能模拟人脑的机能对信息进行收集、分析、交换、处理、回馈,拥有对生产判断、处理的能力,能大大提高生产效率,实现生产的自动化,调整和优化产业结构。

二、人工智能控制器的优势

不同的人工智能控制通常用完全不同的方法去讨论。 但AI 控制器例如:神经 、模糊 、模糊神经以及遗传算法都可看成一类非线性函数近似器。 这样的分类就能得到较好的总体理解,也有利于控制策略的统一开发。 这些 AI 函数近似器比常规的函数估计器具有更多的优势,这些优势如下。

2.1 它们的设计不需要控制对象的模型 (在许多场合 ,很难得到实际控制对象的精确动态方程, 实际控制对象的模型在控制器设计时往往有很多不确实性因素。 例如:参数变化,非线性时,往往不知道。

2.2 通过适当调整(根据响应时间 、下降时间 、鲁棒性能等)它们能提高性能。 例如: 模糊逻辑控制器的上升时间比最优PID 控制器快 1.5 倍,下降时间快 3.5 倍。

2.3 它们比古典控制器的调节容易。

2.4 在没有必须专家知识时 , 通过响应数据也能设计它们。

2.5 运用语言和响应信息可能设计它们。

2.6 它们有相当好的一致性 (当使用一些新的未知输入数据就能得到好的估计),与驱动器的特性无关。 现在没有使用人工智能的控制算法对特定对象控制效果非常好, 但对其他控制对象效果就不会一致性地好, 因此对具体对象必须具体设计。

三、人工智能的应用

随着人工智能技术的发展。人工智能控制的应用领域也越来越广阔,包括人工智能用于电气产品优化设计、故障预测及诊断、控制与保护等。

3.1优化设计。电气产品的优化设计是一项复杂的工作,集中了理论学科知识和经验知识两方面的内容。在传统的电气产品设计中,主要采用的方法是设计经验结合大量的实验手段验证,缺乏足够的技术支持,工作量庞大,效率低下,难以得到合理最优的设计方案。随着计算机技术的突飞猛进,加上人工智能技术的运用,电器产品的设计从手工逐渐转向计算机辅助设计,极大地减少了产品从构思到设计到生产的时间,设计越来越优质化、高效化、智能化。遗传算法和专家系统是人工智能技术用于优化设计的两种主要的方法。遗传算法的特点是直接对结构对象进行操作,具有内在的隐并行性和更好的全局寻优能力;能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质非常适合于产品优化设计,因此广泛应用于电气产品的人工智能优化设计。专家系统应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题。它也是产品优化设计的一个重要手段,目前仍处于研究阶段,实际运用较少,未来具有很大的发展前景。

3.2故障诊断。电气设备的故障具有非线性、不确定性和复杂性等特点,采用传统的方法诊断效率低、准确率不高。人工智能方法的引进大大提高了故障诊断的准确率。模糊逻辑、专家系统、神经网络是人工智能技术用于故障诊断的方法。例如人工智能故障诊断技术运用于发电机及电动机进行的故障诊断时,将模糊理论与神经网络相结合,不仅保留了故障诊断知识的模糊性,还结合了神经网络学习能力强的优点,共同实现对电机故障的诊断,大大提高了故障诊断的准确率。

3.3智能控制。人工智能控制技术是未来生产发展的一个趋势,在电气自动化上也已经得到了广泛的应用。控制方法主要是专家系统控制、模糊控制、神经网络控制。目前主要应用于以下方面:对所有开关量、模拟量的实时数据进行采集与处理;对各主要设备和系统的运行状态进行实时智能监视;通过键盘或鼠标实现对系统的控制;记录故障并进行在线分析。

四、恒压供水案例分析

恒压供水在工业和民用供水系统中已普遍使用, 由于系统的负荷变化的不确定性, 采用传统的 PID 算法实现压力控制的动态特性指标很难收到理想的效果。 在恒压供水自动化控制系统的设计初期曾采用多种进口的调节器, 系统的动态特性指标总是不稳定,通过实际应用中的对比发现,应用模糊控制理论形成的控制方案在恒压系统中有较好的效果。 在实施过程中选用了 AI 一 808 人工智能调节器作为主控制器,结合 FXIN PLC 逻辑控制功能很好地实现了水厂的全自动化恒压供水。 对于单独采用 PLC 实现压力和逻辑控制方案, 由于PLC 的运算能力不足编写一个完善的模糊控制算法比较困难,而且参数的调整也比较麻烦,所以所提出的方案具有较高的性价比。本案例中只是一个人工智能在电气自动化中的一个小小的应用,也是电气元件生产供给的一个方向,实现机械智能化是我们努力的追求,将人工智能的先进的最新成果应用于电气自动化控制的实践是一个诱人的课题。

结束语

人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能完成的复杂的工作, 电气自动化是研究与电气工程有关的系统运行。 人工智能主要包括感知能力、思维能力和行为能力,人工智能的应用体现在问题求解,逻辑推理与定理证明,自然语言理解,自动程序设计,专家系统,机器人学等方面。 而这诸多方面都体现了一个自动化的特征,表达了一个共同的主题, 即提高机械的人类意识能力, 强化控制自动化。 因此人工智能在电气自动化领域将会大有作为,电气自动化控制也需要人工智能的参与。

参考文献

[1]叶干洲.人工智能技术在电气自动化控制中的应用[J].科技咨询,2010(15).

