神经网络的发展史范例6篇

前言:中文期刊网精心挑选了神经网络的发展史范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

神经网络的发展史

神经网络的发展史范文1

1机械电子工程

1.1机械电子工程的发展史

20世纪是科学发展最辉煌的时期,各类学科相互渗透、相辅相成,机械电子工程学科也在这一时期应运而生,它是由机械工程与电子工程、信息工程、智能技术、管理技术相结合而成的新的理论体系和发展领域。随着科学技术的不断发展,机械电子工程也变的日益复杂。

机械电子工程的发展可以分为3个阶段:第一阶段是以手工加工为主要生产力的萌芽阶段,这一时期生产力低下,人力资源的匮乏严重制约了生产力的发展,科学家们不得不穷极思变,引导了机械工业的发展。第二阶段则是以流水线生产为标志的标准件生产阶段,这种生产模式极大程度上提高了生产力,大批量的生产开始涌现,但是由于对标准件的要求较高,导致生产缺乏灵活性,不能适应不断变化的社会需求。第三阶段就是现在我们常见的现代机械电子产业阶段,现代社会生活节奏快,亟需灵活性强、适应性强、转产周期短、产品质量高的高科技生产方式,而以机械电子工程为核心的柔性制造系统正是这一阶段的产物。柔性制造系统由加工、物流、信息流三大系统组合而成,可以在加工自动化的基础之上实现物料流和信息流的自动化。

1.2机械电子工程的特点

机械电子工程是机械工程与电子技术的有效结合,两者之间不仅有物理上的动力连结,还有功能上的信息连结,并且还包含了能够智能化的处理所有机械电子信息的计算机系统。机械电子工程与传统的机械工程相比具有其独特的特点:

1)设计上的不同。机械电子工程并非是一门独立学科,而是一种包含有各类学科精华的综合性学科。在设计时,以机械工程、电子工程和计算机技术为核心的机械电子工程会依据系统配置和目标的不同结合其他技术,如:管理技术、生产加工技术、制造技术等。工程师在设计时将利用自顶向下的策略使得各模块紧密结合,以完成设计;2)产品特征不同。机械电子产品的结构相对简单,没有过多的运动部件或元件。它的内部结构极为复杂,但却缩小了物理体积,抛弃了传统的笨重型机械面貌,但却提高了产品性能。

机械电子工程的未来属于那些懂得运用各种先进的科学技术优化机械工程与电子技术之间联系的人,在实际应用当中,优化两者之间的联系代表了生产力的革新,人工智能的发展使得这一想法变成可能。

2人工智能

2.1人工智能的定义

人工智能是一门综合了控制论、信息论、计算机科学、神经生理学、心理学、语言学、哲学等多门学科的交叉学科,是21世纪最伟大的三大学科之一。尼尔逊教授将人工智能定义为:人工智能是关于怎样表示知识和怎样获得知识并使用知识的科学。温斯顿教授则认为:人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。至今为止,人工智能仍没有一个统一的定义,笔者认为,人工智能是研究通过计算机延伸、扩展、模拟人的智能的一门科学技术。

2.2人工智能的发展史

2.2.1萌芽阶段

17世纪的法国科学家B.Pascal发明了世界上第一部能进行机械加法的计算器轰动世界,从此之后,世界各国的科学家们开始热衷于完善这一计算器,直到冯诺依曼发明第一台计算机。人工智能在这一时期发展缓慢,但是却积累了丰富的实践经验,为下一阶段的发展奠定了坚实的基础。

2.2.2第一个发展阶段

在1956年举办的“侃谈会”上,美国人第一次使用了“人工智能”这一术语,从而引领了人工智能第一个兴旺发展时期。这一阶段的人工智能主要以翻译、证明、博弈等为主要研究任务,取得了一系列的科技成就,LISP语言就是这一阶段的佼佼者。人工智能在这一阶段的飞速发展使人们相信只要通过科学研究就可以总结人类的逻辑思维方式并创造一个万能的机器进行模仿。

2.2.3挫折阶段

60年代中至70年代初期,当人们深入研究人工智能的工作机理后却发现,用机器模仿人类的思维是一件非常困难的事,许多科学发现并未逃离出简单映射的方法,更无逻辑思维可言。但是,仍有许多科学家前赴后继的进行着科学创新,在自然语言理解、计算机视觉、机器人、专家系统等方面取得了卓尔有效的成就。1972年,法国科学家发现了Prolog语言,成为继LISP语言之后的最主要的人工智能语言。

2.2.4第二个发展阶段

以1977年第五届国际人工智能联合会议为转折点,人工智能进入到以知识为基础的发展阶段,知识工程很快渗透于人工智能的各个领域,并促使人工智能走向实际应用。不久之后,人工智能在商业化道路上取得了卓越的成就,展示出了顽强的生命力与广阔的应用前景,在不确定推理、分布式人工智能、常识性知识表示方式等关键性技术问题和专家系统、计算机视觉、自然语言理解、智能机器人等实际应用问题上取得了长足的发展。

2.2.5平稳发展阶段

由于国际互联网技术的普及,人工智能逐渐由单个主体向分布式主体方向发展,直到今天,人工智能已经演变的复杂而实用,可以面向多个智能主体的多个目标进行求解。

3人工智能在机械电子工程中的应用

物质和信息是人类社会发展的最根源的两大因素,在人类社会初期,由于生产力水平低,人类社会以物质为首要基础,仅靠“结绳记事”的方法传递信息,但随着社会生产力的不断发展,信息的重要性不断被人们发现,文字成为传递信息最理想的途径,最近五十年间,网络的普及给信息传递带来了新的生命,人类进入到了信息社会,而信息社会的发展离不开人工智能技术的发展。不论是模型的建立与控制,还是故障诊断,人工智能在机械电子工程当中都起着处理信息的作用。

由于机械电子系统与生倶来的不稳定性,描述机械电子系统的输入与输出关系就变得困难重重,传统上的描述方法有以下几种:1)推导数学方程的方法;2)建设规则库的方法;3)学习并生成知识的方法。传统的解析数学的方法严密、精确,但是只能适用于相对简单的系统,如线性定常系统,对于那些复杂的系统由于无法给出数学解析式,就只能通过操作来完成。现代社会所需求的系统日益复杂,经常会同时处理几种不同类型的信息,如传感器所传递的数字信息和专家的语言信息。由于人工智能处理信息时的不确定性、复杂性,以知识为基础的人工智能信息处理方式成为解析数学方式的替代手段。

