前言:中文期刊网精心挑选了土壤环境要素范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
土壤环境要素范文1
关键词:锦州市;基本农田;环境质量;调查
中图分类号:X825文献标识码:A文章编号:16749944(2013)12018402
1概况
根据辽宁省环境监测实验中心《关于印发“2012年辽宁省环境监测方案”的通知》的要求,锦州市确定基本农田的专项监测的地点为凌海市建业乡、黑山县刘马村和北镇观音阁街道河洼村。
(1)凌海市建业乡。建业乡辖区总面积163km2,多为平原。辖区内盐碱地占40%,耕作面积10万亩,其中稻田5万亩,大田3.8万亩,菜地1.2万亩。农田灌溉地下水50%,地表水50%。周围无明显工业污染源。
(2)黑山县刘马村。刘马村土壤类型为半沙,颜色以黑色为主呈中性微碱性反应。灌溉方式:滴灌、喷灌等。地下水资源丰富,埋置深度40~50m,水质好无污染。农作物有玉米、花生、大豆、高粱。玉米种植面积占该村土地种植面积95%以上。亩产量平均600~750kg,亩施肥50kg。
(3)北镇观音阁街道河洼村。大田作物有玉米、大豆,地下水位30m左右,村东有“玉泉湖”小水库,供附近居民灌溉,周围无重点污染源。生活污染源分布在居民区,主要污染物污染渠道为生活污染和畜禽养殖污染,饮用水源类型为地下水,化肥使用尿素、复合肥,有机肥施用量50kg/亩。
2采样方法
3样品预处理及测定方法
样品预处理方法和测试方法见表1。
4评价方法
5监测结果及评价
在全市的15个点位中,污染等级属于清洁(Ⅰ)的是8个点位,占总点位的53%。污染等级属于尚清洁(Ⅱ)的是2个点位,占总点位的13%。污染等级属于轻度污染(Ⅲ)的是5个点位,占总点位的33%。
根据本次调查结果显示,凌海市的超标金属为镉,黑山县和北镇市的超标金属为镉和汞。由于选择的3块基本农田周围均没有大的污染源,所以造成土壤重金属超标的主要原因是土壤施用含有镉和汞的农药和肥料(表4)。
6结论与展望
通过本次调查,锦州市基本农田主要污染物为镉和汞。虽然尚不严重,但已有超标现象。
土壤作为一个开放系统,同时也是地表各环境要素相互作用的枢纽,土壤与其他环境要素之间不断进行着物质和能量的交换,因大气、水体或生物体中的污染物的迁移转化,进入土壤,因而造成土壤污染的物质来源极为广泛。土壤污染防治是复杂、长期的系统工程,应从发展清洁生产入手,彻底控制和消除污染源。控制过量使用化肥、农药、化学药品,推广污染土壤的改良,进行污染土壤的修复等。
目前,人们对土壤污染的危害还认识不足,对土壤的环境保护意识还不强,因此应该通过多种媒介手段进行广泛的宣传教育,提高民众对土壤环境保护及土壤污染的认识,使防治土壤污染成为全民的自觉行为。
参考文献:
土壤环境要素范文2
一、指导思想
以改善环境质量为核心,全面贯彻党的十和十八届二中、三中、四中、五中、六中全会精神,大力推进生态文明建设,深入贯彻落实《生态环境监测网络建设方案》,紧密围绕“十三五”环境保护重点工作,积极构建全国统一的生态环境监测规范体系、质量控制和质量管理体系,强化法规、行政和技术手段,全面提高环境监测数据的真实性、准确性和可比性,为环境管理科学决策提供重要保障。
二、基本原则
(一)理顺体制机制。适度上收环境监测事权,完善考核机制,明确各方责任,实现“谁考核、谁监测”,保障监测数据的独立性和公正性。
(二)强化质量控制体系建设。构建全国统一的环境监测规范体系和质控体系,实现环境质量监测活动全要素溯源传递和全过程质量控制,保障监测数据的科学性和可比性。
(三)严格执行各项质量管理制度。加强内部质量控制、强化外部质量监督,有效规范环境监测活动,打击监测数据弄虚作假行为,保障环境监测数据的准确性和权威性。
三、工作目标
2016 年底前,上收国家环境空气质量监测事权,建立气态污染物量值溯源体系和颗粒物比对体系,完善空气质量监测质量管理制度和技术规范,建立远程在线质控系统、数据及仪器参数变化评估及预警体系,保障国家环境空气质量监测数据的准确可靠。2017年,在现有基础上,进一步完善地表水和近岸海域环境质量监测质控技术体系,组织开展质量管理和监督检查活动,保障国家水环境质量监测数据准确可靠;建立土壤样品采集、制备、分析、数据审核全过程质量控制的有效机制。2020年,全面建成环境空气、地表水和土壤等环境监测质量控制体系,深化信息技术在环境监测质量管理中的用,进一步推进监测信息公开和公众监督,保障大气、水、土壤污染防治行动计划评价及考核数据客观真实、准确权威。
四、工作内容
(一)深化体制机制改革,防止行政干预
1.加快监测事权上收。积极推进生态环境监测体制改革,实行省以下环境监测垂直管理,加快环境空气、地表水、土壤、近岸海域等环境质量监测事权上收,全面建成国家环境质量监测网(以下简称国家网),所有站点原始监测数据第一时间直传中国环境监测总站。省级环保部门适时上收环境质量监测事权,完善地方环境质量监测网(以下简称地方网)。实现“谁考核、谁监测”,保障用于评价、考核的环境监测数据不受行政干预。
(二)健全管理体系,明确各方职责