[2]陈洪峰.国内电气自动化发展状况与趋势[J].科技创新导报,2009.

[3]张培铭,缪希仁等.展望21世纪电器发展方向———人工智能电器[J].电工技术杂志,2006(4).

常用的人工智能技术范文4

关键词:人工智能;教学改革;教学方法

引言

人工智能(ArtificialIntelligence)是一门研究和模拟人类智能的跨领域学科,是模拟、延伸和扩展人的智能的一门新技术。由于信息环境巨变与社会新需求的爆发,人工智能技术的日趋成熟。随着AI3.0时代的到来,大数据、云计算等新技术的应用也愈发广泛,对于管理类人才来说,加强对人工智能知识的深入学习,不断将人工智能技术与管理知识结合起来,对其未来职业生涯的发展有着重要作用。人工智能是一门前沿学科,管理学院开设人工智能课程的目的是为了更好地培养学生的技术创新思维与能力,基于其覆盖面广、包容性强、应用需求空间巨大的学科特点,通过概率统计、数据结构、计算机编程语言、数据库原理等基础课程的学习,加强学生解决实际问题的能力,为就业打下基础。本文基于社会对于人工智能领域的人才需求,结合诸多长期从事经管类专业课程教学的老师意见,针对管理类人才的人工智能课程教学内容与方法进行探讨,以期对中国高校人工智能课程教学改革研究提供帮助与借鉴。

1、教学现状与问题

作为一门综合性、实践性和应用性很强的理论技术学科,人工智能课程内容及内涵及其丰富,外延极其广泛。学习这门课程,需要较好的数学基础和较强的逻辑思维能力。针对管理类人才,该课程在课程教学过程中存在几个较为突出的问题。(1)课堂教学氛围枯燥目前,中国大多数大学仍采用传统的课堂教学模式,在教学过程中照本宣科,忽略与学生的互动,并且缺乏能够有效引起学生学习兴趣与加深知识理解的教学环节设置,如此一来大大降低了学生自主思考的能力。在进行人工智能相关课程知识讲解时,随着章节的知识难度不断增加,单向介绍式的枯燥教学方式无法反映人工智能学科的全貌,课堂讲解难以同时给以学生感性和理性的认知,部分学生因乏味的课堂氛围渐渐无法跟上教学进度,导致学习动力不足。(2)基础课程掌握不牢管理类专业的学生大部分都会走向更加具体化的管理岗位,具有多学科的素养,但这也导致很多学生所学知识杂而不精。学生在基础不夯实的情况下去学习更高层面的知识,给学生学习与老师教学都造成了很大困扰。人工智能课程知识点较多,涵盖模式识别、机器学习、数据挖掘等众多内容,概念抽象,不易学习。一些管理类专业的学生未能熟练掌握高等数学、运筹学、数据结构、数据库技术等先修课程,缺乏一定的关联思考和研究意识,导致课程学习难度增加,产生学时不足和教学内容难点过多的问题。(3)教学与实际应用脱节当下,人工智能广泛应用于机器视觉、智能制造等各个领域,给学生提供了大量的现实案例,使得人工智能不再是高深莫测的理论,而是现实中可以触及的内容。例如,在机械学科领域,人工智能技术是电气工程、机械设计制造、车辆工程等方向的重要技术来源;在医疗领域,是医疗器械的创新生产源动力;在能动领域,是高端能源装备与新能源发展的重要驱动;在光电信息与计算机工程领域,技术的发展时刻推动着智能科学与技术核心价值的提升。然而,对于管理类专业的学生来说,现阶段的人工智能教材涵盖许多智能算法及相关理论,在教学过程中常常涉及到很多从未接触过的抽象理论和复杂算法,书本中的应用实例大多纸上谈兵,缺乏专门适用于管理类专业知识与人工智能技术相结合的教学实践,加上一些教师授课方法单一,不利于引导学生将人工智能算法应用于现实生活。另外,大学生对知识的理解能力差异很大,教师采用统一的方式教给他们,这使一些学生无法跟上和理解,教师也无法控制学生的学习状况,导致学生缺乏动力。因此,如何结合学生的现实情况,提高他们的动手能力和实践经验也是人工智能课程教学要考虑的问题。