通过人工智能建立的系统一般使用两类方法:神经网络系统和模糊推理系统。神经网络系统可以模拟人脑的结构,分析数字信号并给出参考数值;而模糊推理系统是通过模拟人脑的功能来分析语言信号。两者在处理输入输出的关系上有相同之处也有不同之处,相同之处是:两者都通过网络结构的形式以任意精度逼近一个连续函数;不同之处是:神经网络系统物理意义不明确,而模糊推理系统有明确的物理意义;神经网络系统运用点到点的映射方式,而模糊推理系统运用域到域的映射方式;神经网络系统以分布式的方式储存信息,而模糊推理系统则以规则的方式储存信息;神经网络系统输入时由于每个神经元之间都有固定联系,计算量大,而模糊推理系统由于连接不固定,计算量较小;神经网络系统输入输出时精度较高,呈光滑曲面,而模糊推理系统精度较低,呈台阶状。

随着社会的不断发展,单纯的一种人工智能方法已经不能满足日益增长的社会需要,许多科学家开始研究综合性的人工智能系统。综合性的人工智能系统采用神经网络系统与模糊推理系统相结合的方法,取长补短,以获得更全面的描述方式,模糊神经网络系统便是一成功范例。模糊神经网络系统做到了两者功能的最大融合,使信息在网络各层当中找到一个最适合的完全表达空间。逻辑推理规则能够对增强节点函数,为神经网络系统提供函数连结,使两者的功能达到最大化。

4结论

神经网络的发展史范文2

关键字:机械电子工程 人工智能信息处理

中图分类号: P756.6 文献标识码: A 文章编号:

传统的机械工程一般分为两大类,包括动力和制造。制造类工程包括机械加工、毛坯制造和装配等生产工程,而动力类工程包括各式发电机。电子工程与传统的机械工程相比而言,是比较新的学科,电子工程是传统工程的革新,两者于上世纪逐渐结合在一起。随着人工智能技术的不断发展 ,机械电子工程的能量连接、动能连接逐步发展为信息连接 ,使得机械电子工程具有了一定的人工智能。这种高效的智能化技术减少了繁重的机械生产,提高产量和经济效益,使我们市场进入智能化。

一、传统机械电子工程

1、机械电子工程的发展情况

机械电子工程是由机械工程与电子工程、信息技术、智能技术、管理技术相结合而成的新的理论体系和发展领域。随着科学技术的不断发展机械电子工程也变得日益复杂。

机械电子工程的发展可以分为三个阶段 :第一阶段是以手工加工为主要生产力的萌芽阶段 ,这一时期生产力低下 ,人力资源的匮乏严重制约了生产力的发展 ,科学家们不得不穷极思变 ,引导了机械工业的发展。第二阶段则是以流水线生产为标志的标准件生产阶段 ,这种生产模式极大程度上提高了生产力 ,大批量的生产开始涌现 ,但是由于对标准件的要求较高 ,导致生产缺乏灵活性 ,不能适应不断变化的社会需求。第三阶段是现在我们常见的现代机械电子产业阶段,而以机械电子工程为核心的柔性制造系统正是这一阶段的产物。

2、机械电子工程的特点

1)设计上的不同。机械电子工程并非是一门独立学科 ,而是一种包含有各类学科精华的综合性学科。在设计时 ,以机械工程、电子工程和计算机技术为核心的机械电子工程会依据系统配置和目标的不同结合其他技术。工程师在设计时将利用自顶向下的策略使得各模块紧密结合 ,以完成设计 ;

2)产品特征不同。机械电子产品的结构相对简单 ,没有过多的运动部件或元件。它的内部结构极为复杂 ,但却缩小了物理体积 ,抛弃了传统的笨重型机械面貌 ,但却提高了产品性能。

二、 人工智能

1、 人工智能的概念分析

人工智能是一门综合了控制论、信息论、计算机科学、神经生理学、心理学、语言学、哲学等多门学科的交叉学科 ,是 21 世纪最伟大的三大学科之一。 但是至今为止,人工智能没有一个统一的定义。笔者认为 ,人工智能是研究通过计算机延伸、扩展、模拟人的智能的一门科学技术。

2、 人工智能的发展史

1)人工智能的初期阶段

17 世纪的法国科学家 B.Pascal 发明了世界上第一部能进行机械加法的计算器轰动世界 ,从此之后 ,世界各国的科学家们开始热衷于完善这一计算器 ,直到冯诺依曼发明第一台计算机。人工智能在这一时期发展缓慢 ,但是却积累了丰富的实践经验 ,为下一阶段的发展奠定了坚实的基础。

2)第一个成长阶段

在 1956 年举办的“侃谈会”上 ,美国人第一次使用了“人工智能”这一术语。这一阶段的人工智能主要以翻译、证明、博弈等为主要研究任务 , LISP 语言就是这一阶段的佼佼者。人工智能在这一阶段的飞速发展使人们相信只要通过科学研究就可以总结人类的逻辑思维方式并创造一个万能的机器进行模仿。

3)比较困难的阶段

60 年代中至 70 年代初期 ,当人们深入研究人工智能的工作机理后却发现 ,用机器模仿人类的思维是一件非常困难的事 ,许多科学发现并未逃离出简单映射的方法 ,更无逻辑思维可言。但是 整理,仍有许多科学家前赴后继的进行着科学创新 ,在自然语言理解、计算机视觉、机器人、专家系统等方面取得了卓尔有效的成就。1972 年 ,法国科学家发现了 Prolog 语言 ,成为继 LISP 语言之后的最主要的人工智能语言。

4)中期平稳阶段

以 1977 年第五届国际人工智能联合会议为转折点 ,人工智能进入到以知识为基础的发展阶段 ,知识工程很快渗透于人工智能的各个领域 ,并促使人工智能走向实际应用。不久以后,人工智能在商业化道路上取得了卓越的成就,展示出了顽强的生命力与广阔的前景。在不确定推理、分布式人工智能、常识性知识表示方式等关键性技术问题和专家系统、计算机视觉、自然语言理解、智能机器人等实际应用问题上取得了长足的发展。

5)平稳成长阶段

由于国际互联网技术的普及 ,人工智能逐渐由单个主体向分布式主体方向发展 ,直到今天 ,人工智能已经演变的复杂而实用 ,可以面向多个智能主体的多个目标进行求解。

最近五十年间 ,网络的普及给信息传递带来了新的生命 ,人类进入到了信息社会 ,而信息社会的发展离不开人工智能技术的发展。不论是模型的建立与控制 ,还是故障诊断 ,人工智能在机械电子工程当中都起着处理信息的作用。