2.构建环境监测质量管理新模式。建立国家与省级环保部门组成的两级环境监测质量管理模式。环境保护部负责全国环境监测质量管理工作,建立健全环境监测质量管理规章制度和标准规范,开展环境监测质量管理和监督检查活动,指导地方环境监测质量管理工作。省级环保部门按照国家统一要求,负责开展本行政区域内环境监测质量管理工作。中国环境监测总站和省级环境监测机构分别负责国家和地方的监测质量管理技术工作。
3.完善环境监测质量管理制度。推动出台《环境监测管理条例》,修订《环境监测管理办法》《环境监测质量管理办法》以及《环境监测数据弄虚作假行为判定及处理办法》,制订环境空气、地表水、土壤环境监测质量管理相关规定,健全环境监测技术人员从业规范,制定环保行业标准样品使用管理、社会环境监测机构的监督管理等制度,实现环境监测质量管理有章可循、依法管理。
4.强化国家网运行管理。国家网由中国环境监测总站直接管理。城市环境空气质量监测采取委托社会环境监测机构运维的模式开展;地表水环境质量监测采取委托社会环境监测机构监测(运维)或流域上下游环保系统监测机构联合监测的模式开展;土壤环境质量监测采取地方环保系统环境监测机构采样,由中国环境监测总站委托有能力的实验室集中制样、贴标和分析的模式开展。中国环境监测总站负责国家网监测数据传输、审核,监控监测仪器的关键参数,国家网运维机构开放通信协议,监测数据与地方共享。地方环保部门负责国家网的运维条件保障,不再参与国家网的数据审核。
5.加强内部质量控制。充分发挥国家环境质量监测质控体系的作用,强化主要环境要素的全过程质量控制。中国环境监测总站每年组织开展臭氧等气态污染物的量值溯源与传递、颗粒物手工比对工作。每年组织地级以上城市环境监测站开展环境空气、地表水和土壤等环境监测能力考核。不定期组织开展有证标准样品使用情况调查,组织不同来源标准样品之间的分析比对。组织开展地表水跨界联合监测、比对测试和留样复测等。建立土壤环境质量监测随机比对测试机制,组织不同监测单位开展比对测试。
6.加快培育环境监测市场。加强对社会环境监测机构的监管,出台管理办法,探索建立环境监测技术人员水平评价类职业资格制度,加大人员培训力度,规范环境监测社会化服务行为,促进环境监测市场健康有序发展。加强环境监测服务市场信用体系建设,建立社会环境监测机构和人员的诚信评价体系和“黑名单”制度,及时向社会公布监测质量信用情况,完善退出机制,积极营造全行业“重质量、讲信誉”的良好氛围和市场环境,不断提升社会环境监测机构和人员的服务水平和质量。
(三)完善技术体系,提高环境监测数据质量
7.健全环境监测规范体系。加强环境监测规范体系的顶层设计,建立制修订项目库,形成动态更新机制。加快环境空气、地表水、土壤环境监测规范制修订工作。完善有证标准样品体系。推动部门间环境监测方法标准和评价技术规范的统一,提高环境监测数据的可比性和评价结果的一致性。
8.构建国家环境监测质量控制体系。建立由国家环境监测质控平台、区域环境监测质控实验室、环境监测机构与运维机构组成的三级环境监测质量控制体系。国家质控平台设在中国环境监测总站,负责编制质量管理体系文件,制定质量控制计划并组织实施,组织开展量值溯源和量值传递,以及监测质量检查工作。环境保护部在全国遴选若干个省级环境监测机构搭建区域质控实验室,负责区域环境监测质控工作,向上、向下开展臭氧量值溯源、量值传递和颗粒物比对等工作,进行例行质控检查。环境监测机构与运维机构负责建立、运行并持续改进内部质量控制体系,按规定开展日常维护和监测仪器的检定、校准与量值溯源和比对等质控活动,环境监测机构与运维机构及其负责人对监测数据真实性和准确性负责。创新质控技术手段。完善自动监测数据采集和远程质控系统。在实现监测数据一点多发、实时直传的基础上,开发自动监测仪器关键参数的实时采集和传输功能以及水质自动监测仪器远程校准、维护等质控功能,及时发现并减少影响自动监测设备稳定运行的因素。加快建设环境空气和水质自动监测设施视频O控系统,实时记录和保存自动监测站内外环境及人员操作情况,保障自动监测设备正常运行。完善手工监测过程质控,探索采样现场和样品运输过程GPS 定位的应用,努力实现视频或图片等记录资料实时上传,形成覆盖手工监测各环节全过程的质量管理体系。
(四)创新监管机制,引入第三方评估和质控手段
9.推进质量管理第三方监督机制。建立由环境保护部主导、第三方参与的外部质量监督体系和中国环境监测总站主导、第三方参与的内部质量控制体系,构建权责明确、协调有序的国家环境监测质量管理体系。在全国范围内遴选权威专家组建国家环境监测数据质量评估委员会,下设环境空气、地表水和土壤等环境监测数据质量评估专家组,评估环境监测数据质量和全国环境监测质量管理体系运行情况,提出意见建议。
10.持续开展监督检查。规范日常监督检查,中国环境监测总站联合区域质控实验室,组织开展质控体系运行情况检查。每年完成一定比例的国家环境空气、地表水和土壤环境质量监测站(点)的现场检查,检查结果报环境保护部。强化飞行检查,环境保护部组建国家环境监测质量监督检查专家库,以环境监测数据质量评估结果和举报线索等为依据,不定期组织飞行检查,重点打击环境监测数据弄虚作假行为。
11.加大信息公开力度。将环境监测信息作为质控重要手段,按照“能公开、尽公开”的原则,继续执行环境空气和主要水系重点断面自动监测数据实时公开制度,大力推进地表水断面和土壤环境质量监测数据公开力度,保障人民群众的环境监测数据质量知情权和监督权。以传统媒体和新媒体为载体,宣传和解读环境监测质量管理政策,畅通建言献策和举报投诉途径,曝光监测数据造假典型案例,不断提高全社会环境监测质量意识。