2、管理类人才的人工智能课程教学改进策略

课程教学改革是一项提高大学教学效果和人才培养质量的重要手段。如何在时代背景下应用新技术和新思想进行实施课程教学改革是高校亟待解决的问题。对于高校的教学工作而言,教学目标、教学内容和教学方式的变化不再是课程资源的简单数字化和信息化,而是充分利用时代信息资源优势的新型教学模式。针对管理类专业人工智能课程教学过程中存在的问题,可以从教学方法改进和教学内容设置两个方面进行课程教学改进。

2.1教学方法改进

教师对学生具有引领作用,其教学方法的改进能够带动学生改进自身学习方法。(1)启发式案例教学案例教学法就是教师根据教学目标、教学内容以及教学要求,通过安排一些具体的教学案例,引导学生积极参与案例思考、分析、讨论和表达等多项活动,是一种培养学生认知问题、分析和解决问题等综合能力的行之有效的教学方法。启发式案例教学以自主、合作、探究为主要特征,调动学生的学习积极性,并紧密结合人工智能领域的相关理论与方法,有效理解知识要点及其关联性,适用于管理类专业学生的教学。具体而言,高校基于其问题启发性、教学互动性以及实践有用性等特点,可以建立基于人工智能知识体系的教学案例库,虽然这项建设将极具挑战性与耗时性,但具有很强的积极效果:培养学生较强的批判性思维能力,更多地保留课程材料,更积极地参与课堂活动,对提高教学质量、培养具有人工智能背景的管理类人才具有重要意义。例如,通过单一案例教学,让学生掌握相关基础知识原理及应用;通过一题多解的案例使学生思考如何获取最有效的解题方法;通过综合案例的设计,启发学生全方位地探索问题的解决方案。(2)研讨互动式教学研讨互动式的各个教学环节是逐渐递进、有机结合的。研讨是基于学生个体的差异性,在课堂讨论的过程中对学生做出评判,从而对不同类型的学生开展针对性的教学。互动则是在研讨的基础上,通过老师与学生、学生与学生的互动,让学生主动参与到课堂教学的过程中来。在人工智能课程教学过程中,教师通过课堂讨论了解学生对于知识点的掌握情况,可以有针对性地设计教学内容,例如,对于学校积极性不强的学生,将人工智能理论内容与学生个人兴趣范畴、社会产业发展及研究现状联系起来,能够极大程度地提高学生学习的自主能力;对于基础知识较为薄弱的学生,可以在教师的指导下查阅相关文献资料,根据自己的理解撰写心得报告,并在课堂或课外进行师生互动。像这样研讨与互动相结合的模式。有助于增强学生的探索和求知欲望,建立起浓厚的学习氛围。(3)有效激励式教学人工智能是引领未来的战略性技术,人才需求量极大,对教师的教学水平也提出了更高要求,因此,进行有效激励极为重要。在学生激励方面,可以举办各类人工智能竞赛项目,设置相应项目奖学金,吸引学生参与实践,调动学生做研究、发论文的积极性。例如,教育部主办的中国研究生人工智能创新大赛,围绕新一代人工智能创新主题,激发学生的创新意识,提高学生的创新实践能力,为人工智能领域健康发展提供人才支撑。高校也可以借鉴这种模式,在各学院乃至全校开展此类竞赛项目,激发学生的创新能力与团队合作能力,鼓舞更多学生加入到人工智能课程的学习中来,激发其学习兴趣。在教师激励方面,在教师聘任和提升过程中把参加学生课程制定、课堂与课外作业、课程项目和论文指导等看作教学任务的一部分,鼓励教师积极参与这些活动。(4)学科渗透式教学人工智能学科知识融合程度较高,学科交叉性强。基于人工智能的学科交叉性特点,增强管理类人才对学科应用的领悟,可以采取开展学科渗透式教学的方法。从2015年起,国务院和教育部先后印发了《国务院关于积极推进“互联网+”行动的指导意见教育》、《高等学校人工智能创新行动计划》等文件,“互联网+”、“智能+”已经渗透到各个领域,人类进入数字经济时代,社会需求“技术+管理”的高端复合人才。例如,基于工业4.0和强国战略,人工智能技术在智能制造的应用极为广泛。上海理工大学非常重视少数民族预科班的教育质量。为增强少数民族管理类人才对该领域应用的认识,我们请机械工程、能源动力领域的相关专家以授课或讲座的形式,进行相关领域知识和发展趋势的讲解,使学生理解更为透彻。此外,在教学实践过程中,还可以用举办人工智能知识交流会、线上人工智能论坛等形式,促进不同专业间老师、学生对于人工智能知识模块的见解,相互交流、渗透和学习,从而推动人工智能课程教学的改进。