由于机械电子系统与生俱来的不稳定性 ,描述机械电子系统的输入与输出关系就变得困难重重 ,传统上的描述方法有以下几种 :1)推导数学方程的方法 ;2)建设规则库的方法 ;3)学习并生成知识的方法。传统的解析数学的方法严密、精确 ,但是只能适用于相对简单的系统。现代社会所需求的系统日益复杂 ,经常会同时处理几种不同类型的信息。由于人工智能处理信息时的不确定性、复杂性 ,以知识为基础的人工智能信息处理方式成为解析数学方式的替代手段。

通过人工智能建立的系统一般使用两类方法 :神经网络系统和模糊推理系统。神经网络系统可以模拟人脑的结构 ,分析数字信号并给出参考数值 ;而模糊推理系统是通过模拟人脑的功能来分析语言信号。两者在处理输入输出的关系上有相同之处也有不同之处:神经网络系统物理意义不明确 ,而模糊推理系统有明确的物理意义 ;神经网络系统运用点到点的

映射方式 ,而模糊推理系统运用域到域的映射方式 ;神经网络系统以分布式的方式储存信息 ,而模糊推理系统则以规则的方式储存信息 ;神经网络系统输入时由于每个神经元之间都有固定联系 ,计算量大 ,而模糊推理系统由于连接不固定 ,计算量较小 ;神经网络系统输入输出时精度较高 ,呈光滑曲面 ,而模糊推理系统精度较低 ,呈台阶状。

随着社会的不断发展,单纯的一种人工智能方法已经不能满足日益增长的社会需要,许多科学家开始研究综合性的人工智能系统。综合性的人工智能系统采用神经网络系统与模糊推理系统相结合的方法,取长补短,以获得更全面的描述方式,模糊神经网络系统便是一成功范例。模糊神经网络系统做到了两者功能的最大融合 ,使信息在网络各层当中找到一个最适合的完全表达空间。逻辑推理规则能够对增强节点函数 ,为神经网络系统提供函数连结 ,使两者的功能达到最大化。

三、 结论

21世纪的科学技术发展的越来越快,智能化已经大范围覆盖了国际市场,不论工业中还是电子商务,都以及成为经济快速运行的动力。为国家提供高技术的便利,为其注入新的概念,使其更为广泛的应用。着实做到了作业内外一体化,数据搜集自动化,系统智能化。人工智能与机械电子相结合能够促进生产力的快速发展,把我国的相关经济产业链带动了起来。在这新兴科技的引领下,我国的经济将迈向更高的阶梯。

参考文献

[1]傅丽凌.杨平.机械专业综合型试验平台的建设[J].电子科技大学学报社科版,2005,7(增刊).

[2]陈庆霞.人工智能研究纲领的发展历程和前景[J].科技信息,2009,33.

[3]史忠植.高整理级人工智能[M].科学出版社,2006.

神经网络的发展史范文3

【关键词】电力系统;继电保护;技术;发展现状

一、微机继电保护的主要特点

根据,研究和实践证明 ,与传统的继 电保护相 比较 ,微机保护有许多优点 ,其主要特点如下改善和提高继 电保护 的动作特征 和性 能 ,动作正确率高。主要表现在能得 到常规保护不易获得的特性 其很强的记忆力能更好地实现故障分量保护 可引进 自动控制 、新的数学理论和技术 ,如自适应 、状态预测 、模糊控制及人工神经网络等 ,其运行高正确率也已在实践中得到证明 。可以方便地扩充其他辅助功能 。如故障录波 、波形分析等 ,可 以方便地附加低频减载 、自动重合闸、故障录波 、故障测距等功能 。工艺 结构条 件优越 。体现 在 硬件 比较 通用 ,制造容易统一标准 装置体积小 ,减少了盘位数量 功耗低 。可靠性容易提高 。体现在数字元件的特性不易受温度变化 、电源波动、使用年限、元件更换的影响 且 自检和巡检能力强 ,可用软件方法检测主要元件、部件的工况以及功能软件本身。使用灵 活方便 ,人机界面越来越友好 。其维护调试也更方便 ,从而缩短维修时间 同时依据运行经验,在现场可通过软件方法改变特性 、结构 。可以进行远方监控 。微机保护装置具有串行通信功能 ,与变电所微机监控系统的通信联络使微机保护具有远方监控特性 。

二、微机继电保护的发展史

电力系统继电保护的发展经历了机电型 、整流型 、晶体管型和集成电路型几个阶段后 ,现在发展到了微机保护阶段 。微机继电保护指的是以数字式计算机 、(包括微型机) 为基础而构成的继 电保护。它起源于20世纪60年代中后期 ,是在英国、澳大利亚和美国的一些学者的倡导下开始进行研究的。60年代中期 ,有人提 出用小型计算机实现继 电保护的设想 但是由于当时计算机的价格昂贵 ,同时也无法满足高速继电保护的技术要求 ,因此没有在保护方面取得实际应用 ,但 由此开始了对计算机继电保护理论计算方法和程序结构的大量研究 ,为后来的继电保护发展奠定了理论基础 。计算机技术在 年代初期和中期出现了重大突破 ,大规模集成电路技术的飞速发展 ,使得微型处理器和微型计算机进人了实用阶段 。价格 的大幅度下降 ,可靠性 、运算速度的大幅度提高 ,促使计算机继 电保护的研究 出现 了。在70年代后期 ,

出现了比较完善的微机保护样机 ,并投人到电力系统 中试运行 80年代 ,微机保护在硬件结构和软件技术方面 日趋成熟 ,并已在一些国家推广应用 。90年代 ,电力系统继 电保护技术发展到了微机保护时代 ,它是继电保护技术发展历史过程中的第四代。

