人工神经网络法范例6篇

前言:中文期刊网精心挑选了人工神经网络法范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

人工神经网络法

人工神经网络法范文1

【关键词】上证指数 人工神经网络 拟合度 实证分析

一、引言

随着西方发达国家股票市场的兴起,随着时代的不断进步和变迁,股票市场逐渐拓展至发展中国家和一些相对落后的国家。对于股票价格进行时间序列预测无论对于投资者,政策分析者等等都有非常重要的作用,然而股票价格是一个复杂多变,难以描述的序列,影响因素繁杂且有些难以量化,因此至今学者们仍在探索能更好的描述它的方法[1]。

近几年计算智能技术在时间序列领域逐渐流行,作为一种新兴的信息处理技术,计算智能技术现在已经成为重要的分析与预测工具。计算智能技术有普通统计方法所不能比拟的优点,它的预测更加精准,并且具有自学习、自组织、自适应的特征和简单、通用、鲁棒性强、适于并行处理的优点[2]。

在上面提到的计算智能技术中,最有名的当属人工神经网络,此模型在过去的二十年间有着很快的发展,因为其在认知的输入和输出的映射的表现公认的非常有效,甚至在面对一些难以判断的不确切输入输出关系时,仍表现出很好的拟合行,因此现在成为了时间序列非线性方法中最常被使用的到模型,当然也成为了股票价格时间序列预测模型中较为有效的并常被使用的模型之一[3]。

不论是基于哪一种数学模型,现有的拟合方法往往过于追求样本内的拟合精度,而忽略了拟合的模型在样本外的表现。在实际应用中,往往需要更加精确的样本外拟合度。因此本文基于样本外拟合的精度,分别从长期和短期两个时间维度考虑了神经网络模型预测的表现及其鲁棒性,得到了一些关于神经网络模型的结论。

二、研究模型介绍

本文将要对智能计算方法中的人工神经网络模型进行分析研究,下面就该模型的算法进行简单介绍。

神经网络是由大量的神经元按一定的拓扑结构和学习调整方法所构成的。神经元一般表现为一个多输入、单输出的非线性器件。

神经网络代表了一种新的方法体系,所以它能在实际的应用中表现一些独特的功能[6、8]。一般来说,神经网络具有如下的四个基本的特点:强大的学习能力;分布式存储信息;并行性,即并行的计算能力,可以处理快速实时的信息;非线性,即可以很好地模拟非线性系统。

神经网络可以通过自身强大的学习能力,来获取知识,神经网络性能的改善是随着时间一步步通过某种事先定义的量度来调整自身的参数的(比如权值)。一般来说,神经网络主要有监督学习、无监督学习、强化学习三种。

三、数据选取

在众多关于中国股票市场有效性的研究结果表明,中国的股票市场是一种渐进有效的市场或是一种半强有效市场,这样股票价格基本上反映过去信息和公开信息。正是在如此的假设下,我们运用统计学的方法,从股票指数(股票价格加权和)入手来分析和预测股票市场。选择从1998年12月23号开始的上证综指收盘运用神经网络模型进行了固定样本内模型和滚动样本内模型下的短期和长期的拟合预测。

四、实证结果

(一)固定模型下的神经网络模型拟合分析

对从1998年12月23号开始的上证指数收盘价运用MATLAB进行神经网络模型短期拟合预测。首先我们选取前1000个点进行样本内的拟合,对后20个点进行短期预测,并依此以步长20向前滚动,共二十期。

应用MATLAB进行求解,对样本内1000个点进行拟合,并按照拟合得到的模型对后20期以20为步长,向后滚动预测。

同样,我们选取前1000个点进行样本内的拟合,对后100个点(相当于5个月左右的数据)进行长期预测,并依此以步长100向前滚动,共二十期。

神经网络的拟合度在短期内十分精准,可以到了80%以上,有的甚至达到了95%以上,并且未出现50%以下的拟合度,然而长期来看,拟合度的差别非常大,对于趋势的判断有时很准有时完全颠倒,预测拟合度的跨度从90%到-90%。波动性非常大,可见神经网络对于达到一定长度的长期数据(五年以上)拟合的鲁棒性很差,长期来看无法适应不断变化的股市大盘。

(二)滚动模型下的神经网络模型拟合分析

短期内,神经网络模型拟合度仍然十分精准,可以到了80%以上,然而长期来看,由于样本内数据的不断更新,因此样本外的拟合精度十分稳定,表现优异,平均拟合值达到了93%除了一项为60%多,其他均达到了80%以上。说明在半年的长度范围内,人工神经网络的拟合度很好,拟合可靠性较高。

五、结论

本文通过对上证指数1998年后的数据使用人工神经网络进行了短期长期的滚动预测。发现在短期内,神经网络模型的拟合效果一直很好。而在长期来看,人工神经网络,对5年内的数据拟合度很高,然而更长的时间段内鲁棒性不高,拟合度下降很快。

参考文献

[1]顾岚.时间序列分析预测与控制[M].北京:中国统计出版社.1997.

[2]KuanC.M and White,H.Artifieial Neural Networks:AN econometric Perspective (with discussion)[J].Econometrics Reviews,1994,(13):l-143.

人工神经网络法范文2

关键字:电压无功功率控制;九区图;人工神经网络

电压是衡量电能质量的主要指标,电压稳定是整个电力系统稳定的一个重要方面。电压的稳定和质量对于终端用户是非常重要的,而对于负载端的安全和经济运行也有着至关重要的意义。

电力系统中的电压与无功功率的状况密切相关。无功功率从电源端经线路和电压器向负荷端输送,要产生电压损耗。高压线路和变压器的电压损耗主要取决于无功功率。输送的距离越远,中间环节越多,引起的电压降也就越大,负荷端的电压也就越低。合理配置无功电源,使无功功率就衡,不仅可以提高电压水平,而且可以减少电网中有功功率的损耗。我国电网结构不够合理,一些地区在电网发展过程中无功设备配备不足,使得局部地区在负荷增大后无功功率明显不足,造成局部电网较长时间处于低电压水平运行。另外,随着现代电网的发展,大容量机组直接接入超高压电网,使超高压电网内无功过剩。城市供电网的迅速发展由于电缆数量增加使得充电功率增大。当电力系统不正常运行时,大容量发电机组或超高压输电线路退出运行,又会使部分超高压线路符合过重而使无功出力严重不足。这些问题的存在对用户的电压质量、系统的输电能力、电能损耗及安全、经济等方面产生不良影响。

1 电压无功功率控制方法与现状分析

充分开用各种调压手段和无功电源的补偿作用,实现电压无功综合控制对于提高电压合格率和降低网损有很大的作用,能带来经济效益和社会效益。目前实现电压和无功功率的综合控制有全网电压无功功率优化和以变电站为单位的局部区域化两种方法。全网电压无功功率优化是从整个电网考虑,根据电网的潮流分布,确定电网的运行方式,并合理进行无功电源的调度和配置,减少无功功率在电网中的流动。从理论上讲,通过电网调度中心实施全网电压、无功功率综合控制是最合理的方法,但限于我国目前电力系统的自动化较低,实现全系统的电压、无功功率控制困难较大,目前主要是以变电站为单位自动调节电压和无功功率,就地平衡。

变电站电压无功功率控制主要是采用有载调压变压器和补偿并联电容器组,通过调节有载调压变压器分接头和投切并联电容器组来实现调节电压和无功平衡。但是在电压、无功功率双参数需要调节的情况下,考人工调节往往难以做到准确判断和及时调节,人工调节不仅增加了运行人员的劳动强度,而且不能充分利用无功电源设备的补偿作用和保证电压合格率。因此,如何实现变电站电压、无功功率的自动控制是一个值得研究的问题。

2 传统的九区图法

传统的九区图法是固定电压和无功功率边界特性分割区的综合控制策略。根据母线电压和无功功率的运行情况分为九个区域,在不同的区域采取不同的控制对策,综合利用调节有载调压变压器分接头和投切并联电容器组两种手段,将母线电压和无功功率控制在各自的允许范围之内。该方法综合考虑电压和无功功率,是目前采用最多的控制方法,但在某些情况下也存在工作过于频繁的问题,在有些情况下甚至会引起振荡。因此,如何尽量减少工作次数是该方法要解决的主要问题。

3 基于人工神经网络的电压无功功率调节

人工神经网络有集体运算和自适应学习的能力,具有预测性、指导性和灵活性的特点,能大大减少有载调压变压器分接头调节次数,合适的网络结构能够逼近任何一种非线性系统。基于人工神经网络的、将无功功率和优化决策相结合的电压无功功率综合只能控制方法,通过对电压、无功功率进行预测来减少工作次数。该方法根据历史数据,应用人工神经元网络对无功负荷进行预测,然后将预测结果连同当前的母线电压、无功功率、功率因素等经模糊化后作为决策人工神经网络的输入,该决策人工神经网络的输出即为调节动作的策略,该方法实际上已经脱离了九区图的范畴,计算复杂、对硬件要求较高,而且其动作是否合理还依赖于对人工神经网络进行训练工作的成功与否。

4 九区图法和人工神经网络相结合的控制策略

传统的九区图法的控制策略是基于固定的电压无功上、下限而没有考虑无功调节对电压的影响及其协调关系,用于运算分析的信号有分散性、随机性等特点,这就造成了该方法具有控制策略的盲目和不确定性,实际表现为在九区图的某些边界区域,设备会频繁调节。

当运行点在图中的9区时,由于它接近电压上限区,根据该区的传统控制规则“投电容器”,则有可能出现图中所表示的三种结果。结果①是运行点进入了0区,说明这次控制成功。结果②和结果③是运行点进入了1区或2区,人为地增加了电压的不合格率,并且它又会引起变压器分接头下调或切除电容器,从而造成设备的频繁动作。因此在9区内有两种控制方式:一是直接投电容器;二是下调变压器分接头降压,再投电容器。类似的情况还有可能出现在10区。

当运行点在图中的11区时,由于它接近无功下限区,根据该区的传统控制规则“调变压器分接头降压”,则也有可能出现在图中所描述的三种结果。结果④是运行点进入了0区,说明这次控制成功。结果⑤和结果⑥是运行点进入7区或8区,它又会引起变压器分接头下调或切除电容器。因此在11区内也有两种控制方式:一是直接调变压器分接头降压;二是先切电容器使运行点原理无功下限,若电压还是越上限则再调变压器分接头降压。类似的情况还有可能出现在12区。

因此,电力系统运行在9,10,11,12区时,应该考虑采用哪种控制方式以最小次数的动作达到预期效果。由于实时系统电压、有功负荷和无功负荷之间的关系存在随机性、非线性的特点,而人工神经网络具有很强的非线性逼近能力、联想记忆能力功能,在九区图的9,10,11,12区预测变压器分接头调节或电容器投切后的变压无功,决定采用何种控制方式,以得到最佳控制效果。在除9~12区的其他区域内可采用传统的控制策略。这种结合人工神经网络的九区图法控制策略,能够在保证电压合格率有线、无功功率基本平衡的原则下,尽量减少调节投切设备的动作次数。

5 小结

基于九区图和人工神经网络相结合的策略依据给定合理的电压无功功率上下限值和比较准确的人工神经网络的预测,能得到极好的控制效果,既考虑了对受控变压器目标侧母线电压和高压侧无功功率的最优变化曲线的跟踪,又估计了减少变压器分接头动作次数的要求。

参考文献

[1]方锦清,黄国现,罗晓曙.束晕-混沌的神经网络自适应控制[J].中国原子能科学研究院年报, 2003-06.

[2]杨剑. 新型电压无功综合控制装置的研制. 华中科技大学 2004年硕士论文.

[3]冯兆冰. 一类非线性系统模糊神经网络控制方法研究. 大庆石油学院 2005年硕士论文.

[4]罗晓曙,邹艳丽,方锦清. 应用脉冲电压微分反馈法实现DC-DC开关功率变换器中的混沌控制[J].中国原子能科学研究院年报, 2005-06.

[5]曲玉辰.电网谐波抑制技术研究. 大庆石油学院 2006年硕士论文.

人工神经网络法范文3

关键词: 图像检索; 特征提取; 神经网络; 机器学习; 相关反馈

中图分类号: TN711?34; TM417 文献标识码: A 文章编号: 1004?373X(2016)21?0078?05

Design and development of image retrieval platform based on artificial neural network

ZHANG Weihua, GAO Ang

(Department of Information Engineering, Zhengzhou Chenggong University of Finance and Economics, Gongyi 451200, China)

Abstract: Since the difference exists between the high?level abstract semantics and underlying feature of the user?description image, the retrieval system based on the image content feature can′t accurately accomplish the user′s retriecal task. To solve the above problem, an image matching calculation method based on neural network is proposed. The correct mapping from image low?level feature to image classification is formed by means of sample automatic learning and user feedback learning. The neural network after learning can classify and retrieve the image automatically. This method is combined with the image low?layer feature description and user high?level semantics feedback to effectively recover the semantic gap. The whole process of neural network learning and image retrieval was realized by integrating the Web front end, image extraction module, neural network module and database module.

Keywords: image retrieval; feature extraction; neural network; machine learning; relevance feedback

在利用神经网络进行图像检索的过程中,图像的大小、精度及细节越来越丰富,信息含量相应的也越来愈多,当使用大量的信息进行神经网络的构建和训练时,所需的时间和成本都大大增加,并且神经网络的检索效率也会降低,这就使得其满足不了用户准确搜索图像的需求[1]。同时,随着神经网络技术的发展,可以利用各种改进技术提高神经网络的学习效率和预测准确率,使得利用神经网络来模拟人脑对图像的分类和检索可以得到更好的效果。

1 图像特征的提取

系统使用图像分割方法对图像的形状特征进行描述,提取图像中各个部分的形状特征。

1.1 形状特征的提取

使用K?均值聚类分割算法进行图像的分割。将图像分割后,由于每个簇中的像素在视觉特征上具有很强的相似性,因此对每一区域的特征进行简单的描述,提取相应的图像特征然后保存结果,并将其作为图像检索系统的区域特征库。系统针对不同的图像特征选取不同的方法进行描述:

(1) 区域颜色特征,提取该区域中像素点在Lab颜色空间中的均值来描述。

(2) 区域位置特征,提取该区域中像素点在二维空间中的坐标的平均值来描述。

(3) 区域纹理特征,提取该区域中像素的平均对比度及平均各向异性来描述。

(4) 区域形状特征,提取该区域的封闭轮廓,并将其分解为可由若干椭圆重构的由椭圆参数组成的序列,然后通过傅里叶描述符来描述该封闭曲线[2]。

1.2 颜色特征的提取

由于颜色直方图的限制,选择颜色相关图进行图像颜色的提取。图像的颜色相关图就是由所有颜色对进行索引的表,在表中[(i, j)]的第[m]个条目表示找到与颜色为[i]的一个像素点距离为[m]的颜色为[j]的一个像素点的几率。在计算颜色相关图时需采用一些并行计算,这样可以提高计算效率。

1.3 纹理特征的提取

通过对比基于Tamura纹理特征算法的检索程序、基于灰度?梯度共生矩阵算法的检索程序和基于Gabor小波变换算法,基于Tamura纹理特征提取算法的检索程序的查询准确率要比后两者都高,且其查询使用的时间也要少很多,因此系统选择采用Tamura纹理特征提取算法。

2 BP神经网络模型的搭建

2.1 BP神经网络特点

选择BP神经网络作为图像的神经网络分类器,其将[n]维图像底层视觉特征映射为图像的分类。通过实验对BP神经网络进行一些改进和优化,使其能有效地完成图像检索的任务。典型样本集的选择、学习复杂性、网络结构的选择、输入特征向量的选择、预测能力的极限都是需要在搭建BP神经网络时需要考虑的问题[3]。

2.2 BP神经网络的原理及拓扑结构

基于BP神经网络相关原理的学习与分析,确定了系统中BP神经网络的结构和构建过程:首先定义输入层、隐含层和输出层的神经元数目分别为[n,l]和[m,]则[(x1,x2,…,xn)]为网络的输入矢量,[(h1,h2,…,hl)]为隐含层神经元的输出矢量,[(y1,y2,…,ym)]为网络的实际输出矢量,同时定义[(d1,d2,…,dm)]为训练样本所对应的预期输出矢量。然后定义输出层神经元[i]与隐含层神经元[j]的连接权值为[Vij,]隐含层神经元[j]与输出层神经元[k]的连接权值为[Wjk,]隐含层神经元[j]的阈值为[b,]输出层神经元[k]的阈值为[c。]由于传递函数需要表示具有线性特性的输入信号与输出信号的联系,又根据BP神经网络要求传递函数必须连续可导,因此其一般使用在(0,1)之间连续并可导的Sigmoid函数作为传递函数,该函数公式为:

[f(x)=11-e-x] (1)

实际输出矢量与预期输出矢量的误差计算公式为:

[E=12j=1m(dk-yk)2] (2)

隐含层神经元输出矢量的计算公式为:

[hj=fj=1N-1Vijxi+?j] (3)

输出层神经元输出矢量的计算公式为:

[yk=fj=0L-1Wjkhj+θk] (4)

BP神经网络通过反向传播算法调整权值,其权值修正公式为:

[Wij(n+1)=Wij(n)+ηδjx′i] (5)

在式(5)中,[Wij(n)]表示第[n]次学习后的神经元[i]与神经元[j]之间的连接权值,信号输出的神经元为[i,]信号输入的神经元为[j,][Xi]为神经元[i]的实际输出,[η]为网络的学习速率,[δj]为神经元[j]的学习误差。

系统中BP神经网络的构建流程如下:

(1) 初始化网络的连接权值和阈值,其值为均匀分布的随机数。

(2) 对网络使用一组样例数据进行训练。

(3) 网络搭建完成,将输入矢量输入网络可仿真输出符合预期的输出矢量[4]。

2.3 BP神经网络的学习过程

通过对相关反馈算法的学习,提出了一种基于BP神经网络进行学习的图像检索方法,它包含两种学习过程:

(1) 自动样例学习,首先通过包含高层语义标注的样例图像的学习构建图像高层语义的分类器,其中对于图像的每种语义分别构造一个分类器,输入样例图像后使系统提取图像的底层特征作为神经网络的输入,然后经过一定时间的学习可以得到网络的解,使分类器能够初步完成分类任务;

(2) 用户交互学习,首先通过用户的指导,将初步检索结果进行分类,然后系统将用户的反馈整理为学习样本,同样使用自动样例学习过程进行学习,最后得出网络最新的解,使分类器能更精确地完成分类任务。系统中BP神经网络的学习流程如图1所示。

2.4 BP算法的改进

使用附加动量法可以使网络在修正连接权值时,不只考虑误差在其梯度上的变化趋势,还考虑误差在其曲面上的变化趋势。在没有附加动量的情况中,网络在训练过程中有可能陷入局部极小状态,通过使用附加动量则可以在一定程度上绕过这些极小值,避免进入极小状态[5]。附加动量法在反向传播过程中,在每一个神经元的连接权值及阈值的当次训练的变化量上附加一个正比于上次训练后的连接权值及阈值的变化量的项,根据新的变化量计算出新的连接权值及阈值。添加了附加动量因子的连接权值和阈值的变化量计算公式分别为:

[Δwij(k+1)=(1-mc)ηδjpj+mcΔwij(k)] (6)

[Δbj(k+1)=(1-mc)ηδj+mcΔbij(k)] (7)

式中:[k]表示第[k]次训练;[mc]表示动量因子,[mc]的取值一般在0.95附近。

在结合附加动量法的网络训练过程中,需要根据不同条件判断何时使用动量因子来修正权值,其判断条件为:

[mc=0,E(k)>E(k-1)×1.040.95,E(k)

式中[E(k)]为第[k]步的误差平方和。

自适应学习速率的调整公式为:

[η(k+1)=1.05η(k),E(k+1)E(k)×1.04η(k),etc] (9)

式中[E(k)]为第[k]步的误差平方和。

动量法可以帮助BP算法正确找到全局最优解,自适应学习速率法可以帮助BP算法缩短训练时间,通过这两种方法的使用,可以有效地提高神经网络的学习效果。

2.5 实验结果分析

实验目的为确定系统中BP神经网络分类器的隐含层神经元数目。首先根据研究获得的图像特征向量的元素个数构建神经网络分类器的学习样例,此处每个样例的输入向量的元素个数为165个,因此构建16组含有165个元素的输入向量,4个一组划分为一种类别,最终形成含有4种类别的16组训练样本,以此方法再生成该4种类别的4组测试样本。然后根据经验公式获得合适隐含层神经元数目的取值范围,此处为9~17个。最后将训练样本及测试样本先后输入隐含层神经元数目不同的网络中进行训练和测试,记录数据。

表1记录了隐含层神经元数目及对应的训练误差和测试误差的数据,由其数据可以看出,随着隐含层神经元数目的增加训练误差总体上逐渐减小,当个数超过15后训练误差出现一定程度的波动,出现小幅的增加,虽然不影响网络的学习效果,但是过多的神经元个数会增加学习时间,而此时测试误差还是处于降低的趋势。综合分析实验结果,本系统确定采用较合适的15个隐含层神经元。

3 检索系统的设计与实现

3.1 系统结构分析

3.1.1 系统结构

系统的结构如图2所示,图中除了与用户交互的Web前端,其余的图像特征提取模块、神经网络模块及数据库都在服务器端,这种浏览器?服务器结构平台搭建后,用户可以通过不同客户端的Web浏览器进行图像检索的功能,而不必安装本地应用程序,同时将主要的核心功能集中到服务器上,不仅大大简化了系统的开发和维护流程,降低了成本,还增强了系统的扩展性。

3.1.2 系统流程

系统针对不同的功能需求设计了相应的不同流程,这些流程包括系统样例学习流程、用户反馈学习流程、用户查询流程。

如图3所示,在系统的样例学习过程中,系统接收到样例数据后会先对数据进行分析,然后交给神经网络进行学习,最终生成对应类别的分类器,这些分类器会在用户检索时对数据库中的图像进行分类,查找到符合用户需求的图像[6]。样例学习的流程是本系统学习分类知识的关键步骤,在该步骤中用户并不参与系统的学习过程,整个学习过程均为系统自动进行,因此需提供大量被正确标注的清晰图像样例,通过对这些优质样例的学习,系统会自动生成针对图像各种分类所对应的分类器,且经过长时间的学习,这些分类器的准确率会不断上升,最终使查询结果更符合用户需求。

如图4所示,在系统的用户查询流程中,用户的查询条件为图像特征的语义描述,系统最终返回为包含该描述特征的图像集,这个过程利用神经网络分类器学习的高层描述语义与低层图像特征之间的映射,因此随着神经网络学习时间的增大,这种映射也就越精确,系统完成的查询也就越符合用户要求。

3.1.3 图像特征提取模块

如图5所示,当图像输入到图像特征提取模块中时,图像会进行K?均值聚类分割算法处理、颜色相关图算法处理及Tamura纹理特征算法处理,这三个处理过程并行进行。

经过K?均值聚类分割算法处理,图像被分割为若干块区域,每个区域中的像素都具有相似的属性,对于每个区域,会提取其简单的区域特征,如颜色特征、位置特征、纹理特征及形状特征等;经过颜色相关图算法处理,生成当前图像的颜色自相关图;经过Tamura纹理特征算法处理,计算出图像的粗糙度、对比度、方向度、线性度等数值。将经过三个算法处理后得到的数值整理后得到图像的特征向量[7]。

3.1.4 神经网络模块

系统中的图像神经网络分类器由三层组成,分别为输入层、隐含层及输出层,其中输入层的神经元个数与归一化后的图像特征向量的个数相同,为固定值;隐含层的神经元个数通过前文中的实验得出,适合于本系统中神经网络的要求;输出层只有一个神经元进行分类,设定1为属于该分类的学习期望,设定0为不属于该分类的学习期望,但是实际运行时需要设定1为0.9,0为0.1,这是因为Sigmoid函数无法经过有限的连接权值计算得到1与0的值[8]。

3.1.5 Web 平台模块

系统的Web界面包括用户查询输入框、用户图像上传框、查询结果浏览框等。

3.2 实验结果分析

为了检验图像检索平台的性能,首先将系统设置为学习模式,然后从图像库中选取1 000幅已进行人工标注的样例集输入系统,最后当系统发出已训练完毕信号后,对系统已学习的分类当作查询输入系统进行检索,记录系统检索结果。

检索结果可知经过人工指导学习,系统可以仿真模拟更符合人类视觉感知的分类方式,并将其记忆于相应的神经网络分类器中,经过不断的学习,系统可以返回更准确的符合用户需求的检索结果。

4 结 论

本文主要研究包括基于内容的图像检索技术及人工神经网络技术两个方面。首先使用K?均值聚类分割算法、颜色相关图算法及Tamura纹理特征提取算法提取图像相应的形状、颜色及纹理特征,通过整合形成可以完整描述图像信息的特征向量。同时,针对基于内容的图像检索系统中用户高层语义与图像底层特征之间存在的问题,通过样例自动学习和用户反馈学习两种学习方式,BP神经网络通过反向传播学习算法调节网络权值,从而形成图像底层特征到图像分类的正确映射,学习后的神经网络通过这种映射可以进行图像的自动分类及检索,该方法结合了图像的底层特征描述及用户的高层语义反馈,有效地弥补了语义鸿沟。

参考文献

[1] KHERFI M L, ZIOU D. Relevance feedback for CBIR: a new approach based on probabilistic feature weighting with positive and negative examples [J]. IEEE transactions on image processing, 2006, 15(4): 1017?1030.

[2] TRAINA A J M, MARQUES J. Fighting the semantic gap on CBIR systems through new relevance feedback techniques [C]// Proceedings of 2011 the 21th IEEE International Symposium on Computer?Based Medical Systems. [S.l.]: IEEE, 2006: 881?886.

[3] 周资云.基于内容的图像检索系统研发与应用[J].华章,2012(29):22.

[4] 刘丽,匡纲要.图像纹理特征提取方法综述[J].中国图象图形学报,2013,14(4):622?635.

[5] KANUNGO T, MOUNT D M, NETANYAHU N S, et al. An efficient k?means clustering algorithm: analysis and implementation [J]. IEEE transactions on pattern analysis and machine intelligence, 2002, 24(7): 881?892.

[6] WILLIAMS A, YOON P. Content?based image retrieval using joint correlograms [J]. Multimedia tools and applications, 2007, 34(2): 239?248.

人工神经网络法范文4

关键词:油气输送;ANN技术;意义;应用

1 ANN技术

ANN技术也就是人工神经网络技术。人工神经网络是一种通过模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。人工神经网络通过调节系统内部大量节点之间相互连接的关系,并对其之间关系进行信息处理,从而达到处理信息的目的。人工神经网络具有自学习和自适应的能力。人工神经网络技术(ANN技术)就是根据人工神经网络而提出来的处理单元互联组成的非线性、自适应信息处理系统技术,利用人工神经网络技术可以通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。ANN技术通常是通过一个基于数学统计学类型的学习方法得以优化,所以人工神经网络技术也是数学统计学方法的一种实际应用。人工神经网络技术具有四个基本特征:非线性、非局限性、非常定性、非凸性。

就目前来说,常用的人工神经网络是Hopfield联想记忆网络,波尔兹曼学习机和网络误差反传(BP)试验方法。BP网络可以对油气管道油气泄漏、管道腐蚀速度等进行预测,所以在油气储运中,应用最多的是BPNN技术。

2 ANN技术在油气储运中的应用

(一)在油气储运中运用ANN技术的重要意义

油气储运工程主要包括油气田集输、长距离输送管道、储存与装卸等,它是连接油气生产、加工、分配、销售诸环节的纽带。ANN技术通常是通过一个基于数学统计学类型的学习方法得以优化,所以人工神经网络技术也是数学统计学方法的一种实际应用。人工神经网络(ANN)具有非线性、非局限性、非常定性、非凸性等特征,用人工神经网络技术的自适应能力学习管道的各种工况,对管道运行状况进行分类识别,从而更准确的检测油气储运管道泄漏情况和管道腐蚀速度。为了更加准确的检测油气储运管道泄漏情况和管道腐蚀速度,为了石油生产建设的需要,因此要在油气储运中运用人工神经网络技术(ANN技术)。

(二)ANN技术在油气储运中的具体应用

(1)在油气储运中应用ANN技术,是因为人工神经网络(ANN)具有以下的特点和优越性:第一,具有自学习功能。例如管道的油气泄漏情况或者管道腐蚀度进行识别时,首先要把不同管道的泄漏或腐蚀图像样板以及对应的应识别结果输入到人工神经网络系统(ANN)中,利用人工神经网络系统(ANN)的自学功能,学会识别其他的相类似的图像。人工神经网络(ANN)的自学习功能对于油气管道泄漏情况和管道腐蚀情况预测有特别重要的意义。第二,利用人工神经网络(ANN)的联想存储功能,把关于石油管道泄露或腐蚀等的各种情况进行相互的联想、比对,找出石油管道泄露的具体地方以及管道腐蚀的情况,进而提出切实可行的解决措施。第三,利用人工神经网络(ANN)的高速寻找优化解的能力,通过计算机的高速运算,找出解决石油运输中出现的问题的最佳方法。

(2)BPNN网络是一种基于广义2R规则的有监督的学习网络,属误差修正算法。采用BPNN网络对管道泄漏进行检测,主要是利用单元希望输出与实际输m之问的偏差作为连接权调整的参考,并最终减小这种误差。

(3)自适应模糊神绛网络系统具有自学习能力和非线性映射,它不仅能够获取信号的最佳估计,并且能够克服信号处理中存在的模型和噪声的不确定性、不完备性,所以可以用于噪声信号的非线性建模。利用自适应模糊神经网络系统的去噪可以提高压力信号、流量信号的信噪比。自适应模糊神经网络的自适应噪声抵消器具有实现简单、节省运行时间,能快速、有效地消除流量、压力信号中的各种噪声的特点,所以把自适应模糊神绛网络系统应用到油气储运中管道泄漏、腐蚀情况的检测中,提高泄漏检测和定位的精度。

(4)可以利用人工神经网络对油气管道的腐蚀过程和腐蚀速度进行预测。在油气输送管道中,由于各种油气性质的不同,再加上高速度、高循环率的运输,增加了油气管道的腐蚀程度。我们可以通过人工神经网络(ANN),采用逐步回归的方法对油气管道中的腐蚀程度和腐蚀速度进行预测,进而保证油气管道能够安全有效的运行。

3 结语

综上所述,油气储运工程主要包括油气田集输、长距离输送管道、储存与装卸等,它是连接油气生产、加工、分配、销售诸环节的纽带。ANN技术也就是人工神经网络技术,ANN技术具有可以充分逼近任意复杂的非线性关系,具有很强的鲁棒性和容错性,能够同时处理定量、定性知识,能够优化设计、模式识别、联想记忆等特点。在油气储运中用人工神经网络技术的自适应能力学习管道的各种工况,对管道运行状况进行分类识别,更准确的检测油气储运管道泄漏情况和管道腐蚀速度。

参考文献:

[1]王延民,齐志财.ANN技术在油气储运中的应用[J].油气田地面工程.2008,(10):55.

人工神经网络法范文5

1.1人工神经网络研究简况

1943年,生理学家W.S.McCulloch和数学家W.A.Pitts首次提出二值神经元模型。半个世纪以来人们对神经网络的研究经历了五六十年代的第一次热潮,跌人了70年代的低谷;80年代后期迎来了第二次研究热潮,至今迭起,不亚于二战期间对原子弹研究的狂热。

人工神经网络是模仿生物脑结构与功能的一种信息处理系统。作为一门新兴的交叉学科,人工神经网络以其大规模并行结构、信息的分布式存储和并行处理,具有良好的自适应性、自组织性和容错性,具有较强的学习、记忆、联想、识别功能气引起众多领域科学家的广泛关注,成为目前国际上非常活跃的前沿领域之一。

    1.2人工神经网络的基本模型及其实现

    1.2.1人工神经网络的基本模型人工神经网络的基本模型见表1?

1.2.2以误差逆传播模型说明人工神经网络的实现人工神经网络中应用最多的是误差逆传播(ErrorBack-Propagation)网络,简称BP网络,从结构讲’BP网络是典型的多层网络,分为输入层、隐含层和输出层3层,层与层的神经元之间多采用全互连方式,而同层各神经元之间无连接,见图1。BP网络的基本处理单元(输入层单元除外)为非线性输人-输出关系,一般选用S型作用函数f(x)=l/(1+e-当给定网络一个输人模式时,它由输人层单元传到隐含层单元,经隐含层单元逐层处理后再送到输出层单元,由输出层单元处理后产生一个输出模式。这是一个逐层状态更新的过程,称为前向传播。如果期望输出与实际输出之间的误差不满足要求,那么就转人误差反向传播,将误差值沿通路逐层传送并修正各层连接权值(w1,W2),这是一个逐层权值更新的过程,称为误差反向传播过程。随着2个过程的反复进行,误差逐渐减小,直至满足要求为止。

2常用人工神经网络模型的应用分析

当前,人工神经网络方法主要应用于有机有毒化合物毒性的分类及定量预测、对不同污染物生物降解性能的预测、单要素环境质量评价、环境质量综合评价、环境预测、环境综合决策等方面。

2.1预测性能的分析

以BP网络为例,就近两年来应用BP网络进行预测的成功研究来看,人工神经网络的预测性能得到了充分的肯定。

1997年,刘国东等141应用BP网络建立的雅砻江和嘉陵江流域气温、降水和径流之间关系的网络模型,具有较高的拟合精度和预报精度,并具有精度可控制的优点。计算结果同国内外研究成果的一致性表明,用BP网络分析、研究气候变化对一个地区(或流域)水资源环境的影响是一种新颖、有效的方法。

王瑛等w指出,当外界环境和系统本身性质发生剧烈变化时,BP网络能提供一种有效的方法来更新模型,实现新旧模型之间的转换。他们利用最近12年(1981~1992年)的环境经济数据对2000年环境指标进行了预测,并根据预测结果对未来的环境对策进行了分析。这为解决环境预测的模型问题提供了一条新思路。

张爱茜等用人工神经网络预测含硫芳香族化合物好氧生物降解速率常数和孙唏等⑺对胺类有机物急性毒性的分类及定量预测的结果都说明了,人工神经网络作为一种非线性模型预测能力大大优于多兀线性回归模型。

2.2 评价性能的分析

人们在环境评价中主要应用了BP网络、Hopfield网络、径向基函数网络等模型,并不断地改进应用方法,对其在环境评价中的性能进行比较研究》李祚泳的研究结果表明BP网络用于水质评价具有客观性和实用性。刘国东等?改进了BP网络的应用kf法,并比较了BP网络与Hopfield网络在水质综合评价中的性能。他们指出Hopfield网络采用模式(图象)联想或匹配,既适用于定量指标的水质参数又适用于定性指标的水质参数,而且使水质评价形象化,因此更优于BP网络.郭宗楼等将径向基函数人工神经网络(RBF—ANN)模型应用于城市环境综合评价,结果-表明RBF网络不仅具有良好的推广能力,而且避免了反向传播那样繁琐、冗长的计算,其学习速度是常用的BP网络无法比拟的。郭宗楼等[|11又以三峡工程为背景,把该模型应用于水利水电工程环境影响综合评价的人工神经网络专家系统中,与分级加权评价法相比较具有更高的推理效率。

环境科学研究的问题,如环境污染、生态破坏、自然灾害、资源耗竭、人口过量等等,无一不是在某种程度上损伤或破坏了人——环境的和谓。人——环境关系有着自身的变化规律,是可以进行科学量度的。显然这一M?度是多方位、多因素的非线性评价问题,至今尚未建立起一种适当的评价模型,我们是否可以借鉴人工神经网络的应用优点,考虑建立基于人工神经网络方法的评价模型。

人工神经网络法范文6

关键词:商业银行 个人信用等级评估 BP人工神经网络 模糊评判

个人信用等级评估指标体系

商业银行个人信用等级评估指标体系设立的目的简述为银行通过评估借款人的“3C”,即品德(Character)、能力(Capacity)以及抵押(Collateral),对借款人在债务期满时偿债能力(Ability to pay)和还款意愿(Willingness to pay)等进行预测。根据指标体系设立原则,参照国际标准、国内外银行经验和企业信用等级评估方法,综合考虑商业银行特点及所在地区情况,通过对以往借款人群的考察,以专家判断为基础,可选择4大类21个指标全面评价个人信用等级(如表1)。

人工神经网络的具体应用

人工神经网络(Artificial Neural Network,简称ANN)是20世纪80年代后期迅速发展的人工智能技术,由大量简单的基本元件――神经元相互联结,模拟人的大脑神经处理信息的方式,进行信息并行处理和非线形转换的复杂网络系统。标准的人工神经网络是由3个神经元层次组成的BP(Back Propagation)网络模型,即反向传播神经网络。BP人工神经网络处理信息是通过信息样本对神经网络的训练,使其具有记忆、辨识能力,完成各种信息处理功能。

可行性分析

我国个人信用等级评估起步较晚,相关信息残缺,而BP人工神经网络具有强大并行处理机制,高度自学习、自适应能力,内部有大量可调参数,因而使系统灵活性更强。

进行个人信用等级评估与预测时,有些因素带有模糊性,而BP人工神经网络的后天学习能力使之能够随环境的变化而不断学习,能够从未知模式的大量复杂数据中发现规律,与传统的评价方法相比,表现出更强的功能。

BP人工神经网络方法克服了传统分析过程的复杂性及选择适当模型函数形式的困难,它是一种自然的非线性建模过程,无需分清存在何种非线性关系,给建模与分析带来极大的方便。

BP人工神经网络可以再现专家的经验、知识和直觉思维,较好地保证了评估与预测结果的客观性。

模型建立

三层BP人工神经网络模型的最下层称为输入层,中间层为隐含层,最上层为输出层。各层次间神经元相互联接,各层次内的神经元没有联接。BP算法的学习过程由正向传播和反向传播两个过程组成。在正向传播过程中,信息从输入层经隐含层传向输出层。如果在输出层不能得到期望输出结果,则转入反向传播,将误差信号沿原来的联接通路返回。而其权值的调整采用反向传播的学习算法,神经元的变换函数是S(Sigmoid)型函数:

1

f(x)=――――;

(1+e-x)

学习集包括N个样本模式(xp,yp),对第p个学习样本(p=1,2,,3…,N),节点j的输入总和记为netpj,输出记为opj,则:netpj=∑Wjiopj,opj=f(netpj)。

如果任意设置网络初始权值,那么对每个输入样本p网络输出与期望输出(dpj)的误差为:E=∑Ep=∑[(dpj-opj)2]/2

BP神经网络的权值修正公式为:Wji=wij(n)+ηδpjopj,式中:η为学习速率,是为了加快网络的收敛速度。

个人信用等级评价指标网络结构如图1所示。

此神经网络的输入量xi∈(0,1)(i=1,2,…,21),这里xi为各个因素的效用值。网络的输出量为yi∈(0,1),y为评价的结果,用贴近度来表示。具体的算法步骤如下:按具体要求确定品评价素集;对评价因素的各指标集进行效用函数变换;构造三层前向神经网络,根据评价因素确定输入神经元个数,同时确定网络参数;确定学习样本集(X,Y)及误差量ε;对每一个样本求神经元的输入和输出;计算样本偏差E,若E<ε时,转至最后步骤;进行反向学习;对权值进行修正,转至第五步;存储学习好的网络;并将待评价的个人信用等级评价因素输入,得到评价结果。

实证分析