2.2教学内容设置

世界一流大学在人工智能课程内容设置根据不同国家的教育体系设置,肯定会有不同,但颇有共通之处。本文借鉴世界顶尖大学经验,针对管理类专业人工智能课程教学内容进行研究,结合中国教育体系设置,认为应从以下几方面进行改进。(1)核心内容设置为避免学生因为知识点过多而出现杂而不精的问题,势必要精化教学内容。在互联网时代,我们可以使用云计算和其他方式来实现数据信息的传输、存储和处理,通过在线收集和整合网络课程相关数据,挖掘和丰富教学资源,并在整合课程资源的基础上,进行研究方法和前沿知识的扩展。在核心内容设置方面,可以通过收集到的数据资料,选择人工智能领域具有代表性且难易程度适中的知识作为重点,使学生能够在有限的学时内掌握人工智能的知识脉络。例如,编写针对管理类人才的人工智能教材,内容涉及绪论、知识表示与推理、常用算法、机器学习、神经网络等方面的同时,重点增加相应知识点在管理上的应用案例,加强学生对知识点的理解。同时,根据管理类专业偏向领域,开设关联程度较大、应用较广泛的人工智能选修课程,以便学生根据自己的兴趣与需求选修具体方向的课程。(2)注重学生的数理及编程基础良好的数理及编程基础是学习人工智能的前提。只有具备了这些基础,才能搞清楚人工智能模型的数量关系、空间形式和优化过程等,才能将数学语言转化为程序语言,并应用于实验。管理学院人才的数理及编程基础相对薄弱,因此,在安排学生学习人工智能课程之前,建议开设面向全体管理类专业学生的微积分、线性代数、概率论等专业基础数学课程以及C语言、python等编程基础课程,使学生具备数学分析的基础与一定编程基础,为学习人工智能课程打下坚实的基础。另外,可以推进MOOC平台建设,在平台上开设人工智能网络课程,帮助学生掌握人工智能知识基础及专业技能。(3)实验建设为了加强学生对于人工智能知识点间的关联性理解,可以基于不同的应用模块,设计具有前后铺垫、上下关联的综合性实验,设计不同层次的项目要求,同时基于相同的实验课题,让学生分组对实验课题进行攻克,并设置多元化的实验评价体系,通过实验教学过程中反映出的不同进度,让教师能对学生的学习水平做出准确评判,及时进行教学反思,以便更好地开展下一步工作。例如,针对人工智能课程应用中很广的遗传算法,在某一管理规划的具体应用上设置理解-实现-参数分析-具体应用-尝试改进-深度拓展的不同层次的项目要求,在这些项目层次中规定必做项与可选项,让学生基于同一实验课题进行合作学习,然后通过个人自我评价、小组成员互相评价以及教师评价的方式进行打分,对小组整体能力以及个人能力进行综合评估,以期培养学生的自主思考能力。

常用的人工智能技术范文5

关键词:电力系统;人工智能;模糊控制;神经网络

引言

伴随着社会的不断进步,用户对电能的要求也在不断提高:安全、可靠、优质、环保。电力系统在实际工作中也确实存在一些技术难题:首先,电力系统是一种复杂大系统,系统参数包含着诸多的不确定因素,并且具有很强的非线性;其次,电力系统应当具有较强的鲁棒性能,以克服系统中的扰动,而且系统对多目标寻优的控制方法要求也较高;最后,复杂系统是由多个子系统相互影响、关联组成,电力系统需要将多个局部的控制系统相互连接,综合控制。因此,这一系列尖端的技术难题需要应用更为先进的自动化控制技术即智能控制技术。

1智能控制技术

控制理论的不断发展,为人类带来了更加先进的自动化技术,使得人们设计的控制系统稳定、可靠、智能、高效。典型的智能控制技术包括:模糊控制、人工神经网络、专家系统、遗传算法等。

1.1模糊控制。模糊控制是基于模糊数学理论的一种控制方法。传统的控制理论能够解决模型明朗、确定的系统的控制问题。但当面对类似于电力系统的复杂、模型不确定、因素多的大系统传统的控制方法就无法高效地解决控制问题。为了克服上述问题,科研人员提出了用模糊数学的理论来解决一些复杂系统的控制问题。模糊控制是一种非线性的控制理论。它采用的是理论与实际相结合的方法解决实际的问题。一般模糊控制技术包含如下几个部分:定义变量、模糊化、知识库、逻辑判断及反模糊化。而其中的逻辑判断部分运用模糊逻辑、模糊推论方法进行分析,得到最优的模糊控制输出。

1.2人工神经网络。人工神经网络(ArtificialNeuralNetworks,简写为ANNs)也简称为神经网络(NNs),此类数学模型模仿动物神经网络的组成,进行分布式信息处理。通过调整系统内部的各个节点之间的联系,最终达到控制系统的目的。强鲁棒性、非线性特性、自组织自学习的能力和并行处理能力是人工神经网络基本特性,受到了人们的普遍关注。人工神经网络在工作前先对控制准则学习,减少系统工作过程中发生错误动作的概率。控制的准确性可以经过学习之后逐渐完善,提高系统正确动作的权值。