三、我国继电保护发展现状

我国从70年代末即已开始了计算机继电保护的研究 ,高等院校和科研院所起着先导的作用 。华中理工大学 、东南大学 、华北 电力学院 、西安交通大学 、天津大学 、上海交通大学 、重庆大学和南京电力自动化研究院都相继研制了不同原理 、不同型式的微机保护装置 。1984年原华北 电力学院研制的输电线路微机保护装置首先通过鉴定 ,并在系统中得应用 ,揭开 了我 国继 电保护发展史上新的一页 ,为微机保护的推广开辟 了道路 。在主设备保护方面 ,东南大学和华中理工大学研制的发电机失磁保护 、发 电机保护 和发 电机 、压器组保 护也相继 于1993、1996年通过鉴定 ,投人运行 。南京电力 自动化研究院研制的微机线路保护装置也于 年通过鉴定 。天津大学与南京 电力 自动化设备厂合作研制的微机相电压补偿式方向高频保护 ,西安交通大学与许昌继电器厂合作研制的正序故 障分量方向高频保护也相继于 ” 年通过鉴定 至此 ,不同原理 、不同机型 的微机线路和主设备保护各具特色 ,为电力 系统提供了一批 新一代性 能优良、功能齐全 、工作可靠的继 电保护装置 。可 以说90年代开始我国继电保护技术已进人 了微机保护的时代。随着微机保护装置的研究 ,在微机保护软件、算法等方面也取得 了很多理论成果 ,并且应用于实际之中。

四 、继电保护的未来发展

继电保护技术发展趋势 向计算机化 、网络化、智能化和保护、控制 、测量 、数据通信一体化发展 。随着计算机技术的飞速发展及计算机在电力系统继电保护领域中的普遍应用 ,新的控制原理和方法被不断应用于计算机继电保护中 以期取得更好的

效果 ,从而使微机继 电保护的研究向更高的层次发展 ,出现了一些引人注 目的新趋势。

1.保护 、控制 、测量 、数据通信一体化在实现继 电保护的计算机化和 网络化的条件下 ,保护装置实际上就是一 台高性能 、多功能的计算机 ,是整个电力系统计算机 网络上的一个智能终端 。它可从网上获取 电力系统运行和故障的任何信息和数据 ,也可将它所获得的被保护元件的任何信息和数据传送给网络控制 中心或任一终端。因此 ,每个微机保护装置不但可完成继 电保护功能 ,而且在无故 障正常运行情况下还可完成测量 、

控制 、数据通信功能 ,亦即实现保护、控制 、测量、数据通信一体化 。

目前 ,为了测量 、保护和控制的需要 ,室外变电站的所有设备 ,如变压器 、线路等的二次电压 、电流都必须用控制 电缆引到主控室 。所敷设的大量控制电缆不但要大量投资 ,而且使二次 回路非常复杂。但是如果将上述的保护 、

控制 、测量 、数据通信一体化 的计算机装置 ,就地安装在室外变电站的被保护设备旁 ,将被保护设备的电压 、电流量在此装保护 、控制 、测量 、数据通信一体化在实现继 电保护的计算机化和 网络化的条件下 ,保护装置实际上就是一 台高性能 、多功能的计算机 ,是整个电力系统计算机 网络上的一个智能终端 。它可从网上获取 电力系统运行和故障的任何信息和数据 ,也可将它所获得的被保护元件的任何信息和数据传送给网络控制 中心或任一终端。因此 ,每个微机保护装置不但可完成继 电保护功能 ,而且在无故 障正常运行情况下还可完成测量 、控制 、数据通信功能 ,亦即实现保护、控制 、测量、数据通信一体化 。

目前 ,为了测量 、保护和控制的需要 ,室外变电站的所有设备 ,如变压器 、线路等的二次电压 、电流都必须用控制 电缆引到主控室 。所敷设的大量控制电缆不但要大量投资 ,而且使二次 回路非常复杂。但是如果将上述的保护 、控制 、测量 、数据通信一体化 的计算机装置 ,就地安装在室外变电站的被保护设备旁 ,将被保护设备的电压 、电流量在此装置内转换成数字量后 通过计算机 网络送到主控室 ,则可免除大量的控制电缆。如果用光纤作为网络的传输介质 ,还可免除电磁干扰 。现在光电流互感器OTA和光电压互感器(OTA)

已在研究实验阶段!将来必然在电力系统中得到应用。在采用OTA和OTA的情况下,保护装置应放在距OTA和OTA最 近 的地方 ,亦 即应 放在被保护设备 附近 。和 的光信号输人到一体化装置中并转换成电信号后 ,一方面用作保护的计算判断另一方面作为测量量 ,通过网络送到主控室。从主控室通过网络可将对被保护设备的操作控制命令送到一体化装 置 ,由一体化装 置执行 断路器 的操作。1992年天津大学提 出了保护 、控制 、测量 、通信一体化问题 , TMS320C25数字信号处理器(DSP0)为基础的一个保护、控制、测量 、数据通信一体化装置 。

工神经网络在继电保护中的应用 年来 ,人工智能技术如神经网络 、遗传算法 、化规划 、模糊逻辑等在 电力系统各个领域都得到应用 ,在继电保护领域应用的研究也已开始 。

神网络是一种非线性映射的方法 ,很多难以列出方络方法则可迎刃而解 。

例如在输电线两侧系统电势角度摆开情况下发生经过渡 电阻的短路就是一非线性问题 ,距离保护很难正确作出故障位置的判别 ,从而造成误动或拒动 如果用神经网络方法 ,经

过大量故障样本的训练 ,只要样本集 中充分考虑了各种情况 ,则在发生任何故障时都可正确判别 。其它如遗传算法 、进化规划等也都有其独特的求解复杂问题的能力。将这些人工智能方法适 当结合可使求解速度更快 。天津大学从 年起进行神经网络式继电保护的研究 ,已取得初步成果 。可以预见 ,人工智能技术在继 电保护领域必将得 到应用 ,并解决用常规方法难以解决的间题变电所综合 自动化技术现代计算机技术 、通信技术和网络技术为改变变电站目前监视 、控制 、保护和计量装置及系统分割的状态提供了优化组合和系统集成的技术基础 。高压 、超高压变电站正面临着一场技术创新 。继电保护和综合 自动化的紧密结合已成为可能 它表现在集成与资源共享 、远方控制与信息共享。以远方终端单元 、微机保护装置为核心 ,将变电所的控制 、信号 、测量 、计费等回路纳入计算机系统 ,取代传统的控制保护屏 ,能够降低变电所的占地面积和设备投资 ,提高二次系统的可靠性 。随着微机性能价格 比的不 断提高 ,现代通信技术的迅 速发展 ,以及标准化规约 的陆续推 出 ,变电站综合 自动化成了热门话题 。