(五)加大惩处力度,严厉打击数据造假行为
12.建立质量检查与考核联动机制。明确环境监测数据质量在大气、水和土壤污染防治行动计划考核中的作用,对于地方政府,着重考核环境质量的改善;对于地方环保部门,着重考核监测数据的有效性和真实性。在环境监测质量检查中发现环境监测数据质量不合格的,该地区污染防治工作成效考核适当扣除相应分值;发现环境监测数据弄虚作假的,一票否决该地区该环境要素污染防治工作成效。
13.严肃整治不规范监测行为。对监测工作中仪器设备安装不规范、仪器性能测试不合格、仪器维护频次不够、缺少监测质控报告等问题,依法依规严肃处理,并对整改情况开展“回头看”检查。
14.严厉打击监测数据弄虚作假。建立环保部门与公检法机关联动机制。对于擅自挪动监测点位、修改仪器关键参数、堵塞采样头或采样管路、样品分析和监测报告造假等行为,构成犯罪的,依照有关法律法规移交有关部门处理。对发现环境监测行为不规范且多次整改不到位的,以及数据造假或配合造假的社会环境监测(含运维)机构或监测仪器生产厂商,终止服务合同,列入“黑名单”。对造假行为的处理结果向社会公开,强化警示和震慑作用。
五、能力建设
结合“十三五”环境监测能力建设工作,加强国家质控平台及环境空气、地表水、土壤环境监测质量核查能力建设,配齐质控仪器设备,完善环境空气和地表水自动监测在线质控系统、国家网环境监测数据采集和远程控制系统、自动监测站视频监控系统等,提高国家质控能力水平。健全量值溯源与传递体系,提升环境监测质量核查、质控样品分装和标准样品验证能力,满足质量控制工作需要。
六、组织实施
(一)环境保护部负责制定环境监测质量管理规章制度,开展环境监测规范制修订工作,组织实施对国家和地方环境监测质量管理进行监督检查等工作。
(二)中国环境监测总站负责制定并组织实施环境空气、地表水和土壤环境监测质量控制技术方案,承担国家环境监测质量控制技术体系的构建和持续改进工作,直接管理国家网,对地方网进行业务指导。
土壤环境要素范文3
土壤是种养殖农产品主要的环境要素,其承担着产地环境中大约90%来自各方的污染物[1]。近年来,由于产地土壤环境受到污染而造成的农产品质量安全问题逐渐增多,引起了广泛的重视和研究[2]。土壤污染具有多源性、隐蔽性、累积性等特性,决定了它对生长在其中的农产品危害的复杂性、长期性、潜在性和突发性[3]。因此,研究产地土壤环境中主要污染物的来源、特点以及污染现状,提出相应的防治措施,对有效保护我国农产品产地土壤环境,保障农产品质量安全具有重要的意义。
一、产地土壤环境污染的定义及分类
土壤污染的定义目前不统一,主要有3种不同观点。(1)“绝对性”定义,即部分学者认为由人类向土壤添加有害物质,土壤中该有害物质含量超过了土壤背景值,土壤就受到了污染。(2)“相对性”定义,即有学者以特定的参照数据来加以判断,如以土壤背景值加2倍标准值为临界值,如果超过临界值,则认为土壤已被污染。(3)“综合性”定义,即定义为不但要看含量的增加,还要看后果,即当加入土壤的污染物超过土壤的自净能力,或污染物在土壤中累积量超过土壤基准值,而给生态系统造成危害,此时才能被称为污染。由于第3种定义更具有实际意义,而被使用的最多。土壤污染主要可分为无机物污染(重金属、化肥、盐碱类),有机物污染(主要是持久性有机污染物,如多环芳烃、多氯联苯以及难降解的农药等有机物质),生物污染(带有病菌的城市垃圾、厩肥等)以及放射性污染(锶和铯等在土壤中生存期长的放射性元素)等类型,污染物可单独对土壤的污染起作用,但多数是多种污染物共存的复合污染。产地土壤环境的污染物来源复杂,但主要来自工矿企业“三废”污染和污水灌溉两个方面。据统计,我国耕地污染退化面积约占总耕地面积的1/10,其中工业“三废”污染的耕地近1000万hm2,使用污水灌溉的耕地已达330多万hm2[4]。近年来,农业面源污染也开始成为引起土壤污染的一个重要因素。
二、主要的产地土壤环境污染物
(一)重金属类物质
目前,国际上公认影响比较大、毒性较高的重金属类物质一般有5种,即汞、镉、铅、铬、砷。20世纪50-70年代,日本富士县的“骨痛病”就是由于镉污染而导致糙米中镉超标而引起的,患者数千人,其中数百人死亡,至今还有人不断提出和索赔。随着我国工业和农业的快速发展,城市化进程的不断加快,由于污水灌溉和工矿企业排污引起的产地土壤环境重金属污染问题也逐渐显现。如我国20世纪70年代,就有学者研究发现辽宁省沈阳张士灌区的土壤重金属超标严重,污染面积达2500多hm2,造成农产品无法食用[5]。雷鸣等人对湖南工矿污染区的调查也显示,株洲和湘潭等地工矿污染地区的镉、砷和铅污染面积占当地耕地总面积的90%以上[6]。在各类农产品中,水稻和叶菜类蔬菜是最易富集重金属元素的农作物[7~8],因此,当土壤被环境中的重金属污染后,稻米和叶菜类蔬菜中重金属残留问题值得关注。重金属污染普遍具有以下共同点:(1)污染面积逐渐扩大。由于重金属类物质与污染排放密不可分,随着工农业的快速发展,特别是重工业的地域性转移,重金属元素威胁的范围逐渐加大。(2)污染治理耗时较长。土壤中的重金属很难靠稀释作用和自净化作用来消除,即使通过生物修复等手段,某些被重金属污染的土壤也可能要100~200年时间才能够恢复。(3)累积性和不可逆性。土壤中的重金属会被农作物吸收,通过食物链逐级放大和改变存在形态,从而对人体健康造成严重威胁。比如,汞被生物体甲基化后形成甲基汞,其具有神经毒性的环境污染物,主要侵犯中枢神经系统,可造成语言和记忆能力障碍等严重问题。人体长期摄入重金属,会蓄积于内脏和骨骼中,引起多种疾病。如在人体内,镉的半衰期长达7~30年,可蓄积50年之久,能对多种器官和组织造成损害[9]。如此长的半衰期,对人体来说甚至是不可逆的,一旦进入体内就难以排出。
(二)持久性有机污染物(POPs)
POPs是指一类具有长期残留性、生物蓄积性、半挥发性和高毒性,能够在大气环境中长距离迁移并能沉积回地球,对人类健康和环境具有严重危害的天然或人工合成的有机物质。目前,我国污染较为严重的POPs物质主要有:(1)多环芳烃(PAHs)。我国已有学者开展了对京津及附近地区、长三角地区、珠三角地区及东南沿海等区域的研究。结果表明,土壤中的PAHs主要来源于燃烧源(包括工业燃煤、汽车尾气排放等)。对北京郊区土壤中16种PAHs的研究表明,土壤中16种PAHs的平均浓度为1350μg/kg,其含量范围在16~3880μg/kg之间[10]。(2)有机氯农药(OCPs)。OCPs具有高效的杀虫力,1950-1970年被广泛用于农业生产,但是由于OCPs特殊的物理化学性质,其难以被化学降解和生物降解,在土壤中半衰期可达几年甚至十几年。由于OCPs严重对环境的影响,从20世纪80年代起许多国家开始禁止或限制使用OCPs。据统计,我国多年来累计施用滴滴涕40多万t,六六六等OCPs19万余t,虽然OCPs目前已被禁止使用,但是由于降解缓慢,其对土壤的污染仍不容小视[11~12]。(3)二英(Dioxin)。二英是一类物质的简称,包括210多种化合物。焚烧垃圾和塑料制品,以及有机物和氯的热处理过程,都会释放二英类物质。它们通过大气干湿沉降、污水污泥农用以及废弃物堆放等多种途径进入土壤环境[13]。我国有学者对一些地区土壤中二英含量的调查显示,部分省份土壤存在二英污染问题,其中钢铁厂和垃圾焚烧厂周围土壤污染尤为明显[14~16]。(4)多氯联苯(PCBs)。PCBs不但具有持久性有机污染物高毒、难降解的共同特点,同时还是内分泌干扰物,对人类健康和环境具有严重危害。目前,在工业发达的国家和地区,已发现有较高浓度的PCBs。在不发达国家和地区、人迹罕至的海洋、大气、水、土壤中也发现了PCBs。我国从1965年开始生产PCBs,到20世纪80年代初停产,共生产上万t,多年的使用造成一些地区环境污染严重[17],已经在局部地区酿出了严重污染事件。POPs污染的主要特点:(1)高毒性。主要表现为它的“三致性”,即致癌、致畸、致突变效应。它还具有遗传毒性,能造成人体内分泌系统紊乱,使生殖和免疫系统受到破坏,并诱发癌症和神经性疾病。(2)持久性。POPs类有机污染物结构稳定,在自然条件下很难被降解。研究表明,即使是很多年前使用过,在许多地方依然能够发现它们的残留物,POPs分子结构中化学键具有相对较高的键能,可以抵御光解、化学和生物降解。一旦它们释放进入环境,将有可能在环境中持久存在。(3)生物蓄积性。POPs类有机污染物分子结构中通常含有卤素原子,具有低水溶性、高脂溶性的特征,因而能够在脂肪组织中发生生物蓄积,从而导致从周围介质迁移、富集到生物体内,并通过食物链的生物放大作用达到中毒浓度。(4)迁移性。POPs具有半挥发性,能够从水体或土壤中以蒸汽形式进入大气环境或被大气颗粒物吸附,通过大气环流远距离迁移。在较冷或高海拔地方会重新沉降到地面上。而后在温度升高时,它们会再次挥发进入大气,进行迁移。如今在地球两极以及珠穆朗玛峰地区都已监测到POPs物质的存在。
(三)农业面源污染物质
农业面源污染主要是在农业生产过程中滥施化肥、农药和农用地膜所致。(1)化肥。自从1843年人类开始生产化肥以来,化肥的使用已有165年的历史,随着农业的发展,全球化肥施用量将不断增加。我国自20世纪80年代开始,化肥施用量逐年增长。农业部数据显示,目前使用量约稳定在5460万t(折纯量),平均施用量达500kg/hm2以上,远远超出发达国家225kg/hm2的安全上限。由于化肥主要来源于矿物,其中含有大量的重金属类物质,比如用作磷肥的矿石中通常含有一定量的镉元素,过量施用必然会造成间接污染。(2)农药。虽然有机氯等高残留农药目前已被禁止,但其他农药使用问题也非常突出。据统计,2006年我国农药年产量约130万t,使用面积约2.8亿hm2,只有约20%能被作物吸收利用,大部分进入了水体、土壤及农产品中[18~19]。除有效成分外,农药中的助剂等其他成分也会长期残留于产地土壤环境中,形成持续污染。(3)农用地膜。由于设施农业的普及,地膜污染也在加剧,近20年来,我国的地膜用量和覆盖面积已居世界首位,2010年地膜覆盖面积约为1.8×1011m2,年用量约为130万t,年均约有50万t农膜残留于土壤中,残膜率达40%。而且在全部农膜市场中,高档农膜仅占2%,中低档农膜高达98%[20]。残留土壤中的劣质地膜不但破坏土壤结构,减低土壤肥力,还会在分解过程中析出铅、锡等有毒物质,影响作物安全。面源污染的主要特点:(1)影响面积大。与重金属污染等集中于工矿企业周边不同,面源污染物质影响面积非常大[21]。据统计,我国化肥利用率不到4成,在施用过程中,大量肥料未被有效利用并流失,这在我国几乎所有耕地中都会产生。(2)直接危害小。大多数面源污染物主要影响水体环境,对产地土壤环境的直接危害较小,其危害主要表现在间接方面,即长期过量使用化肥会出现土壤孔隙堵塞、板结甚至酸化,降低微生物活性,从而降低农作物产量,同时能活化重金属等有害物质,影响农产品质量安全。(3)污染控制难。农业面源污染的污染源并不具体,同时在给定的区域内它们的排放是相互交叉的,加之不同的地理、气象、水文条件对污染物的迁移转化影响很大,因此很难具体监测单个污染源的排放并加以控制。
三、我国产地土壤环境污染的主要问题分析
(一)污染源头控制不到位
由于我国部分企业环保意识不强,污染控制技术不达标,工业“三废”和污水灌溉造成的产地土壤环境污染并未禁绝,污染事故仍时有发生。同时,由于我国环境管理体系主要建立在城市和重要点源污染防治上,对面源污染重视不够,导致农村环境治理体系的发展严重滞后。加之农业投入品使用方式粗放,缺乏科学引导,特别容易导致农业面源污染,使目前畜禽养殖业和矿物肥料大量施用造成的产地土壤环境污染问题逐步显现。
(二)污染底数不清楚
目前我国产地土壤环境污染途径多,原因复杂,由土壤污染引发的农产品安全事件时有发生,成为影响农业生产、群众健康和社会稳定的重要因素。而现在已开展的污染监测工作覆盖范围较窄,对产地土壤污染的范围、程度甚至污染物种类缺乏整体的掌握,导致防治缺乏针对性。
(三)污染治理缺乏有效手段
产地土壤环境污染治理的难度较大,其主要原因在于土壤本身的结构复杂,且各地土壤背景情况各不相同,对污染物的结合情况多变,加之复合污染物之间的相互作用,使得快速解决土壤污染问题难以实现。土壤污染修复的方法多种多样[22],包括物理方法,如客土法、热处理法等,缺点在于费用昂贵,难以用于大规模污染土壤的改良。化学方法,如化学固定或化学淋洗等,但前者只能降低污染物的生物有效性,后者又容易造成二次污染。生物修复方法,其中植物修复以运行成本低,回收和处理富集重金属的植物较为容易,成为了近年来发展的热点,但该方法的主要问题在于超积累植物较难获得,同时植物对重金属一季累积的绝对量并不可观。
四、产地土壤环境污染的防治对策建议
(一)杜绝污染源头
消除工业“三废”对产地的污染排放,严格污灌管理。加大环保监管和执法力度,严格执行国家制定的污染排放标准,杜绝超标排放现象。特别注重产地环境的保护工作,设立定位监测点,健全农业环境监测网络。同时,严格控制农业面源污染。应加大对农业面源污染的重视程度,加强农业环境法律法规建设,完善农村环境管理机构。积极转变农业发展方式,推进测土配方施肥、精准施肥、水肥一体化等农业技术,鼓励使用农家肥或其他有机肥料,提高化肥利用率,从源头上减少化肥流失造成的面源污染。
(二)做好农产品产地土壤环境治理规划和分级工作
农产品产地土壤环境污染往往呈现时空变异性,同时由于污染物种类繁多,潜在的相互作用等因素,难以简单界定。因此,应积极开展农产品产地土壤环境的小比例尺详细普查数据,摸清污染原因、污染种类和范围程度,做好治理的规划计划。同时,健全产地土壤环境标准,组织开展污染等级划分工作,对未污染的土壤,要进一步加大保护力度;对轻度污染的土壤,应抓紧修复治理或种植替代作物;对有毒有害物质超标严重的土壤,应坚决设立禁止生产区,或科学调整种植其他非食用农作物。
土壤环境要素范文4
目前,在国际上,随着食品行业竞争的加剧和食品安全性的放大,历来作为食品行业背景的环境因素,正走上前台,唱起了主角。
一方面,“环境”成为食品企业广告语的新宠,被频频使用。有着韩国第一泡菜美誉的“宗家府”,在其宣传语中写着:为了利用适合于泡菜的软性的低钙质水,将工厂建在北京水资源优良的密云开发区,优良的自然环境,保证优良的产品品质。作为世界知名的快餐企业,麦当劳最新的宣传单上,出现了这样一段话:乳牛有如小宝宝般,得到农场主人特别悉心照顾,在美好的环境中健康成长,所以它们也生产出优良牛奶,让麦当劳制造优良的奶制品美食。
另一方面,和食品相关的新闻中,“原产地”一词也频频出现。据意大利农场主协会称,从6月7日起,意大利牛奶生产者必须在消毒鲜牛奶包装的底图上印刷原产地标签。美国农业部部长约翰斯表示,该部建议从2009年起,在全美范围内强制推行牛、猪、羊、鸡等家禽家畜的动物身份证制度,以便能追踪从出生地,到农场、饲养场、屠宰加工厂的全过程。
在食品行业的相关规定中,绿色食品、有机食品和无公害食品构成了农产品质量安全体系的基本框架,这些产品在生产过程中都强调与环境的友好性。相应地,在此基础上的食品加工业,也提高了对品质的要求,不仅要看产品本身的品质,还要检查企业原产地的水、空气、环境等综合指标。食品信息可追踪系统作为食品质量安全风险控制管理的有效手段越来越受到发达国家的关注,继欧盟以后,日本、新西兰等国都在大力推广。按这个规定,食品、饲料、供食品制造用的家畜,以及与食品、饲料制造相关的物品,其在生产、加工、流通各个阶段必须确立食品信息可追踪系统。该系统对各个阶段的主体作了规定,以保证可以确认以上的各种提供物的来源与方向。
大企业往往站得高而看得更远,同时他们感觉到的国际竞争的压力和参与国际市场的迫切感也比一般企业来得更早更直接。因此,他们在企业发展扩张过程中,对环境要素的关注也比一般企业要早,看得也比一般企业要重。落户北京密云工业开发区的一群国内外知名食品企业——从国内最大的乳品巨头之一伊利集团、国内最大的乳酸菌发酵企业太子奶集团、国内最大的板栗加工企业山东绿润集团、国内冰淇淋业五巨头之一的“宏宝莱”集团,到世界知名的“美登高”食品,再到世界头号的韩国泡菜品牌“宗家府”——正是这样一群“勇为行业先”的人。
密云作为首都水源保护地,是北京地区唯一无污染的饮用水源,也是我国北方地区优质水源的代表。几十年的保水还形成了密云无污染的土壤、绿色的自然环境、洁净的空气。优质的水源和环境,加上在这样环境中培育出的安全、优质的农副产品,无疑为落户密云的食品企业生产出高品质的产品提供了双重的保险。而作为真正的龙头企业,他们看到的还不仅仅是这些,他们更需要在绿色安全食品时代来临之际,借助环境要素去塑造企业的品牌形象。
当国内大多食品企业还在产品品质、产品加工等环节的安全性能上下功夫的时候,政府已经先一步行动了,从政策上有意识地引导食品企业去关注环境的重要性。在2000年4月开始实施的《绿色食品产地环境质量标准》中,对绿色食品植物生长地和动物养殖地的空气环境、水环境和土壤环境质量都有具体而细致的规定。在国家认监委2002年的《出口食品生产企业卫生要求》中,明确规定了对出口食品生产企业的环境卫生的要求。在《全国食品工业“十五”发展规划》中,也重点提出把食品工业发展与环境保护紧密结合起来,控制食品工业污染,推进食品工业的清洁生产,加强食品原料基地的环境监管。
土壤环境要素范文5
实验部分
1仪器及分析方法
分析仪器分别为:PE-AAnalyst原子吸收分光光度计,砷化氢发生装置。砷采用二乙氨基二硫代甲酸银光度法,镍、铜、铅、镉采用原子吸收分光光度法。
2数据处理与质量控制
数据统计分析采用均值型污染指数法,评价标准采用清洁对照点监测值进行评价。质量控制是保证监测结果准确可靠的必要措施。在监测过程中,根据质控程序对所用仪器参数进行校准。对实验室分析采用带国家标准样品和加标回收措施进行准确度控制。结果表明,曲线斜率b、截距a和相关系数r均在规定的范围内,标准样品和加标回收率实验均符合要求。
结果与分析
1蔬菜基地环境空气中重金属污染特征
按照环境空气综合污染指数法,对环境空气中重金属污染分级(分级依据为国家环境监测总站环境质量报告书编写技术规定)。即:P<4轻污染;4<P<6中污染;6<P<8重污染;P>8严重污染。环境空气质量分级见表1。环境空气中重金属污染区域特征为:西湾、东湾、下四分、中盘一带远郊区(蔬菜种植区)为轻污染区;白家嘴一带近郊区为中污染区;高崖子近城区为重污染区。环境空气中重金属监测指标污染特征主要以Ni、Cu污染为主,Cd、Pb污染为辅,并且Ni、Cu污染为重污染,Cd为中污染,Pb为轻度污染,As无污染。
2蔬菜基地土壤中重金属污染特征
依据中国文化书院《环境影响评价》中关于土壤环境质量评价方法中的土壤分级方法,由于土壤本身尚无分级标准,所以土壤的分级一般都按综合污染指数而定。P<1定为未受污染,P>1为已污染,P值越大,污染越严重。根据这一分级规则,由表2可见,新华、东湾、西湾一带的土壤未受重金属污染,土壤环境质量较好;其余测点均为轻度污染。土壤重金属污染特征表现为以Cd污染为主,其次为Ni,两项指标均为轻度污染,其它三项指标无污染,但Cu却处于将要污染的临界值。由此可见,金昌市土壤中重金属污染表现出很强的地域特征,即以冶炼厂为座标,沿东南方向,从高崖子至西湾、东湾,污染程度依次减轻。
3蔬菜中重金属污染特征
由于蔬菜中无重金属评价标准和分级标准,故本次评价是参照土壤的分级方法,采用对照点新华测点监测值作为评价标准的,其污染特征具有一定的区域性。根据土壤的分级规则,城郊蔬菜种植区西湾与东湾所采集的四种最常见蔬菜中,重金属含量相对新华而言均属轻度污染,且污染水平基本相当,其中西红柿相对而言污染偏高,辣椒与豆角偏低。蔬菜的区域污染特征为:离市区较近的西湾蔬菜中重金属污染重于离市区较远的东湾,即离市区越近,重金属污染越重。蔬菜中各项重金属指标的污染特征为:各项指标中重金属污染特征不十分显著,表现为As污染略高于其它指标,Cd污染略低于其它指标,其余指标污染水平相当。
污染原因分析
1环境空气
从环境空气中重金属污染特征分析,可清楚地看到,环境空气中重金属污染地域特征很明显是以冶炼厂为中心,向东南、西北两个方向展开,并且呈逐渐减弱之势,由此也说明造成环境空气中重金属污染的原因,主要是冶炼烟气中排放的大量金属粉尘。其次气象因素也是很重要的原因之一,这两个方向区域的环境空气中重金属污染严重,是因为金昌市夏季的主导风向为西北风与东南风,因此,导致这部分区域环境空气中重金属污染加重。
2土壤
根据土壤中重金属污染特征,再加上这一带灌溉用水为金川峡水库地表水,而金昌市地表水中重金属指标均达到《地表水环境质量标准》GB3838-2002中二级标准,不会对土壤造成污染,由此可以得出造成高崖子一带土壤中重金属污染的主要原因是金川公司冶炼烟气所致。
3蔬菜
根据蔬菜中重金属污染特征,各区域蔬菜中重金属监测结果同清洁对照点相比,相差不是很大,但还是表现出了地域特点,即离冶炼厂越近,蔬菜中重金属污染越重,可以说造成蔬菜中重金属污染的原因是由冶炼烟气造成的。
结语
通过对金昌市蔬菜基地环境空气、土壤、蔬菜中重金属污染特征研究,得出蔬菜基地环境空气已不同程度受到重金属的污染,且表现为离城区越近重金属污染程度越重;而土壤、蔬菜未受重金属污染,但仍表现出很明显的污染地域特征,即离市区较近区域土壤及蔬菜中重金属含量高于离市区较远的区域。表明金川公司冶炼烟气对金昌市蔬菜基地环境质量造成了不同程度的影响,应引起各方面的关注。
防治措施
1制定污染防治规划
金昌市有关部门应结合市区环境空气中重金属污染现状,划定重金属污染规划区,制定规划区重金属污染防治规划,确定目标,逐年实施,控制污染。
2形成各部门齐抓共管机制
污染防治工作涉及部门广泛,如环保、城建、林业、水利等部门,应建立起由政府对规划区环境空气质量负责,环保部门统一组织协调、监督管理,各部门通力合作,齐抓共管的管理运行机制。
3建立制度,规范管理
环境空气中重金属污染防治工作,技术难度大,没有成熟的管理经验可以借鉴。因此,要建立切实可行的管理制度,使污染防治工作有章可循,有法可依,逐步走上法制化轨道。
4强化源头管理,推行清洁生产
金昌市的环境污染与生产工艺技术落后、管理不善密切相关。冶炼过程的采掘率和金属回收率较低,这样,既浪费了资源,又污染了环境。因此,要依靠科技进步,积极探索研究冶炼烟气中重金属回收利用的新途径,推行清洁生产工艺,以减少污染物排放。
5加强“菜篮子”产品产地环境管理
在所划定的“菜篮子”产地设置必要的防治污染的隔离带或缓冲区,在其周边要严格控制工业污染源的排放,对已经投产的有污染且不达标的建设项目,必须严格监管,依法停产治理,对逾期不能达标的企业,建议政府对其关闭。加强对“菜篮子”产品产地的环境监督管理力度,及时调查处理“菜篮子”产地环境污染事故与纠纷,并对“菜篮子”产品产地环境质量实施动态监测与评价,为政府选择划定“菜篮子”产品产地提供依据。
6充分发挥环境监测的技术监督作用
环境监测要充分发挥其技术监督、技术支持、技术服务的作用,根据国家和省、市环保部门的实际需求,进一步补充完善环境监测技术路线,组织制定“菜篮子”产品产地专项环境监测规划或方案,开展对“菜篮子”产品产地大气、水质、土壤等环境要素的监测,为市政府决策并加强污染防治提供科学依据。
土壤环境要素范文6
关键词:数据库系统;采油区;水土保持
引言
在油气田的开发建设中,不可避免地破坏地表植被和土壤层,造成土壤盐碱化、油漠化,形成水土流失易发区。采油区水土保持工程是一项庞大而复杂的生态修复系统工程,所涉及的数据信息量巨大,传统的分散式数据信息管理方法严重制约了采油区水土保持研究工作的发展。建立采油区水土保持数据库系统,解决采油区水土保持资料积累难、存放乱、查找难、总体规模化程度较差、利用率很低的问题,实现对生态地质环境专业数据的信息化统一管理势在必行。
一、采油区水土保持数据库系统的总体结构
采油区水土保持数据库系统分为基础数据库、应用系统及用户界面三部分进行开发,它是以基础数据库为基础,结合紧密的整体系统。它的系统功能由图形管理模块、属性管理模块、模型分析模块、帮助模块四部分组成。其中图形管理模块和属性管理模块统称为数据信息管理模块。系统整体结构如图所示。
二、采油区水土保持数据库的构建
1.采油区水土保持数据系统的数据对象
采油区水土保持数据库主要包括水环境、大气环境、土壤环境、生态环境及基础地理五部分内容。它们划分为基础数据信息、采油区水土保持特征信息两种类型。基础数据信息包括简化的地理要素、人口密度分布特征信息、国民经济生产总值密度分布特征信息、水文气象特征信息等。采油区水土保持特征信息反映采油区水土保持个体分布特征的空间及属性数据,其主要内容是简化的生态环境要素、废弃井场分布信息、输油管线分布信息、原油加工区分布信息、土地油漠化―盐碱化分区数据信息、地下水异常范围分布信息、已有适宜的水土保持方法。
2.采油区水土保持数据的逻辑组成
系统将采油区所有数据信息融为一体,建立逻辑结构概念,概括为四库:底图库、属性库(外挂数据库)、图式图例库、成果库。底图库:由基本图形数据和辅助图形数据组成,是图层的集合,可根据不同的需要任意组合形成不同的图形。属性库:是图元的外挂属性的集合,存贮文字性数据。图式图例库:是制图基础信息的集合,包括色标、线型、子图、图案等。成果库:存贮各种运算的结果。
3.采油区水土保持数据的物理组成
采油区水土保持数据库系统的数据信息按MAPGIS的管理模式进行组织设计,其数据结构为:项目库文件图层图元。项目是在特定信息领域为特定目标建立的信息管理的最顶层对象,它是与特定领域和目标有关的信息库的集合,一个项目包含了多种类型的库。库是在项目控制之下由以不同存储方式记录的不同类型信息文件组成的集合,在本项目中主要包括图形库和属性库。一个库由一个以上的文件组成。文件是应用软件对用户信息体管理的基本单位,一个图形文件中可以有多个图层。图层是为区分信息的属性并对各属性进行独立操作,对同一文件中不同属性类型的数据进行管理所划分的层次。图元是图形信息的最小单位,由点、线、多边形组成。
4.采油区水土保持数据的标准化
数据标准化关系到数据信息存取、交换以及模型建设等诸多方面,考虑数据结构的复杂性及数据应用过程的需求和便利,部分图层属性采用外挂的方式处理。采油区水土保持数据信息包括空间数据(图形数据)和非空间数据(属性数据)两部分。图形数据信息包括地理信息、社会经济信息和采油区地质环境信息,其中采油区地质环境信息包含有水环境、大气环境、土壤环境和生态环境。图形数据的层次编码方案,考虑到图形数据查询、合并、分离的需要,确定图形数据的编码方案是:图形数据分类编码在国家标准编码的基础上进行扩展,使用7位数字编码,后2位为扩展专题码。其编码原则为:前五位为国标《国土基础信息数据分类与代码(GB/T 13923-92)》的有关规定码。为便于和专业图形的编码相区分,地理信息扩展专题码用“01”表示;社会经济信息扩展专题码用“02”表示。
三、采油区水土保持系统模型的构建
1.采油区水土保持系统模型系统的结构
从采油区水土保持区划的角度出发,模型系统分为采油区地质环境现状分析评价模型和采油区水土保持方案分析模型。采油区地质环境现状分析评价模型主要依据现行国家标准对采油区的水、土壤和大气质量进行评价,划分污染程度类别,指出危害。采油区水土保持方案分析模型依据水、土壤、大气、生态等指标,从治理方法数据库取数据信息,依据特定规则完成不同类型采油区水土保持的可行性分析。模型采用了多个模型层次分析方法,这些模型有机组合在一起形成采油区水土保持分析模型结构。参与采油区水土保持分析模型的主要因子为:水环境因子、大气环境因子、土壤环境因子、生态环境因子、人口、社会经济、重大工程建设以及当前技术条件下的各种物理、化学、生态修复方法等。
2.模型分析的基本算法
(1)数据归一化方法
归一化的目的是把数据水平控制在0~1之间,实现不同评价因素的数据可比化,以便进行模型运算。结合采油区治理技术水平确定分析因子数据归一化的标准,避免出现极值现象,影响治理方案的优化选择。根据专业评价标准的倍数确定归一最大值“1”的实际值,大于该值时为1,最小值为“0”。
(2)模型分析方法
以图形表达最终分析结果的模型,基本思路是网格运算方法,每一个网格将是今后模型分析的一个运算单位。数据模型运算的基础是在规范的网格数据上进行的,数据预处理就是将模型所需要的各种分析数据指标按模型要求进行网格化。将参与分析的各个因子给定权重,将其值分配到不同网格上进行叠加形成的新图形就是分析结果。
3.模型分析体系
(1)模型分析指标体系
采油区水土保持系统分析模型指标体系分为地质环境、治理方法、影响重要程度三大类,详细情况分述如下:地质环境指标主要是水环境因子,如石油类、pH、总溶解固体等;土壤环境因子,如石油类、pH、全盐量、有机炭、氮、磷、钾等;大气环境因子,如风速、温度、湿度、降水量、蒸发量等;生态环境因子,诸如采油区动植物生长活动情况之类等;治理方法指标主要是物理法、化学法、生物法和基因工程法适应的不同范畴。
(2)采油区水土保持分析模型
①采油区地质环境现状分析模型。采油区地质环境现状分析采用单项污染指数法进行。其分析评价计算公式为:Pi=Di/Si。式中Pi――第i种评价因子的污染指数;Di――第i种评价因子的实测浓度值,mg/L;Si――第i种评价因子的评价标准值,mg/L。
根据原评价结果得到的数据,结合分类标准进行分类,并将其值分配到网格上,将评价结果进行矢量化,按规范进行级别划分,形成“采油区地质环境现状评价 图”。
②采油区水土保持方法分析模型。采油区水土保持方法主要是生物修复法,模型主要针对pH、全盐量、石油类含量等主要指标,结合物候条件(气温及降水等)进行分析。模型采用多指标综合排序法原理进行设计。模型设计按五个指标进行,各指标在参与方案评价前先进行临界值初判,方案中有指标在临界值以外不参与方案优选。模型设计中不同地区的各指标权重wj及其指标标准值cj由专业人员根据地区实际情况给出,指标取值fij采用实测值ci与指标标准值cj差的绝对值除以指标标准值cj比值(归一化处理将数据水平控制在0~1之间,当比值超过1时为“1”,小于等于1时按比值计)即
采油区水土保持最优方案确定采用最小值法进行,其数学表达式为:
③采油区水土保持效果分析评价模型。研究工作确定的主要效果评价指标为原生污染物去除率及植被恢复率等。计算公式如下:
④国土重要程度评价模型。国土重要程度评价属现状评价,为进行采油区水土保持危险程度预测评价提供前提,考虑的主要因素有重大工程建设、国民经济生产总值、人口密度分区等。其评价方法按多指标综合排序法原理进行,各指标根据实际情况给出。
⑤数据库系统软件开发。作为一个完整的软件系统,它包含了数据信息采集和维护、模型分析、图形生成和图形编辑、信息检索、数据信息输出等功能。程序开发以Windows2003为操作系统,以MapGis为GIS支撑环境平台,使用MapGis的API函数进行二次开发,以Visual C++为开发编译工具。信息管理子系统实现对数据信息的管理,模型分析评价子系统以信息管理子系统为基础,充分实现数据代码的共享。其中数字化输入、图形编辑、图形输出等是GIS系统主要功能的直接应用。
作者单位:河南财政税务高等专科学校
参考文献:
[1]王跃邦,刘明义,等.石油工业与水土保持[J].中国水土保持,2006,(4):6-7.