1.3专家系统。专家系统实际上是一个包含着某个专业领域内的大量人类专家知识的一种智能计算机程序系统。该系统通过程序模拟人类专家应用其丰富的知识经验进行分析、解决问题的过程,最终解决复杂的控制系统的问题。专家系统中的知识库是反映系统性能的主要部分,系统在解决问题时是通过模拟专家的思维来实现的。用户在使用过程中可以通过不断完善专家库来提高专家系统的性能。专家系统通过反复比对系统的输入信息,与专家系统中的知识库的规则进行匹配,最终找到能使数据库的内容与实际的目标的规则。在改善动态品质和提高远距离输电线路能力的问题上,卢强等人提出了利用最优励磁控制手段,研究成果指出:利用最优励磁控制方式,可以使大型机组取代古典励磁方式。

2智能控制技术在电力系统的应用

2.1模糊控制技术在继电保护领域的应用。电力系统中的继电保护装置具有这重要的意义,继电保护装置的可靠工作能使电力系统稳定、可靠、安全的运行。对继电保护装置的故障识别与诊断越来越严苛,电力系统中庞大复杂的故障现象,普通的识别系统无法准确及时地解决问题。因此,采用先进的人工智能技术进行电力系统的继电保护装置的故障识别与诊断的工作更加迫切。应用模糊控制技术监视电力系统中变压器的工作状态,根据变压器的参数的变化,结合已知的输入输出,利用模糊控制技术进行变压器的故障诊断。利用最小二乘法的原理将变压器的一些参数,例如电介质的损耗、泄漏电流、绝缘电阻、变压器的吸收比等参数作为模糊控制的输入。将这些输入参数通过一定的规则进行量化,作为模糊输入的矩阵,再将变压器的状态分为合格、不合格、故障等按照规则量化得到输出的模糊矩阵。参考其他一些实际经验中的数据作为扩展出来的输入输出矩阵,应用最小二乘法的迭代运算得到输入与输出的关系矩阵。应用得出的输入输出的关系矩阵就可以对一些变压器的试验信息进行分析,诊断。

2.2神经网络在电力系统故障诊断中的应用。在电力系统故障诊断的过程中,神经网络将系统的故障报警信息作为神经网络的输入量。神经网络的输出是电力系统故障诊断的结论。应先让神经网络进行学习,对其输入特定的故障报警,建立一个全面的故障报警样本库。通过样本库不断对神经网络系统进行训练,使得系统对不同的故障报警输入产生相应的权重,最终能够输出准确的故障诊断的结果。神经网络故障诊断技术不仅可以应用在电网的故障诊断方面,还可以用于电力设备的故障诊断、电力系统中的变压器的故障诊断等。神经网络的算法多种多样较为常用的有BP神经网络算法,迭代步长算法,以及变步长法等。在辐射型配电系统中采用BP神经网络,用ANN模拟各个地区不同电弧电阻下的故障情况,测量阻抗量应用BP神经网络判断电力系统出现的问题。该方法能够有效解决由于电弧引起的测量阻抗不准确,导致保护系统不能正常工作的问题。专家系统在电力变压器其的故障诊断的应用电力系统中已经有多个部分在控制过程中建立出了数学模型,但是依然存在一些复杂的、规律性不明显的系统无法抽象出具体的数学模型。这就需要专家系统解决相应的问题。专家控制系统在电力系统中多用于分辨系统的故障报警的状态,进行分析,提出故障的应急解决方案以及系统的恢复控制方案。专家系统中的知识库用于提供解决问题的知识,应用推理机使用该专家的知识库。知识库可以根据变压器的不同故障分为多个子系统,例如油位、负荷、温度等。推理机调用程序根据当前的状态,按照规定的规则调用系统的特定知识。推理机调用知识库中的数据时可以采用正向推理、反向推理、混合推理。经过反复的匹配直到找出故障的原因,故障原因可能是多个,将找出的多个原因组合为一个相互关联的矩阵。最终实现了经过专家系统做出的故障诊断分析。

3总结

人工智能技术是一项新颖先进的技术。在电力系统中应用人工智能技术是电力自动化发展的必然趋势。针对类似于电力系统的具有非线性、多参数、不确定因素多的复杂大系统,人工智能技术拥有更加优越的控制性能。模糊控制、神经网络、专家系统等控制理论已经渐渐的成熟,在生产生活的多个方面已经有了越来越多的应用。经过人工智能技术的不断完善,电力系统自动化的不断深入,人工智能对电力系统的控制会使电力系统运行更稳定、更经济,鲁棒性能更优越。

参考文献

[1]朱亮亮,王艳.基于人工智能的电力系统自动化控制[J].科技致富向导,2014,09:300.