目前 ,用于变电站的监视 、控制 、保护 ,包括故障录波 、紧急控制装置 ,虽然已实现了微机数字化 ,但几乎都是功能单一的独立装置 ,各个装置缺乏整体协调和功能的调优 ,且功能交叉 ,输人信息不能共享 ,接线复杂 ,从整体上降低了可靠性 ,同时不能充分利用微机数据处理的强大功能和速度 ,经济上也是一种浪费 。现在广泛应用 的变电站 自动化系统为常规 自动化系统 ,它应用 自动控制技术 、计算机数据采集和处理技术 、通信技术 ,代替人工对变电站进行正常运行的监视 、操作、电压无功控制 、量测记录和统计分析 、故障运行 的监视 、报警和事件顺序记录与运行操作 ,大多不涉及继 电保护 、紧急控制、故障录波 、 、维修状态信息处理等功能 ,功能相对 比较简单。竞争的电力市场将促进新的 自动化技术的开发和应用 ,在经济效益的驱动下 ,变电站将向集成自动化方向发展 。根据变电站 自动化集成的程度 ,可将未来的 自动化 系统分为协调 型 自动化和集成型 自动化 。协调型 自动化仍然保留间隔内各 自独立的控制 、保护等装置 ,各 自采集数据并执行相应的输出功能 ,通过统一的通信网络与站级相连 ,在站级建立一个统一的计算机系统 ,进行个功能的协调 。而集成型 自动化既在间隔级 ,又在站级对各个功能进行优化组合 ,是现代控制技术 、计算机技术和通信技术在变 电站 自动化 系统的综合应用 。所谓集成型 自动化系统是将 间隔的控制 、保护 、故障录波 、事件记录和运行支持系统的数据处理等功能集成在一个统一的多功能数字装置内,间隔内部和间隔间以及 间隔同站级 间的通信用少量的光纤总线实现 ,取消传统的硬线连接 。

神经网络的发展史范文4

【关键词】继电保护现状发展

一、继电保护发展现状

电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力,因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段。

建国后,我国继电保护学科、继电保护设计、继电器制造工业和继电保护技术队伍从无到有,在大约10年的时间里走过了先进国家半个世纪走过的道路。50年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术[1],建成了一支具有深厚继电保护理论造诣和丰富运行经验的继电保护技术队伍,对全国继电保护技术队伍的建立和成长起了指导作用。阿城继电器厂引进消化了当时国外先进的继电器制造技术,建立了我国自己的继电器制造业。因而在60年代中我国已建成了继电保护研究、设计、制造、运行和教学的完整体系。这是机电式继电保护繁荣的时代,为我国继电保护技术的发展奠定了坚实基础。

自50年代末,晶体管继电保护已在开始研究。60年代中到80年代中是晶体管继电保护蓬勃发展和广泛采用的时代。其中天津大学与南京电力自动化设备厂合作研究的500kV晶体管方向高频保护和南京电力自动化研究院研制的晶体管高频闭锁距离保护,运行于葛洲坝500kV线路上[2],结束了500kV线路保护完全依靠从国外进口的时代。

在此期间,从70年代中,基于集成运算放大器的集成电路保护已开始研究。到80年代末集成电路保护已形成完整系列,逐渐取代晶体管保护。到90年代初集成电路保护的研制、生产、应用仍处于主导地位,这是集成电路保护时代。在这方面南京电力自动化研究院研制的集成电路工频变化量方向高频保护起了重要作用[3],天津大学与南京电力自动化设备厂合作研制的集成电路相电压补偿式方向高频保护也在多条220kV和500kV线路上运行。

我国从70年代末即已开始了计算机继电保护的研究[4],高等院校和科研院所起着先导的作用。华中理工大学、东南大学、华北电力学院、西安交通大学、天津大学、上海交通大学、重庆大学和南京电力自动化研究院都相继研制了不同原理、不同型式的微机保护装置。1984年原华北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用[5],揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。在主设备保护方面,东南大学和华中理工大学研制的发电机失磁保护、发电机保护和发电机?变压器组保护也相继于1989、1994年通过鉴定,投入运行。南京电力自动化研究院研制的微机线路保护装置也于1991年通过鉴定。天津大学与南京电力自动化设备厂合作研制的微机相电压补偿式方向高频保护,西安交通大学与许昌继电器厂合作研制的正序故障分量方向高频保护也相继于1993、1996年通过鉴定。至此,不同原理、不同机型的微机线路和主设备保护各具特色,为电力系统提供了一批新一代性能优良、功能齐全、工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果。可以说从90年代开始我国继电保护技术已进入了微机保护的时代。

二、继电保护的未来发展

继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化发展。

1计算机化

随着计算机硬件的迅猛发展,微机保护硬件也在不断发展。原华北电力学院研制的微机线路保护硬件已经历了3个发展阶段:从8位单CPU结构的微机保护问世,不到5年时间就发展到多CPU结构,后又发展到总线不出模块的大模块结构,性能大大提高,得到了广泛应用。华中理工大学研制的微机保护也是从8位CPU,发展到以工控机核心部分为基础的32位微机保护。

南京电力自动化研究院一开始就研制了16位CPU为基础的微机线路保护,已得到大面积推广,目前也在研究32位保护硬件系统。东南大学研制的微机主设备保护的硬件也经过了多次改进和提高。天津大学一开始即研制以16位多CPU为基础的微机线路保护,1988年即开始研究以32位数字信号处理器(DSP)为基础的保护、控制、测量一体化微机装置,目前已与珠海晋电自动化设备公司合作研制成一种功能齐全的32位大模块,一个模块就是一个小型计算机。采用32位微机芯片并非只着眼于精度,因为精度受A/D转换器分辨率的限制,超过16位时在转换速度和成本方面都是难以接受的;更重要的是32位微机芯片具有很高的集成度,很高的工作频率和计算速度,很大的寻址空间,丰富的指令系统和较多的输入输出口。CPU的寄存器、数据总线、地址总线都是32位的,具有存储器管理功能、存储器保护功能和任务转换功能,并将高速缓存(Cache)和浮点数部件都集成在CPU内。

电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护、控制装置和调度联网以共享全系统数据、信息和网络资源的能力,高级语言编程等。这就要求微机保护装置具有相当于一台PC机的功能。在计算机保护发展初期,曾设想过用一台小型计算机作成继电保护装置。由于当时小型机体积大、成本高、可靠性差,这个设想是不现实的。现在,同微机保护装置大小相似的工控机的功能、速度、存储容量大大超过了当年的小型机,因此,用成套工控机作成继电保护的时机已经成熟,这将是微机保护的发展方向之一。天津大学已研制成用同微机保护装置结构完全相同的一种工控机加以改造作成的继电保护装置。这种装置的优点有:(1)具有486PC机的全部功能,能满足对当前和未来微机保护的各种功能要求。(2)尺寸和结构与目前的微机保护装置相似,工艺精良、防震、防过热、防电磁干扰能力强,可运行于非常恶劣的工作环境,成本可接受。(3)采用STD总线或PC总线,硬件模块化,对于不同的保护可任意选用不同模块,配置灵活、容易扩展。