[2]丘智蔚.基于人工智能的方法对智能电网进行安全改进[D].华南理工大学,2014.

[3]冯宗英.配电网状态估计及量测系统的鲁棒性配置研究[D].山东大学,2014.

常用的人工智能技术范文6

这些前后端的人工智能技术在应用又可分为四类:语音识别、图像识别、自然语言处理和用户画像。那么在这四类具体应用的实现上AI技术给我们生活带来哪些便利,同时存在哪些局限?下面一一来解构:

一、语音识别

语音识别

语音识别有两个技术方向,一个是语音的识别,另一个是语音的合成。

语音识别是指我们自然发出的声音需要机器转换成语言符号,通过识别和理解过程把语音信号转变为响应的文本或命令,然后再与我们交互。语音识别技术可以应用在电话销售上,例如:公司新人特别多,没有经验,拿到单子的可能性很低。怎么才能让新人也能有很优秀的销售能力呢?过去的做法是,把经验总结成册子,让新人去背,很容易就忘了。但如果有了高精度的语音识别能力,就能识别出客户在问什么,然后在屏幕上告诉新人,该怎么回答这个问题。

语音识别的第二个方向是语音的合成,是指机器把文字转换成语音,并且能够根据个人需求定制语音,然后念出来。以前的声音是那种匀速的、没有语调起伏的机器声音,现在能用比较自然的人声。语音合成能模拟任何一个你喜欢的人的说话方式,可以做到每个人听的东西都不一样。我们驾车经常使用的百度导航里李彦宏的声音就是语音合成的结果。

尽管深度学习被引入语音识别后,识别率迅速提升到95%,但要将ASR(自动语音识别)从仅在大部分时间适用于一部分人发展到在任何时候适用于任何人,仍然是不现实的。一个无法突破的问题就是语义错误。例如:生活在南京的人都知道有个地方叫卡子门(kazimen),但是百度导航在理解卡子门的时候,会分词为:“卡子-门”,结果卡子门(kazimen)就被读成了卡子门(qiazimen)。

二、图像识别

计算机视觉

图像识别就是我们常说的计算机视觉(CV)。常用在:印刷文字识别、人脸识别、五官定位、人脸对比与验证、人脸检索、图片标签、身份证光学字符识别(OCR)、名片OCR识别等领域。

人类认识了解世界的信息中大部分来自视觉,同样,计算机视觉也成了机器认知世界的基础,其终极目的就是让计算机能像人一样“看懂世界”。目前计算机视觉在人脸识别、图像识别、增强现实等方面有很好的应用,但也存在一定的挑战。我们就拿谷歌的无人驾驶来说,通过机器视觉识别的技术路径在现阶段,仍有完全无法逾越的技术难题。

不谈算法,图像的摄取精度就是难关,即使最顶级的摄像设备都无法达到人眼的细节获取能力,看看最顶级的哈苏相机配合最顶级镜头,在夜晚街头短曝光时间下拍的照片,对比人眼看到的图像就能看到差异,这还不谈经济上可行的低成本摄像设备,视觉识别自动驾驶这个系统,眼睛就是近视眼。

而且如果下雨,灰尘等对分辨的影响都是很难解决的bug。如果配合雷达的话又有逻辑判断优先的问题,信摄像头,还是信雷达?会不会误报?而作为激光雷达,如果单纯的车身自己也有同样的逻辑判断的问题,什么样的东西是有威胁的,什么是无威胁的。什么是潜在的威胁,这都不是计算机视觉这种单一智能所能解决的。因为预测未来的感知能力,是人与机器最大的区别。

三、自然语言处理(NLP)

贤二机器僧

自然语言是人类智慧的结晶。自然语言处理(NLP)是人工智能中最为困难的问题之一。由于理解自然语言,需要关于外在世界的广泛知识以及运用操作这些知识的能力,自然语言认知,同时也被视为一个人工智能完备(AI-complete)的问题。

举个例子,我们以前用键盘,鼠标,触摸屏去和设备互动。但是现在你操作设备,只需冲着智能音箱说:请给我的手机充值100元即可。虽然这种功能在阿里的天猫精灵上已经实现了,但实现的前提是天猫精灵APP上已经录有你的声纹,并且你的手机号码,及支付密码已经预先在APP端设置好,否则机器没有办法理解我是谁、给谁的手机充值100元话费。

其次,自然语言处理背后所依赖的是传统的问答系统技术,即Question Answering(QA)。QA技术是自然语言处理中非常重要的一个研究方向,原理是:对于输入的问题首先做句法分析,从而理解问题或者指令的结构和意图。比如如果用户问的问题是某人出生在哪儿,那么机器需要先对这句话进行解析,进而了解所要回答的应当是一个地点,并且这个地点应当满足某人出生与此的条件。

当我们能够准确地了解到用户提问的意图并能根据机器可以理解的方式重新组织之后,就需要寻找答案。为了实现这一目的,QA系统的背后都存在一个庞大的数据库(也就是知识库),这个数据库中存储着所有的指令对应的行为或者问题对应的答案,当系统在数据库中搜索到了自己要做什么或者回答什么的时候,就可以将答案反馈给用户,或者直接实现用户的指令。当然,如果数据库的规模实在有限,有一个兜底的方法就是基于信息检索来返回答案,即将用户的输入提取出关键词然后求助于搜索引擎返回相关的内容再返回给用户,由于互联网无所不包,因此结果一般也尚可接受。

自然语言处理这块相关落地的产品就很多啦。典型的代表就是聊天机器人,其中一类是以Siri、Amazon Echo、微软小娜、阿里天猫精灵、小米小AI音箱等为代表,偏向于工具性的服务型机器人。另一类则是以微软小冰为代表的娱乐型机器人。第一类聊天机器人,以完成任务或回答事实性问题为导向,譬如你问天猫精灵“今天的天气如何?”,或者给“小爱同学”下达“关闭卧室台灯”等指令。第二类则以闲聊为导向,并不需要给出某一个事实性问题的解答,只要交谈自如、博君一笑即可。比如:北京龙泉寺的贤二机器僧。

四、用户画像

碟中谍6:全面瓦解

用户画像是根据用户社会属性、生活习惯和消费行为等信息/数据而抽象出的一个标签化的用户模型。构建用户画像的核心工作即是给用户贴“标签”——用数据来描述人的行为和特征,而标签是通过对用户信息分析而来的高度简练的特征标识。

用户画像在商业领域应用的非常广泛。拿百度举例。百度现在识别了将近10亿用户,用了几千万个细分标签给用户分类,比如性别、年龄、地理位置,还有这个人在金融领域的情况,在旅游方面有什么爱好等等。这些东西合在一起,就组成了用户画像。百度就知道你是什么样的人,喜欢什么样的东西。比如,今年暑期档将要上映的电影《碟中谍6:全面瓦解》,在宣传的时候把人群分成了三类,一类是不管怎样都要看的,一类是不管怎么都不会看的,第三类是可能会进电影院的。宣传方就会使用百度大脑的用户画像功能,识别出第三类人群,对这类观众进行定向宣传。

人工智能在用户画像里最重要的作用就是找到相关性,给用户打标签。用户标签是表达人的基本属性、行为倾向、兴趣偏好等某一个维度的数据标识,它是一种相关性很强的关键字,可以简洁的描述和分类人群。比如好人和坏人、90后80后,星座、白领等。具体流程一般是从纷乱复杂、琐碎的用户行为流(日志)中挖掘用户在一段时间内比较稳定的特征,即给用户打上标签。

举例来说,如果你经常购买一些纸尿裤,那么电商网站即可根据母婴购买的情况替你打上标签“有孩子”,甚至还可以判断出你孩子大概的年龄,贴上“有1-4岁的孩子”这样更为具体的标签,而这些所有给你贴的标签组,就成了你的用户画像,也可以说用户画像就是判断一个人是什么样的人。但是今天的人工智能虽然能够找到相关性,但是却无法找到内在的逻辑,因此容易把前提和结论搞反了。比如根据大数据的统计,喝咖啡的人比不喝咖啡的人长寿。但大数据没告诉大家喝咖啡是不是原因,或许是生活水平高的人才有钱、有时间喝咖啡。所以真实的情况是长寿的人喝咖啡。

五、人工智能算法

深度学习算法

说完了语音识别、图像识别和自然语言处理这些涉及交互的前端人工智能技术, 我们再来说说后端人工智能技术。后端的人工智能技术指的就是人工智能的核心算法,包括深度学习算法、记忆预测模型算法等。

首先,我们来说说深度学习算法。我们知道2016年是人工智能爆发的一年,先有AlphaGo战胜李世石,到了年底又有Master连胜60场,横扫中日韩围棋高手,一时间舆论为之震惊。这个Alpha Go背后的DeepMind团队,用的就是深度增强式学习,这是深层神经网络用于决策领域的成果。深度学习是机器学习的一个新领域,普遍认为深度学习的开创者是加拿大多伦多大学一位叫Geoffrey Hinton的教授,他是一位“神经科学家+计算机科学家”,他认为大脑是用全息的方式存储外界世界信息的,并且从上世纪80年代就开始研究用计算机系统架构来模拟人类大脑,就是我们今天说的深度学习的原型。

今天我们可以这样理解深度学习算法,深度学习就是运用神经网络一层又一层的计算来找到最优的参数,再结合参数去做出未来的决定。出发点在于建立、模拟人脑进行分析学习的神经网络。深度学习的整个学习过程中,几乎可以做到直接把海量数据投放到算法中,让数据自己说话,系统会自动从数据中学习。从输入到输出是一个完全自动的过程。深度学习算法现在被设计成实现设计者既定目标的工具。比如,AlphaGo的目标就是去赢得围棋比赛,而不是去开车或干其他事情。AlphaGo不能自己设定自己的目标,如果要完成另一个目标,就需要设计另一种机器。当然人工智能有N多条路,深度学习算法是目前人工智能算法里表现最好的。但深度学习并不是一上来就好的,让深度学习崛起还有两个华人:

一个就是斯坦福的教授,也是后来谷歌大脑的创始人吴恩达教授,因为他发现深度学习需要有更强的计算能力,所以他找到了英伟达的GPU(Graphics Processing Unit,图形处理单元),使得计算能力提升了上百倍。

另外一个人也是斯坦福的教授李飞飞,她建立了一个图像识别资料库。而且这个库里面的所有的图像都是标注过的,也就是说,如果图里有山就会标注出山,如果有树就标注出树。这样的话,你可以用这个图形库来训练人工智能系统,看它能不能识别出来这个图形库上面所标注的这些元素。经过这个图像库的训练,就可以训练出视觉能力超过人的人工智能系统。

但是千万不要以为深度学习达到今天的水平就是无敌了,甚至可以超越人类了。深度学习发展起来的人工智能系统存在一个明显的缺陷,就是他的过程无法描述,机器不能用人的语言说出来它是怎么做到的。例如,Alpha Go打败了李世石,你要问AlphaGo是为什么走这步棋,它是答不上来的。也就是说,我们没办法知道机器做事情的动机和理由。

要想更好的认识到人工智能算法的局限性,需要引入一个概念,就是认知复杂度。什么是认知复杂度呢?就是指你建构“客观”世界的能力。认知复杂度高的人,善于同时用互补,或者互不相容的概念来理解客观世界,因为真实世界本身就不是非黑即白的。那么对于机器来说,“认知计算”和“人工智能”有啥关系呢?人工智能的未来一般被分为三个发展方向:人搞定机器、机器搞定人和“人机共生”。而以“人机共生”为目标的人工智能,就是认知计算。IBM在认知计算领域获得了大量经验,并且总结了认知计算的三个能力,分别是交流、决策,和发现。

(1)交流

第一个能力是交流,认知计算可以处理非结构性的问题。很多用Siri的人,只会把这当成娱乐功能,因为它不能保证交流内容的准确性,有时Siri根本接不上你的话,因为你的话对它来说太复杂了。这个只能算作人工智能比较初始的状态。

而认知计算可以完全模仿人类的认知,你可以把它当做一个孩子。就好像孩子周围有一群逗他玩的大人,有人告诉孩子1+1=2,也有人说1+1=3。但是随着孩子的成长,他自己会明白1+1=2才是对的。这就是非结构性问题。早期的人工智能只能学会别人教给他的知识,但是认知计算可以处理模糊的,甚至是自相矛盾的信息。

(2)决策

第二个能力是决策,我们都知道人工智能可以分析复杂的逻辑,然后做出决策。认知计算可以更进一步,根据新的信息来调整自己的决策。更厉害的是,认知系统所做的决策是没有偏见的,而“毫无偏见的决策”对人类来说几乎是一件不可能的事。比如说治疗癌症,这是典型的医疗决策场景。

癌症之所以难治,一方面由于这种疾病太过复杂,另一方面,医生如果不能及时发现患者的癌症信号,可能会延误患者的治疗,或者导致诊断错误。而认知计算可以综合分析复杂的医疗数据,还可以在医生语言的上下文中解析含义,最后提出它的建议。

这就大大减少了医生查病历的时间,让医生能将更多的时间用在患者身上。2016年8月,《东京新闻》报道说,IBM研发的认知计算机器人“沃森”,就学习了海量的医学论文,只用了10分钟,就为一名患者诊断出了很难判断的白血病类型,还向东京大学医科学研究所提出了适当的治疗方案。

(3)发现

第三个能力是发现,认知计算能发现新事物和新连接,填补人类思维的空白。比如在竞争激烈的餐饮业,怎样才能做出令顾客满意的新菜品呢?

认知系统可以整合区域知识、文化知识,还有各种食物搭配理论,帮助用户发现想象不到的美食搭配。比如突然有一天,它会告诉你:用卤煮的配方做个披萨,可能很合你的胃口。你照着一做,发现还不错!实际上,从2015年开始,IBM开发的“沃森大厨”,就已经学习了35000多种经典食谱,然后通过分析海量的食材搭配,结合化学、营养学等方面数据,为厨师和美食家带来了超出人类想象的新型食谱。

认知计算可以帮助我们更好的交流、决策和发现。但是人工智能依然有很多做不到的。例如:抽象能力,自我意识,审美,情感等。