继电保护装置的微机化、计算机化是不可逆转的发展趋势。但对如何更好地满足电力系统要求,如何进一步提高继电保护的可靠性,如何取得更大的经济效益和社会效益,尚须进行具体深入的研究。

2网络化

计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,使人类生产和社会生活的面貌发生了根本变化。它深刻影响着各个工业领域,也为各个工业领域提供了强有力的通信手段。到目前为止,除了差动保护和纵联保护外,所有继电保护装置都只能反应保护安装处的电气量。继电保护的作用也只限于切除故障元件,缩小事故影响范围。这主要是由于缺乏强有力的数据通信手段。国外早已提出过系统保护的概念,这在当时主要指安全自动装置。因继电保护的作用不只限于切除故障元件和限制事故影响范围(这是首要任务),还要保证全系统的安全稳定运行。这就要求每个保护单元都能共享全系统的运行和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,确保系统的安全稳定运行。显然,实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络联接起来,亦即实现微机保护装置的网络化。这在当前的技术条件下是完全可能的。

对于一般的非系统保护,实现保护装置的计算机联网也有很大的好处。继电保护装置能够得到的系统故障信息愈多,则对故障性质、故障位置的判断和故障距离的检测愈准确。对自适应保护原理的研究已经过很长的时间,也取得了一定的成果,但要真正实现保护对系统运行方式和故障状态的自适应,必须获得更多的系统运行和故障信息,只有实现保护的计算机网络化,才能做到这一点。

对于某些保护装置实现计算机联网,也能提高保护的可靠性。天津大学1993年针对未来三峡水电站500kV超高压多回路母线提出了一种分布式母线保护的原理[6],初步研制成功了这种装置。其原理是将传统的集中式母线保护分散成若干个(与被保护母线的回路数相同)母线保护单元,分散装设在各回路保护屏上,各保护单元用计算机网络联接起来,每个保护单元只输入本回路的电流量,将其转换成数字量后,通过计算机网络传送给其它所有回路的保护单元,各保护单元根据本回路的电流量和从计算机网络上获得的其它所有回路的电流量,进行母线差动保护的计算,如果计算结果证明是母线内部故障则只跳开本回路断路器,将故障的母线隔离。在母线区外故障时,各保护单元都计算为外部故障均不动作。这种用计算机网络实现的分布式母线保护原理,比传统的集中式母线保护原理有较高的可靠性。因为如果一个保护单元受到干扰或计算错误而误动时,只能错误地跳开本回路,不会造成使母线整个被切除的恶性事故,这对于象三峡电站具有超高压母线的系统枢纽非常重要。

由上述可知,微机保护装置网络化可大大提高保护性能和可靠性,这是微机保护发展的必然趋势。

3保护、控制、测量、数据通信一体化

在实现继电保护的计算机化和网络化的条件下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可从网上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。因此,每个微机保护装置不但可完成继电保护功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,亦即实现保护、控制、测量、数据通信一体化。

目前,为了测量、保护和控制的需要,室外变电站的所有设备,如变压器、线路等的二次电压、电流都必须用控制电缆引到主控室。所敷设的大量控制电缆不但要大量投资,而且使二次回路非常复杂。但是如果将上述的保护、控制、测量、数据通信一体化的计算机装置,就地安装在室外变电站的被保护设备旁,将被保护设备的电压、电流量在此装置内转换成数字量后,通过计算机网络送到主控室,则可免除大量的控制电缆。如果用光纤作为网络的传输介质,还可免除电磁干扰。现在光电流互感器(OTA)和光电压互感器(OTV)已在研究试验阶段,将来必然在电力系统中得到应用。在采用OTA和OTV的情况下,保护装置应放在距OTA和OTV最近的地方,亦即应放在被保护设备附近。OTA和OTV的光信号输入到此一体化装置中并转换成电信号后,一方面用作保护的计算判断;另一方面作为测量量,通过网络送到主控室。从主控室通过网络可将对被保护设备的操作控制命令送到此一体化装置,由此一体化装置执行断路器的操作。1992年天津大学提出了保护、控制、测量、通信一体化问题,并研制了以TMS320C25数字信号处理器(DSP)为基础的一个保护、控制、测量、数据通信一体化装置。

4智能化

近年来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,在继电保护领域应用的研究也已开始[7]。神经网络是一种非线性映射的方法,很多难以列出方程式或难以求解的复杂的非线性问题,应用神经网络方法则可迎刃而解。例如在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一非线性问题,距离保护很难正确作出故障位置的判别,从而造成误动或拒动;如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。其它如遗传算法、进化规划等也都有其独特的求解复杂问题的能力。将这些人工智能方法适当结合可使求解速度更快。天津大学从1996年起进行神经网络式继电保护的研究,已取得初步成果[8]。可以预见,人工智能技术在继电保护领域必会得到应用,以解决用常规方法难以解决的问题。

三、结束语

建国以来,我国电力系统继电保护技术经历了4个时代。随着电力系统的高速发展和计算机技术、通信技术的进步,继电保护技术面临着进一步发展的趋势。国内外继电保护技术发展的趋势为:计算机化,网络化,保护、控制、测量、数据通信一体化和人工智能化,这对继电保护工作者提出了艰巨的任务,也开辟了活动的广阔天地。

参考文献

1王梅义.高压电网继电保护运行技术.北京:电力工业出版社,1981

2HeJiali,ZhangYuanhui,YangNianci.NewTypePowerLineCarrierRelayingSystemwithDirectionalComparisonforEHVTransmissionLines.IEEETransactionsPAS-103,1984(2)

3沈国荣.工频变化量方向继电器原理的研究.电力系统自动化,1983(1)

4葛耀中.数字计算机在继电保护中的应用.继电器,1978(3)

5杨奇逊.微型机继电保护基础.北京:水利电力出版社,1988

6HeJiali,Luoshanshan,WangGang,etal.ImplementationofaDigitalDistributedBusProtection.IEEETransactionsonPowerDelivery,1997,12(4)

神经网络的发展史范文5

【关键词】电力系统;继电保护;网络化;一体化;智能化

1.继电保护的意义

电力系统运行中常会出现故障和一些异常运行状态,而这些现象会发展成事故,使整个系统或其中一部分不能正常工作,从而造成对用户少送电、停止送电或电能质量降低到不能容许的地步,甚至造成设备损坏和人身伤亡。而电力系统各元件之间是通过电或磁建立的联系,任何一元件发生故障时,都可能立即在不同成度上影响到系统的正常运行。因此,切除故障元件的时间常常要求短到1/10s甚至更短。而这个任务靠人完成是不可能的,所以要有一套自动装置来执行这一任务。继电保护的作用不只限于切除故障元件和限制事故影响范围(这是首要任务),还要保证全系统的安全稳定运行。这就要求每个保护单元都能共享全系统的运行和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,实现微机保护装置的网络化。这样,继电保护装置能够得到的系统故障信息愈多,对故障性质、故障位置的判断和故障距离的检测愈准确,大大提高保护性能和可靠性。

2.继电保护现状

2.1国内继电保护现状

1984年原东北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用,揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。在主设备保护方面,关于发电机失磁保护、发电机保护和发电机―――变压器组保护、微机线路保护装置、微机相电压补偿方式高频保护、正序故障分量方向高频保护等也相继通过鉴定,至此,不同原理、不同机型的微机线路保护装置为电力系统提供了新一代性能优良、功能齐全、工作可靠的继电保护装置。

到90年代,随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果,此时,我国继电保护技术进入了微机保护的时代。

2.2国外继电保护现状

国外的继电保护已经走过了一个多世纪的历程。上世纪9 0年代,随着微机保护的发展,不断有新的改善继电保护性能的原理和方案出现,这些原理和方案同时也对微机保护装置硬件提出了更高的要求。由于集成电路和计算机技术的飞速发展,微机保护装置硬件的发展也十分迅速,结构更加合理,性能更加完善。近年来,与微机保护领域密切相关的其它领域的飞速发展给微机保护带来了全新的革命。国外微机保护发展了近十五年,经历了三代保护设计上的更新换代,并以微处理器技术与多种已被提出并被可靠证明和广泛应用的算法相结合为基础,不断为新型微机保护的开发和完善创造着良好的实现条件。

3.电力系统继电保护前景

在未来,微机保护的发展趋势集中体现在硬件上高度的集成化、标准化、性能上高度的开放化,软件上的多功能化。其目的是使微机保护系统在实现功能日益完善的软硬件基础上实现保护系统运行及性能价格比的最优化结构。

3.1计算机化

随着计算机硬件的发展,微机保护硬件得到了有力的技术支持,取得了迅速发展。电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护、控制装置和调度联网以共享全系统数据、信息和网络资源的能力,高级语言编程等。这就要求微机保护装置具有相当于一台PC机的功能。

现在,同微机保护装置大小相似的工控机的功能、速度、存储容量大大超过了当年的小型机。因此,用成套工控机做成继电保护的时机已经成熟,这将是微机保护的发展方向之一。继电保护装置的计算机化是不可逆转的发展趋势。但对如何更好地满足电力系统要求,如何进一步提高继电保护的可靠性,如何取得更大的经济效益和社会效益,尚须进行具体深入的研究。

3.2网络化

计算机网络作为信息和数据通信工具已成为信息时代的技术支柱。由于缺乏强有力的数据通信手段,目前的继电保护装置只能反映保护安装处的电气量,切除故障元件,缩小事故影响范围。于是,人们提出了系统保护的概念,将全系统各主要设备的保护装置用计算机网络联接起来,实现继电保护能保证全系统的安全稳定运行,即每个保护单元都能分享全系统的运行和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,确保系统的安全稳定运行。要真正实现保护对电力系统运行方式和故障状态的自适应,必须获得更多的系统运行和故障信息,只有实现保护的计算机网络化,才能做到这一点。

3.3保护、控制、测量、数据通信一体化

在实现继电保护的计算机化和网络化的条件下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端,它可以从网上获得电力系统运行和故障的任何信息和数据,也可将它获得的被保护元件的任何信息和数据传送给网络控制中心的任一终端,因此,每个微机保护装置不但可以完成继电保护功能,而且在无故障正常运行情况下还可以完成测量、控制、数据通信功能,亦即实现保护、控制、测量、数据通信一体化。

3.4智能化

近年来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,在继电保护领域的研究也已开始。神经网络是一种非线性映射的方法,很多难以列出方程式或难以求解的复杂非线性问题,应用神经网络的方法则可迎刃而解。例如在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一非线性问题,距离保护很难正确作出故障位置的判别,其它如遗传算法、进化规划等也有其独特的求解复杂问题的能力。将这些人工智能方法适当结合可使求解速度更快。可以预见,人工智能技术在继电保护领域必会得到应用,以解决用常规方法难以解决的问题。

4.结束语

鉴于电力系统的被保护元件发生故障时,继电保护装置应能自动、迅速,有选择地将故障元件从电力系统中切除,以保证无故障部分迅速恢复正常运行,并使故障件免于继续遭受损害的特点,如何在今后确保继电保护的更可靠运行,牵涉继电保护可持续发展的重要课题,因此全面研究继电保护发展趋势,有着十分重要的现实意义。■

【参考文献】

[1]吴斌,刘沛,陈德树.继电保护中的人工智能及其应用.电力系统自动化,1995.

[2]陈德树.计算机继电保护原理与技术[M].北京:水利电力出版社,1992.

[3]王维俭.电力系统继电保护基本原理[M].北京:清华大学出版社,1991.

神经网络的发展史范文6

关键词:继电保护技术;电力系统;应用

中图分类号:TM63 文献标识码:A

引言:近年来,随着电子及计算机通信技术的快速发展为继电保护技术的发展注入了新的活力,同时也给继电保护技术不断的提出了新的要求。作为继电保护技术如何才能有效的遏制故障,使电力系统的运行效率及运行质量得到有效的保障,是继电保护工作技术人员需要解决的技术问题。

1.继电保护发展的现状

上世纪60年代到80年代是晶体管继电保护技术蓬勃发展和广泛应用的时期。70年代中期起,基于集成运算放大器的集成电路保护投入研究,到80年代末集成电路保护技术已形成完整系列,并逐渐取代晶体管保护技术,集成电路保护技术的研制、生产、应用的主导地位持续到90年代初。与此同时,我国从70年代末即已开始了计算机继电保护的研究,高等院校和科研院所起着先导的作用,相继研制了不同原理、不同型式的微机保护装置。1984年原东北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用,揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。在主设备保护方面,关于发电机失磁保护、发电机保护和发电机-变压器组保护、微机线路保护装置、微机相电压补偿方式高频保护、正序故障分量方向高频保护等也相继通过鉴定,至此,不同原理、不同机型的微机线路保护装置为电力系统提供了新一代性能优良、功能齐全、工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果,此时,我国继电保护技术进入了微机保护的时代。

目前,继电保护向计算机化、网络化方向发展,保护、控制、测量、数据通信一体化和人工智能化对继电保护提出了艰巨的任务,也开辟了研究开发的新天地。随着改革开放的不断深入、国民经济的快速发展,电力系统继电保护技术将为我国经济的大发展做出贡献。

2.电力系统继电保护装置的基本要求

(1)速动性。是指保护装置应尽可能快地切除短路故障。缩短切除故障的时间以减轻短路电流对电气设备的损坏程度,加快系统电压的恢复,从而为电气设备的自启动创造了有利条件,同时还提高了发电机并列运行的稳定性。(2)可靠性。保护装置如不能满足可靠性的要求,反而会成为扩大事故或直接造成故障的根源。为确保保护装置动作的可靠性,必须确保保护装置的设计原理、整定计算、安装调试正确无误;同时要求组成保护装置的各元件的质量可靠、运行维护得当、系统简化有效,以提高保护的可靠性。(3)选择性。当供电系统中发生故障时,继电保护装置应能选择性地将故障部分切除。首先断开距离故障点最近的断路器,以保证系统中其它非故障部分能继续正常运行。(4)灵敏性。保护装置灵敏与否一般用灵敏系数来衡量。在继电保护装置的保护范围内,不管短路点的位置如何、不论短路的性质怎样,保护装置均不应产生拒绝动作;但在保护区外发生故障时,又不应该产生错误动作。

3.继电保护技术的配置和运用

3.1继电保护装置的作用继电保护装置在供电系统中具有极其重要的作用,在电力系统发生故障时,必须要通过保护装置将故障及时排除,以防发生更大的故障。当电力设备处于具有危害性的不正常的工作状态时,保护装置必须及时发出警报信号报知给工作人员,以便其及时消除不正常的工作状态,防止电力设备和元器件发生损害,从而导致电力事故的发生。

3.2继电保护装置的基本原理

电力系统发生短路故障以后,电流会骤增,电压会骤降,电路测量阻抗会减小,电流和电压之间的相位角会发生变化,这些参数的变化能构成原理不同的继电保护,比如电流增大会构成过电流、电流阻断保护;电压降低会构成低电压保护。

3.3继电保护装置的运用

工厂和企业的高压供电系统和变电站都会运用到继电保护装置。在高压供电系统分母线继电保护的应用中,分段母线不并列运行时装设的是电流速断保护和过电流保护,但是在断路器合闸的瞬间才会投入,合闸后就会自动解除。配电所的负荷等级如果较低,就可以不装设保护装置。变电站常见的继电保护装置有线路保护、母联保护、电容器保护、主变保护等。

(1)线路保护,通常采用二段式或者三段式的电流保护。其中一段是电流速断保护,二段是限时电流速断保护,三段是过电流保护。(2)母联保护 ,限时电流保护装置联同过电流保护装置一起装设。(3)电容器保护,包括过流保护、过压保护、零序电压保护和失压保护。(4)主变保护,包括主保护 (重瓦斯保护、差动保护),后备保护(复合电压过负荷保护、过流保护)继电保护技术在目前已经得到飞速的发展,各种各样的微机保护装置正逐渐被投入使用,微机保护装置是有各种不同,但是其基本原理和目的都是一样的。

4.电力系统继电保护发展趋势

4.1网络化发展趋势

计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,使人类生产和社会生活的面貌发生了根本变化,它深刻影响着各个工业领域并为之提供了强有力的通信手段。多年来,继电保护的作用也只限于切除故障元件、缩小事故影响范围,这主要是由于缺乏强有力的数据通信手段。随着电力系统发展的要求及通信技术在继电保护领域应用的深入,继电保护的作用不只限于切除故障元件和限制事故影响范围 ( 这是首要任务) ,还要保证全系统的安全稳定运行。这就要求每个保护单元都能共享全系统运行状态和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,确保系统的安全稳定运行。显然,实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络连接起来,亦即实现微机保护装置的网络化。实现保护装置的计算机联网将使保护装置能够得到更多的系统故障信息,提高对电力系统故障性质、故障位置判断和故障测距的准确性。总之,微机保护装置网络化可大大提高继电保护的性能及可靠性,是微机保护发展的必然趋势。

4.2继电保护智能化

智能化进入20世纪90年代以来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,电力系统继电保护领域内的一些研究工作也转向人工智能的研究。专家系统、人工神经网络等逐步应用于电力系统继电保护中,为继电保护的发展注入了新的活力。人工神经网络具有分布式存储信息、并行处理、自组织、自学习等特点,其应用研究发展十分迅速,目前主要集中在人工智能、信息处理、自动控制和非线性优化等问题的研究。结合人工智能技术,分析不确定因素对智能诊断系统的影响,而提高诊断的准确率,是今后智能诊断发展的方向。

4.3控制、保护、数据通信、测量一体化

在实现继电保护的计算机化和网络化的条件下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可以从网络上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。因此,每个微机保护装置不但可完成继电保护功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,亦即实现保护、测量、数据通信一体化。

电力系统作为一个庞大复杂的系统,各元件之间通过电或磁发生联系,任何元件发生故障都将在不同程度上影响系统的正常运行。继电保护作为电力技术的一环,它对保障电力系统安全运行、提高社会经济效益起到举足轻重的作用。电力系统由于其覆盖的地域极其辽阔、运行环境极其复杂以及各种人为因素的影响,电气故障的发生是不能完全避免的。在电力系统中的任何一处发生事故,都有可能对电力系统的运行产生重大影响,为了确保电力系统的正常运行。必须正确地设置继电保护设备。

5.结语

总之,在电力系统继电保护工作中,只有对继电保护装置进行定期检查和维护,按时巡检其运行状况,及时发现故障并做好处理,保证系统无故障设备正常运行,才能提高供电的可靠性。

参考文献: