人工智能和神经网络的关系范例6篇

前言:中文期刊网精心挑选了人工智能和神经网络的关系范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

人工智能和神经网络的关系

人工智能和神经网络的关系范文1

【关键词】人工智能;电气自动化控制;应用研究;智能控制器

1前言

人工智能是计算机技术飞速发展过程中产生的一个重要分支,是对人的意识、思维的信息过程进行模拟,通过对其扩展应用于各个领域,对于整个社会的发展都有着积极的推动作用。在企业、工程运行过程中,为了提高运行管理效率,需要大量的应用到自动化控制技术,将人工智能应用于自动化控制领域对于提高企业运营水平有着很大的帮助。

2人工智能概念、优势及特点

在这里我们提到的人工智能,是一门以研究、开发用于模拟、延伸和伸展人的智能的理论、方法、技术及应用系统的科学,其最终目的是生产出能以人类智能相似的方式作出反应的智能机器,并应用到社会生产生活的各个方面。在理论上人工智能可以像人那样思考,甚至超过人脑,所以各领域对于人工智能的未来寄予厚望。人工智能除了具有其他智能技术的特点外,还具有一些独特的优势,具体表现为控制性能更高、使用方法更简便、控制效果高度一致等。通过在电气自动化领域应用人工智能技术,对于整个领域都有着积极的推动作用,与传统自动化控制方法比较,其突出的优点体现为更高的性价比、更强的可操作性和更高的可靠性。[1]

3人工智能技术在自动化控制方面的应用

鉴于人工智能技术在自动化控制方面的发展水平,目前其应用主要是体现在电气设备的设计、电气控制、故障诊断等多个方面。下面我们分别对其进行细致分析:

3.1在电气设备设计方面的应用

在传统的电气设备设计过程中,由于涉及到的学科内容较多,如电磁学、电动机、变压器、交直流转换等。同时对于设计人员的工作经验也提出很高的要求,在设计完成后还需要进行大量的调试试验,人力、物力、财力的消耗都非常大。通过将人工智能技术应用于电气设备设计,除了能够解决以往人脑很难解决的大量计算和模拟问题外,还能够有效的控制设计的精确度和工作效率。在对电气设备进行设计过程中,一般需要应用到两方面的人工智能技术,分别是专家系统和遗传算法,前者主要是针对产品的开发性设计,而后者主要是实现对设计方案的优化。通过应用人工智能技术,在设计工作中,对于设计人员工作经验的要求就大大降低,只需要熟练掌握相关的设计软件即可。

3.2在电气控制中的应用

自动化控制作为电气控制领域中最为重要的一个环节,通过与人工智能的融合,能够很大幅度的提高电气运行控制的自动化水平,进而有效的降低人、物、财三者的成本,改善运行系统的质量和效率。较为成熟的智能控制的方法主要包括神经网络控制、专家控制、模糊控制三类。3.2.1神经网络控制神经网络控制中所指的神经网络,指的是一种经验模型,它是通过对生物神经网络功能的模仿而建立的。在信息传输处理过程中,模拟生物神经网络的传输处理方式进行。这种模拟人工神经的网络对于输入的信号有着极强的处理和反应能力。鉴于神经网络中各个神经元之间的连接关系非常复杂,而且各个神经元之间是以一种非线性的方式进行信号传递,这种情况下,在输入和输出信号之间可以构建很多种不同的关系。鉴于这一特点,神经网络模型同样可以作为一个黑箱模型来处理那些用机理模型无法精确描述,但是其输入输出间确实存在关系的规律。神经网络控制作为一种成熟的经验控制的方法,在实际自动化控制中应用的越来越广泛。3.2.2专家控制专家控制,作为人工智能技术的一个重要分支,也被称为专家智能控制,是将专家系统的理论和技术,以及控制技术的理论、方法进行有机的结合,在未知环境下,仿效专家的大量经验,实现对系统的控制。是通过对人类专家的控制知识和经验进行模拟来实现设备的智能化控制。3.2.3模糊控制模糊控制在人工智能技术中发展的最为成熟,也最为简单,所以在各个领域都得到了广泛的应用。一套典型的模糊控制系统,结构如下图1所示:通过对系统结构示意图的分析,我们可以看到这一控制系统主要是由模糊控制器、输入/输出接口、执行机构、被控对象和检测装置五部分组成。其中模糊控制器作为这一系统的核心,可以实现如模糊量化处理、模糊决策、非模糊化处理等多个功能;输入输出接口则是实现被控对象与控制器间的数据交换;执行机构主要是生产现场的各类电动机;在模糊控制系统中,根据需要实现功能的不同,被控对象也各不相同,既可以是装置、设备,也可以是各种对象过程。模糊控制对于那些用精确数学模型难以定义的对象具有更高的优异性。系统中的检测装置就是各种不同类型的传感器,其精度与系统的控制精度有着直接的关系,所以在系统构建时应尽量选择高精度的传感器。[2]

3.3在故障诊断中的应用

在电气自动化运行过程中,故障诊断也是控制系统重要的实现功能,将人工智能技术应用于这一环节,对于提高整个自动化控制系统的运行效率和质量有着巨大的意义,具体应用到的技术包括专家系统、模糊理论及神经网络,通过对这三种技术的综合应用,互补优缺点,当电气系统中的各类电动机、发电机、变压器发生故障时,可通过人工智能诊断系统对故障点进行及时的诊断和处理。[3]

4结语

人工智能作为人类智力的延伸,在提高人类工作效率的同时,也将会更好为人类提供服务。在上面文章里,我们只是简单的对人工智能技术及其在电气自动化控制领域的应用进行了探讨。通过加强自动化电气控制方面人工智能技术的研究和应用,将会有效的推动电气产业的进一步深化和改革。

参考文献:

[1]纪.人工智能技术在电气自动化控制中的应用思路分析[J].电子测试,2014,(03):138.

[2]马仲雄.浅谈电气自动化控制中的人工智能技术[J].电子技术与软件工程,2014,(11):247.

人工智能和神经网络的关系范文2

关键词:电力系统;人工智能;模糊控制;神经网络

引言

伴随着社会的不断进步,用户对电能的要求也在不断提高:安全、可靠、优质、环保。电力系统在实际工作中也确实存在一些技术难题:首先,电力系统是一种复杂大系统,系统参数包含着诸多的不确定因素,并且具有很强的非线性;其次,电力系统应当具有较强的鲁棒性能,以克服系统中的扰动,而且系统对多目标寻优的控制方法要求也较高;最后,复杂系统是由多个子系统相互影响、关联组成,电力系统需要将多个局部的控制系统相互连接,综合控制。因此,这一系列尖端的技术难题需要应用更为先进的自动化控制技术即智能控制技术。

1智能控制技术

控制理论的不断发展,为人类带来了更加先进的自动化技术,使得人们设计的控制系统稳定、可靠、智能、高效。典型的智能控制技术包括:模糊控制、人工神经网络、专家系统、遗传算法等。

1.1模糊控制。模糊控制是基于模糊数学理论的一种控制方法。传统的控制理论能够解决模型明朗、确定的系统的控制问题。但当面对类似于电力系统的复杂、模型不确定、因素多的大系统传统的控制方法就无法高效地解决控制问题。为了克服上述问题,科研人员提出了用模糊数学的理论来解决一些复杂系统的控制问题。模糊控制是一种非线性的控制理论。它采用的是理论与实际相结合的方法解决实际的问题。一般模糊控制技术包含如下几个部分:定义变量、模糊化、知识库、逻辑判断及反模糊化。而其中的逻辑判断部分运用模糊逻辑、模糊推论方法进行分析,得到最优的模糊控制输出。

1.2人工神经网络。人工神经网络(ArtificialNeuralNetworks,简写为ANNs)也简称为神经网络(NNs),此类数学模型模仿动物神经网络的组成,进行分布式信息处理。通过调整系统内部的各个节点之间的联系,最终达到控制系统的目的。强鲁棒性、非线性特性、自组织自学习的能力和并行处理能力是人工神经网络基本特性,受到了人们的普遍关注。人工神经网络在工作前先对控制准则学习,减少系统工作过程中发生错误动作的概率。控制的准确性可以经过学习之后逐渐完善,提高系统正确动作的权值。

1.3专家系统。专家系统实际上是一个包含着某个专业领域内的大量人类专家知识的一种智能计算机程序系统。该系统通过程序模拟人类专家应用其丰富的知识经验进行分析、解决问题的过程,最终解决复杂的控制系统的问题。专家系统中的知识库是反映系统性能的主要部分,系统在解决问题时是通过模拟专家的思维来实现的。用户在使用过程中可以通过不断完善专家库来提高专家系统的性能。专家系统通过反复比对系统的输入信息,与专家系统中的知识库的规则进行匹配,最终找到能使数据库的内容与实际的目标的规则。在改善动态品质和提高远距离输电线路能力的问题上,卢强等人提出了利用最优励磁控制手段,研究成果指出:利用最优励磁控制方式,可以使大型机组取代古典励磁方式。

2智能控制技术在电力系统的应用

2.1模糊控制技术在继电保护领域的应用。电力系统中的继电保护装置具有这重要的意义,继电保护装置的可靠工作能使电力系统稳定、可靠、安全的运行。对继电保护装置的故障识别与诊断越来越严苛,电力系统中庞大复杂的故障现象,普通的识别系统无法准确及时地解决问题。因此,采用先进的人工智能技术进行电力系统的继电保护装置的故障识别与诊断的工作更加迫切。应用模糊控制技术监视电力系统中变压器的工作状态,根据变压器的参数的变化,结合已知的输入输出,利用模糊控制技术进行变压器的故障诊断。利用最小二乘法的原理将变压器的一些参数,例如电介质的损耗、泄漏电流、绝缘电阻、变压器的吸收比等参数作为模糊控制的输入。将这些输入参数通过一定的规则进行量化,作为模糊输入的矩阵,再将变压器的状态分为合格、不合格、故障等按照规则量化得到输出的模糊矩阵。参考其他一些实际经验中的数据作为扩展出来的输入输出矩阵,应用最小二乘法的迭代运算得到输入与输出的关系矩阵。应用得出的输入输出的关系矩阵就可以对一些变压器的试验信息进行分析,诊断。

2.2神经网络在电力系统故障诊断中的应用。在电力系统故障诊断的过程中,神经网络将系统的故障报警信息作为神经网络的输入量。神经网络的输出是电力系统故障诊断的结论。应先让神经网络进行学习,对其输入特定的故障报警,建立一个全面的故障报警样本库。通过样本库不断对神经网络系统进行训练,使得系统对不同的故障报警输入产生相应的权重,最终能够输出准确的故障诊断的结果。神经网络故障诊断技术不仅可以应用在电网的故障诊断方面,还可以用于电力设备的故障诊断、电力系统中的变压器的故障诊断等。神经网络的算法多种多样较为常用的有BP神经网络算法,迭代步长算法,以及变步长法等。在辐射型配电系统中采用BP神经网络,用ANN模拟各个地区不同电弧电阻下的故障情况,测量阻抗量应用BP神经网络判断电力系统出现的问题。该方法能够有效解决由于电弧引起的测量阻抗不准确,导致保护系统不能正常工作的问题。专家系统在电力变压器其的故障诊断的应用电力系统中已经有多个部分在控制过程中建立出了数学模型,但是依然存在一些复杂的、规律性不明显的系统无法抽象出具体的数学模型。这就需要专家系统解决相应的问题。专家控制系统在电力系统中多用于分辨系统的故障报警的状态,进行分析,提出故障的应急解决方案以及系统的恢复控制方案。专家系统中的知识库用于提供解决问题的知识,应用推理机使用该专家的知识库。知识库可以根据变压器的不同故障分为多个子系统,例如油位、负荷、温度等。推理机调用程序根据当前的状态,按照规定的规则调用系统的特定知识。推理机调用知识库中的数据时可以采用正向推理、反向推理、混合推理。经过反复的匹配直到找出故障的原因,故障原因可能是多个,将找出的多个原因组合为一个相互关联的矩阵。最终实现了经过专家系统做出的故障诊断分析。

3总结

人工智能技术是一项新颖先进的技术。在电力系统中应用人工智能技术是电力自动化发展的必然趋势。针对类似于电力系统的具有非线性、多参数、不确定因素多的复杂大系统,人工智能技术拥有更加优越的控制性能。模糊控制、神经网络、专家系统等控制理论已经渐渐的成熟,在生产生活的多个方面已经有了越来越多的应用。经过人工智能技术的不断完善,电力系统自动化的不断深入,人工智能对电力系统的控制会使电力系统运行更稳定、更经济,鲁棒性能更优越。

参考文献

[1]朱亮亮,王艳.基于人工智能的电力系统自动化控制[J].科技致富向导,2014,09:300.

[2]丘智蔚.基于人工智能的方法对智能电网进行安全改进[D].华南理工大学,2014.

[3]冯宗英.配电网状态估计及量测系统的鲁棒性配置研究[D].山东大学,2014.

人工智能和神经网络的关系范文3

33岁的加拿大发明家黎忠(Le Trung),花光自己所有积蓄,制造了一个名为“爱子”的女性机器人。黎忠称,“爱子”是科技与美丽邂逅的产物,她“年方”20多岁,正值青春妙龄,身材苗条,相貌姣好。她总是乐于打扫房间,帮助黎忠记账,而且知道他爱喝什么。每天早上,“爱子”都为黎忠读报,开始新的一天。她可以用女性温柔的声音告诉黎忠当天的天气状况,比如:“户外是零下2℃”。“爱子”全身关键部位布满传感器,脖子上还有一个摄像头,这样她就可以具备触觉、视觉和听觉。爱子可以对挠痒和触摸做出反应,能够认人。可以用英语和日语说1.3万句话。她可以点头,手也可以动。如果有人粗鲁地触碰她,她就会愤怒地大声叫喊。即使黎忠轻轻地拍她的头,她也会说:“摸女孩的头可不好,摸你自己的头。”她甚至会扇“骚扰者”的耳光。很有趣,对吧?看来找个机器人做女友并非遥不可及。

虽然这个“爱子”还没有“智能”到《i,Robot》中的Sunny或《Wall・E》中的瓦力那样具有情感并自主思考,但她所具备的功能却足以让人大吃一惊了。那么,她为何会具有这些看起来非常“人性化”的特征呢?这一切还得从人工智能说起。

关于人工智能

人工智能(ArtificialIntelligence,AI)是计算机学科的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴。从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。近年来人工智能技术获得了迅速的发展,在很多学科领域都得到应用和发展。

随着计算机及网络技术的不断发展,许多原来无法完成的工作现在已经能够实现。目前人工智能研究的未来发展方向是智能接口、数据挖掘、主体及多主体系统。其中多主体(Multi-Agent)技术是近年来发展迅猛并在科研和工程技术领域不断取得应用成果的重要研究方向。主体(Agent)与多主体(Multi-Agent System,MAS)系统的概念起源于人工智能领域,是分布式人工智能的主要方向之一。Agent具有自治性、可通信性、反应性、面向目标性和针对环境性等特性。

咱治性:即对自己的行为或动作具有控制权,无须外部干预,自主地完成其特定的任务;

・可通信性:每个Agent在有组织的群体中,通过相互通信接受任务指派和反馈任务执行的信息;

・反应性:Agent应具备感知环境并做出相应动作的能力;

・面向目标性:对自己的行为做出评价并使其逐步导向目标;

・针对环境性,Agent只能工作在特定的环境中。

典型的智能控制系统通常采用分层控制结构,对整个系统进行分散递阶控制,它将整个系统分为组织层、协调层和响应层。每层均由完成相应任务的Agent组成。响应层Agent对自的子系统进行控制,并向协调层反馈信息;协调层则根据反馈的信息和组织层的指令协调响应层Agent的执行过程;组织层从全局的角度对整个系统进行分析,并向低层Agent发送指令。常见的MAS的体系结构主要有Agent网络、Agent联盟以及“黑板”结构。Agent的任务执行机制是指系统对每个Agent分配了不同角色,各自独立地执行一定的任务,Agent之间遵循民主协商原则和独立自治的原则。

MAS是在单Agent理论的基础上发展起来的,它由一组具有自主性、适应性、反应性和社会性的Agent组成,拥有较单Agent更多的资源和知识以及更强的处理能力,是分布式人工智能(Distributed Artificial Intelligence,DAI)在最近的研究中提出的一项新技术。主要应用在对现实世界和社会的模拟、机器人以及智能机械等领域。

机器人的历史其实并不算长。1959年美国英格伯格和德沃尔制造出世界上第一台工业机器人,至此机器人的历史才真正开始。近百年来发展起来的机器人,大致经历了三个成长阶段,即三个时代。第一代为简单个体机器人,第二代为群体劳动机器人,第三代为类似人类的智能机器人,它的未来发展方向是有知觉和思维,能与人对话。第一代机器人属于示教再现型,第二代则具备了感觉能力,第三代机器人是智能机器人,它不仅具有感觉能力,而且还具有独立判断和行动的能力。当机器人与人类生活接触更多时,我们可以发现机器人已渐渐摆脱冰冷的机械外观,研究人员也正设法让机器人具有人类般的感知能力,如视觉、听觉、触觉甚至情绪传感,并能有相对应的回应等。除TX形机器人,机器人的发展方向更将无限广阔。

智能机器人未来还能朝模仿生物的形态与功能的“仿生学”方向发展。譬如,美国国防先进研究计划局赞助航空环境公司研究“黑寡妇”机器人,希望利用15公分长的小型仿真蜘蛛飞行器侦测到卫星也无法拍摄到的细节,伯克利大学正在研究灰尘般大小的微形机器人,只要散布在空气中就能让一个个微小感应器串联成网络;黏在指尖上,不用键盘就可直接操作计算机的机器人,以及撒在冰箱内就能监控食物新鲜程度的“智能型灰尘”。

展望未来,机器人将不只是劳工、手术助理、指挥家、清洁人员和宠物,只要人类的想像力源源不绝,智能机器人也将为我们的生活带来无限惊喜。

什么技术让机器人更智能?

1 模式识别

所谓模式,从广义上说,就是事物的某种特性类属,如:图像、文字、语言、符号等感知形象信息;雷达、声纳信号、地球物探、卫星云图等时空信息动植物种类形态、产品等级、化学结构等类别差异信息等等。模式识别是研究如何使机器具有感知能力,主要研究视觉模式和听觉模式的识别。如

识别物体、地形,图象、字体(如签字)等。在日常生活各方面以及军事上都有广大的用途。近年来迅速发展起来应用模糊数学模式,人工神经网络模式的方法逐渐取代传统的用统计模式和结构模式的识别方法。特别神经网络方法在模式识别中取得较大进展。代表性产品有光学字符识别系统(Optical CharacterRecognition,OCR)、语音识别系统等。计算机识别的显著特点是速度快、准确性和效率高。识别过程与人类的学习过程相似。

最近我国研制成功的无人驾驶系统,就标志着我国研制高速智能汽车的能力已达到当今世界先进水平。汽车自主驾驶技术是集模式识别、智能控制、计算机学和汽车操纵动力学等多门学科于一体的综合性技术,代表着一个国家控制技术的水平。自主驾驶系统采用计算机视觉导航方式,并采用仿人控制,实现了对汽车的操纵控制。

除此之外,指纹识别系统也是模式识别技术的一个具体应用。利用模式识别技术已成功建立了利用指纹灰度图像计算纹线局部方向、从而提取指纹特征信息的算法,这一研究成果不仅适于民用身份鉴定也适用于公安刑事侦破的指纹鉴定。目前各地已经建立指纹库,而检索一枚现场指纹仅需4分钟时间。

2 专家系统

专家系统是依靠人类专家已有的知识建立起来的知识系统,目前专家系统是人工智能研究中开展较早、最活跃、成效最多的领域,广泛应用于医疗诊断、地质勘探、石油化工、军事、文化教育等各方面。它是在特定的领域内具有相应的知识和经验的程序系统,它应用人工智能技术、模拟人类专家解决问题时的思维过程,来求解领域内的各种问题,达到或接近专家的水平。随着计算机科学技术整体水平的提高,分布式专家系统、协同式专家系统等新一代专家系统的研究也发展很快。在新一代专家系统中,不但采用基于规则的推理方法,而且采用了诸如人工神经网络的方法与技术。

根据专家系统处理的问题的类型,把专家系统分为解释型、诊断型、调试型、维修型、教育型、预测型、规划型、设计型和控制型等10种类型。为了实现专家系统,必须要存储有该专门领域中经过事先总结、分析并按某种模式表示的专家知识库,并拥有解决实际问题的推理机制。系统能借此做出决策和判断,其解决问题的水平达到或接近专家的水平,因此能起到专家或专家助手的作用。例如血液凝结疾病诊断系统、电话电缆维护专家系统、花布图案设计和花布印染专家系统等等。

3 人工神经网络

人工神经网络(Artificial NeuralNetwork,简称ANN)是模拟生物神经元的结构而提出的一种信息处理方法。它是一种非线性映射的方法,很多难以列出方程式或难以求解的复杂的非线性问题,应用神经网络方法则可迎刃而解。在人工神经网络中,信息的处理是由神经元之间的相互作用来实现的,知识与信息的存储表现为网络元件互连间分布式的物理联系,网络的学习和识别取决于和神经元连接权值的动态演化过程。人工神经网络由大量简单的基本元件一一神经元(neuron)相互连接而成的自适应非线性动态系统,神经元是神经网络的基本处理单元,它一般是一个多输入单输出的非线性动态系统,其结构模型如所示。其中为神经元内部状态,为阈值,为输入信号,表示从输入到的联结权值。

一个人工神经网络的神经元模型和结构描述了一个网络如何将它的输入矢量转化为输出矢量的过程。这个转化过程从数学角度来看就是一个计算的过程。也就是说,人工神经网络的实质体现了网络输入和其输出之间的一种函数关系。通过选取不同的模型结构和激活函数,可以形成各种不同的人工神经网络,得到不同的输入/输出关系式,并达到不同的设计目的,完成不同的任务,所以在利用人工神经网络解决实际应用问题之前,必须首先掌握人工神经网络的模型结构及其特性以及对其输出矢量的计算。

多年来,人工神经网络的研究取得了较大的进展,成为具有一种独特风格的信息处理学科。当然目前的研究还只是一些简单的人工神经网络模型。要建立起一套完整的理论和技术系统,需要做出更多努力和探讨。然而人工神经网络已经成为人工智能中极其重要的一个研究领域。在人工神经网络的实际应用中,绝大部分的神经网络模型是采用反向传播(BP)网络和它的变化形式,它也是前向网络的核心部分,并体现了人工神经网络最精华的部分。多层BP网络结构包括输入节点、输出节点,一层或多层隐节点。

BP网络适宜于处理具有残缺结构和含有错误成分的模式,能够在信源信息含糊、不确定、不完整,存在矛盾及假象等复杂环境中处理模式。网络所具有的自学习能力使得传统专家系统技术应用最为困难的知识获取工作转换为网络的变结构调节过程,从而大大方便了知识库中知识的记忆和抽取。在许多复杂问题中(如医学诊断),存在大量特例和反例,信息来源既不完整又含有假象,且经常遇到不确定信息,决策规则往往相互矛盾,有时无条理可循,这给传统专家系统应用造成极大困难,甚至在某些领域无法应用,而BP网络技术则能突破这一障碍,且能对不完整信息进行补全。根据已学会的知识和处理问题的经验对复杂问题作出合理的判断决策,给出较满意的解答,或对未来过程作出有效的预测和估计。这方面的主要应用是:自然语言处理、市场分析、预测估值、系统诊断、事故检查、密码破译、语言翻译、逻辑推理、知识表达、智能机器人、模糊评判等。

人工神经网络是未来人工智能应用的新领域,情感是智能的一部分,而不是与智能相分离的,因此人工智能领域的下一个突破可能在于赋予计算机情感能力。情感能力对于计算机与人的自然交往至关重要。

目前AI研究出现了新的,这一方面是因为在人工智能理论方面有了新的进展,另一方面也是因为计算机硬件突飞猛进的发展。随着计算机速度的不断提高、存储容量的不断扩大、价格的不断降低以及网络技术的不断发展,许多原来无法完成的工作现在已经能够实现。目前人工智能研究的3个热点是:智能接口、数据挖掘、主体及多主体系统。

毋庸置疑,未来的机器人与人类社会的生活更为密切地结合起来,以为人做出更多的服务作为要素。研究内容主要包括餐饮服务多机器人系统、竞技与娱乐多机器人系统、家庭生活支援多机器人系统及其关键技术的研究、系统集成试验验证和示范应用。

1 餐饮服务多机器人系统

设计规划智能餐饮服务模式、研究和突破机器人自动烹饪工艺及烹饪方法、智能餐饮多机器人间的交互及安全操作等关键技术,研制开发由迎宾/点菜、烹饪、送菜机器人组成的智能餐饮服务多机器人系统,实现以机器人为主的餐厅服务系统集成和示范应用。这样,我们通过点菜系统输入喜欢的菜品。就可以在家里尽享五星级服务了。

2 竞技多机器人系统

研究竞技与娱乐机器人的复杂动作的运动规划与控制、高速视觉识别与伺服控制、多机器人间的协调控制等关键技术,研制以仿人机器人为核心的武术,足球等竞技与娱乐多机器人系统,实现多机器人的协同武术表演与足球比赛、机器人与人的互动娱乐(图9)。足球机器人就由四个部分组成,即视觉系统、通讯系统、计算机系统及移动装置等,在赛场上可以实现自主踢球,不受外界控制。

3 家庭生活支援多机器人系统

研究基于网络的机器人远程监测与遥操作、自主导航与规划技术、家政多机器人协调作业等关键技术,构建面向家居监控、家庭辅助作业等家庭生活支援多机器人系统,实现家庭设备的远程遥控与监测、家庭辅助作业等功能。未来家庭机器人正朝着实用型的方向发展,一个合格的家庭机器人,还应当具备多项技能。例如检测到家中有异常情况时,可将住宅内的情形通过图片形式发送到主人手机或个人电脑上。并能兼保姆和秘书,早上叫醒你,提醒你一天的日程安排,并转达当天的电话留言等等。你将再也不必因为忘了老婆的生日或结婚纪念日而挨训了。

人工智能和神经网络的关系范文4

【关键词】电力系统;变革性;智能控制;发展趋势

目前,大量应用实例及工程实际研究进一步表明应用控制理论在电力系统的安全稳定控制的巨大效益以及现实可用性和广阔前景。现代控制理论在中国电力系统中的应用,碧口水电站100Mw机组上最优励磁控制得到最好的证明。如今,现代控制理论在电力系统中的应用已发展成电力系统学科中一个引人注目的活跃的分支。近年来,模糊技术、神经网络、专家系统等技术的发展又开拓了智能控制技术的新道路。

1、电力系统中智能控制的应用领域

人工智能控制作为一门新的技术学科,涉及到多方面知识,如数学、哲学、心理学、计算机科学、控制论、不定性论,人工智能控制技术运用于多个层次,在智能控制,机器人学,语言和图像理解,遗传编程上相当于催化剂,使工作更有效地进行着。在现代科学技术不断进步的社会,效率的提高是最重要的,无论在生产还是生活方面。计算机技术的广泛运用是当今社会发展的强有力保障,自动化生产、运输、传播离不开计算机编程技术。

2、智能控制的优势

把人工智能控制的方法引入电力控制系统,将控制理论的分析和理论的洞察力与人工智能控制的灵活框架结合起来,才有可能得到新的认识上的突破。人工智能控制主要表现在智能决策上,能够有效地解决复杂性和不确定性的控制问题。模糊控制就是在研究人的控制行为特点的基础上发展起来的。对于无法构造数学模型的被控制对象,让计算机模仿人的思维方式,进行控制决策。人的控制可以用语言加以描述,总结成一系列的条件语句,即控制规则。运用微机的程序来实现这些控制规则,这样就很像是人的思考行为了。因此,人工智能控制可以有效地解决现代工业生产中许多无法用数学模型精确描述的工艺工程,以及利用传统数字计算机难以获得令人满意效果的诸多问题,在电力系统应用中表现了很大的优势。

3、智能控制的主要应用方法

3.1模糊技术在电力系统中的自动化控制中的应用

“模糊理论”(FT)是将经典集合理论模糊化,它是一个经典集合论。模糊语言变量,模糊逻辑和模糊推理,是有完整的推理系统的智能技术。模糊控制是一种切实可行的方法,控制的模拟模糊推理和决策过程。它的原理是根据已知规则的控制和数据,由模糊输入量推导出模糊控制输出主要包括模糊化、模糊推理与模糊判决三部分。根据这三个部分的分析,做出正确的决策。

随着科学技术的进步和社会的不断发展,模糊控制理论也在随之改进,模糊控制的优点逐渐得到体现,并且已被广泛应用与推广。模糊理论在电力系统中的应用越来越多,显示了模糊理论在解决电力系统问题上未来的发展潜能。在国外的成功案例中也不断在使用这一控制技术。例如,在欧洲某些国家调度中心,研究用模糊控制的方法描述调度员的负荷预测方法,已取得了令人满意的效果。

在应用控制中,大多依据模型来进行,并且这一方法已经渐渐的被广泛接受。模型有简单的也有复杂的。一般线性模型为简单模型,但是实际应用中大多为复杂的非线性系统。在模拟非线性过程中,模糊关系模型(FRM)是一个简单而有效的方法,仍然只是“次优”方法。模糊关系模型来直接描述的输入和输出之间的关系,单输出系统是容易实现的,但实现多输出系统仍然是困难的。如果要为了克服这些缺点,要与其他人工智能技术和模糊理论相结合,并且在实际应用中取得良好的效果。

3.2专家系统在电力系统自动化控制中的应用

专家系统(ES)是发展较早、也是比较成熟的一类人工智能控制技术。专家系统主要由知识库和推理机构成,它根据某个领域的专家提供的特殊领域知识进行推理,模拟人类专家作出决策的过程,提供具有专家水平的解答。目前,电力系统运行和控制由有经验的调度人员借助自动化技术完成。这是由于一方面传统数值分析方法缺乏启发性推理的能力,同时也无法进行知识积累,另一方面电力系统自身的复杂性使一些必要的数学模型及状态量很难获取,单纯的数值方法难以满足电力系统的要求。因此,在电力自动化系统中引入电力专家的经验知识是十分必要的。

目前,全球都有不少与电力系统控制相关的专家系统投入试运行或进入实用化推广阶段,并取得了不错的效果,但是仍然存在着一些问题值得研究和探索:①当系统规模较大、规则较多时,完成推理的速度受到限制,因此目前已有的专家系统大多是用于离线,或者在线解决属于系统分析方面的问题,而在实时控制方面的应用还刚刚起步,有待进一步的研究;②现有的专家系统缺乏有效的学习机制,对付新情况的能力有限,而且容错能力较差,当系统发生故障或网络结构、系统参数、设备控制器配置等发生变化的情况下,将有可能得不到结果或给出错误的结果。如何与ANN、模糊推理等其它人工智能控制方法结合以提高专家系统的自学习能力和容错能力是值得研究的课题;③大型专家系统的建造周期长,知识的获取和校核比较困难,要建立完备的知识库,维护难度比较大,在建造专家系统之前必须充分考虑这些问题。

3.3人工神经网络在电力系统自动化控制中的应用

人工神经网络出现在上世纪40年代,(ANN)它是一个模拟的传输和处理,由人工只能模仿简单的控制,以神经元信息的人的基本特征连接而成。经历了七十多年的研究发展,在模型结构、学习算法等方面取得了许多重大的研究成果。与ES相比有三点优势,ANN的特点是用神经元和它们之间的有向权重来隐含处理问题的知识:首先,人工神经网络可以把信息分布存储,而且容错能力强;其次,人工神经网络有很强的学习能力,可以把知识实现自我组织,以适应不同的信息处理的需求;还有就是,人工神经网络计算神经元之间是相对独立性的,以方便的并行处理,执行速度更快。

人工神经网络的应用目前还存在一些问题,如果想更好的运用人工神经网络就要找到它的弱点。人工神经网络的应用研究方向重心就要去处理如何利用人工神经网络的优点,克服其缺点,以达到更好的效果。如果人工神经网络理论想在电力系统自动化及控制领域的应用发展的更加广阔,就加大对技术研究。

人工智能和神经网络的关系范文5

关键词:电气工程;智能化技术;自动化控制;应用

中图分类号:F407.6文献标识码: A

1 、人工智能应用理论分析

人工智能是一门新的科学,它主要是研究开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统。计算机科学的一个分支就是人工智能。智能化技术通过对智能本质的阐述,使机器拥有了与人类类似的智能,其研究成果主要有语言图像识别系统、专家系统及机器人等。电气工程作为人类生产生活的重要活动,与其密切相关的系统运行、自动化控制、计算机应用及信息处理等功能,均有智能化技术涉及。不过相比于最为精密的人类大脑,人工智能不可能那么完美,它仅能通过计算机编程模仿人类大脑,完成信息收集、分析、处理及反馈等程序。这仍然有效促进了电气工程自动化控制的发展,有效节省了人力资源,保障了人们生命安全,提升了工作效率。

2、 智能化控制的优点

人工智能种类不同,其控制方法也不同。为更好地理解分类总体,便于控制策略系统开发,对于神经网络、模糊逻辑与遗传算法等,均可看做非线性函数的近似器,一般函数估计器并不具备此类优势。对动态方程进行精确掌握控制较为困难,在控制设计时具有较多不确定因素,像非线性及参数变化等。根据鲁棒性能、下降时间与响应时间等不同,智能化控制器在设计控制对象模型时可通过自身适当调整来提高其性能,像下降时间因素,与最优秀的 PID 控制器相比,模糊逻辑控制要快4倍多,普通控制更是无法相比,而在上升时间因素方面,它要比最优秀的 PID 控制器高出 2 倍以上。与普通控制器相比,即使没有专家系统指导,智能化控制器依然能应用相应数据来完成设计,也可通过语言及信息等方法,并且在调节方面,智能化控制器更易调节。智能化控制器具有很强的一致性,当输入未知数据时,智能化控制器可实施有效估计,其估计效率很高,对于驱动器所产生的影响可忽略不计。智能化控制器还能解决一般方法无法解决的问题,普通神经控制器中的学习算法、拓扑结构等已定型,需要很长时间来计算,其应用效果不是很理想,而运用智能化控制器就有效解决了所遇难题,提高了学习算法的速度。在新数据信息方面,智能化控制器具有良好适应性,其抗干扰能力更强,扩展修改也很容易,对于配置应用的实现,其价格实惠,尤其是最小配置的应用。

3、 智能化技术应用

3.1 模糊逻辑及其控制应用

电气工程的自动化控制系统中含有较多的模糊控制器,它能有效代替 PID 控制器,并可用于其他任务。模糊控制器由英国的阿伯丁大学开发,它常应用于各类数字动态的传动系统里。对于模糊逻辑的控制应用主要有 M 型与 S 型两种,截至目前为止,仅有 M 型控制器用在调速控制当中。不过,这两种控制器均有规则库,可称为 if them 的模糊规则集。S 型控制器的规则为 if X 是 G,且 Y 是 H,则 W=(fX,Y),其中 G 与 H 为模糊集。M 型控制器主要由模糊化、推理机、知识库与反模糊化所构成,模糊化主要用来实现变量的量化、测量与模糊化,其隶属函数具有很多形式;推理机为模糊控制器关键部分,可模仿人类对模糊控制行为进行决策与推理;而知识库主要是由语言控制的规则库与数据库所构成,规则库开发方式为:将专家知识与经历放于控制及应用目标上,建设操作器控制的行动,在建模过程当中,应用模糊控制器与神经网络的推理机来操作;反模糊化主要用来量化与反模糊化,包括中间平均技术与最大化的反模糊化等技术。

3.2 神经网络及其控制应用

在电气工程的驱动系统与交流电机等的诊断监测中运用了神经网络,其中,神经网络的反向转波算法要比梯形控制法性能更好,它有效减短了定位时间,并且有效控制了非初始速度与负载转矩大范围的变化。神经网络系统结构为多层的前馈性,可运用常规的反向学习算法,在两个子系统里,其中一个系统经过机电系统参数可辨别控制转子的速度,另一系统经过电气动态参数辨别控制定子的电流。智能神经网络已在信号处理与模式识别上获得了广泛应用,因智能神经网络具有非线性一致的函数估计器,所以被有效应用于电气传动的控制领域,其优势前文已提及,即具有较强的一致性,不用被控系统的数学模型,抗噪音能力强。而且智能神经网络为并行结构,较为适合很多个传感器的输入应用,例如用于诊断系统及条件监控中可使其决策可靠性得到加强。神经网络常用学习技术为误差反向的传播技术,当网络含有足够多的隐藏结点、隐藏层与激励函数时,网络神经仅能实现所需映射,而对最优隐藏结点、层数及激励函数等进行选择的问题,一般是通过尝试法来解决的。反向传播的算法为最快的下降法,结点误差反馈到网络可用来调整权重,应用反向传播技术可快速得到非线性函数的近似值,对网络结点具有较大影响。

3.3 优化设计与故障诊断

电气工程中的电气设备设计是项复杂工作,需要应用到电磁场、电路及电机等有关学科知识,也需要运用经验知识。原来的产品设计一般是运用实验方法与经验手工方法,其所得方案并不是最优化的。可随着计算机技术的发展,电气工程产品设计已由手工方法转变为 CAD 设计,这有效减短了产品的开发周期,在此基础上引进智能化技术,可说为 CAD 设计添上了翅膀,使其设计质量与效率得到了更大提高。为进一步优化电气设计,当前正尝试在电气工程中应用专家系统,不过专家系统仍处于研究阶段,其应用于实际尚需进一步努力。我国的沈阳工业大学就研究了永磁同步的电动机专家系统,其他院校也都在积极开发设计专家系统,并获得了一定成效。智能化技术在优化设计方面的应用还体现在遗传算法上,遗传算法是种先进计算法,其计算精度高,在电气工程中十分常用,故作用不可忽视。在电气工程中,故障和它的征兆间具有错综复杂的关系,具有非线性与不确定的特点,应用智能化技术恰好发挥了它的优势。电气设备的故障诊断中应用的技术有神经网络、逻辑模糊与专家系统,在变压器、电动机与发电机等的故障诊断中,智能化诊断技术均得到了较为广泛的应用。

3.4 PLC 技术的应用

随着科学技术的发展,电力生产要求也越来越高,有些大型电力企业里的辅助系统,其继电控制器被 PLC 技术所代替。用 PLC 系统可实现辅助系统某工艺流程控制,并可协调整个企业的生产。在电力企业当中,其输煤系统由储煤、上煤、配煤与辅助系统等所构成,并通过现场传感器、主站层与远程的 I/O 站等组成输煤的控制系统,其中,主站层由 PLC 及人机接口所组成,设立在集控室里,集控室中以自动控制系统为主、手动控制为辅,并通过显示屏监视及控制系统,这大大提高了企业的生产效率。供电系统中应用 PLC 技术,有效实现了其自动切换,且实物元件被软继电器所取代,极大提高了供电系统的安全可靠性。

结束语

电气工程作为人类生产生活的重要组成部分,其生产自动化程度直接关系着电气工程的工作效率与安全性。在激烈的市场竞争下,在电气工程中应用智能化技术实现自动化控制,不仅能有效提高企业自身经济效益与竞争实力,还能将人类从繁重的劳动中解救出来,推动人类社会整体前进的步伐。

[参考文献]

[1]翟辉.浅谈人工智能在电气自动化控制中应用[J].科技创新导报,2009(27)

[2]郝俊华,李春丽.基于人工智能技术的电气自动化控制研究[J].中国新技术新产品,2012(9)

人工智能和神经网络的关系范文6

关键词 矿井提升机;模糊理论;神经网络;小波变化;智能诊断

中图分类号:TD534 文献标识码:A 文章编号:1671—7597(2013)051-041-01

矿井提升机是集械、电、液于一体的大型设备。矿井提升机在煤矿生产过程中主要担负着提升人员、生产设备、煤炭和矸石等任务。矿井提升机一旦发生故障,轻则导致矿山停产停工,严重时则有可能造成人员伤亡事件。为了确保矿井提升机能够安全运行避免矿山事故的发生,国内外相关科技工作者也进行了大量的探讨和研究,其中矿井提升机的故障诊断技术是一个重要方面。矿井提升机故障诊断技术的成功应用对煤矿的安全生产起到了积极的作用,为煤矿企业也会产生巨大的经济效益。

1 矿井提升机故障分类

矿井提升机的故障可分为机械故障与电气故障两类。机械故障是指矿井提升机设备上的某些参数超过了正常运行时的额限,是一种提升机设备的外在表现形式,主要解决方法是给提升机设备增加一些保护装置,防止机械故障发生。电气故障需要测量和检测提升机设备上的工况参数和数据信息,并将这些工矿参数和数据信息进行数据处理和综合分析才能诊断出提升机设备的故障位置、故障问题和原因。由于矿井提升机的电气故障往往与很多的设备变量和参数有关联,从而降低了提升机故障诊断的准确率。如果电气故障不能有效而快速的得到解决,也会导致提升机设备机械故障的发生。

2 矿井提升机故障诊断存在的问题

目前关于提升机故障诊断研究还相对较少,现有的提升机故障诊断系统也存在一些不足和缺陷。比如,当提升机控制系统中的传感器或执行器发生故障问题, 将会严重影响提升机系统的安全可靠运行;对矿井提升机系统中的工矿参数和数据信息处理准确度不高,提升机设备智能化程度相对较低,也是目前矿井提升机故障诊断中存在的问题;对于以开发的矿井提升机智能故障诊断系统还存在自适应能力弱,实时性不强等缺点。

3 矿井提升机智能故障诊断技术及发展趋势

提高矿井提升机的安全可靠性,通常有2种方法。一种是设计高可靠的矿井提升机制动系统,二是对矿井提升机的制动系统进行故障诊断。目前对于矿井提升机的智能故障诊断的研究成果很多,下面主要介绍几种常见的智能故障诊断技术以及提升机故障诊断技术未来的发展趋势。

3.1 基于模糊理论的矿井提升机故障诊断方法

矿井提升机的模糊诊断法是将数学集合论的概念应用到提升机设备的故障诊断中,进行模糊推理,实现矿井提升机的故障诊断,从而解决提升机设备征兆与故障间的不确定关系。该诊断方法模糊推理逻辑严谨,但是由于较难确定矿井提升机故障的模糊关系,模糊诊断知识获取困难等原因,因此矿井提升机的模糊诊断法还缺乏一定的准确性。

3.2 基于神经网络的矿井提升机故障诊断方法

人工神经网络具有容错能力、自学习和自适应能力以及并行处理信息能力强等特点。由于人工神经网络具有以上特点,目前将人工神经网络应用到矿井提升机故障诊断的研究也逐渐增多,主要研究有基于BP神经网络或基于Elman神经网络的矿井提升机故障诊断方法。该方法的主要思想是将矿井提升机的故障特征向量作为人工神经网络的输入,将矿井提升机的故障分类模式向量作为人工神经网络的输出。输入特征信号的提取方法主要有:时域特征法、频域特征法以及幅值域特征法;时间序列法;小波变换特征提取法等。

3.3 基于小波变换的矿井提升机故障诊断方法

小波变换是时间频率的局部化分析,它通过平移伸缩运算对信号进行多尺度细化,从而达到在信号低频处频率细分,高频处时间细分,进而可以观察到信号的任意特性细节。其最显著的特点是能够进行信号的多分辨率分析,对于正常信号中夹带的瞬态反常现象,不仅能检测出来,还能够展示该反常信号的成分,因此基于小波变换技术在矿井提升机的故障诊断中得到了广泛应用。利用小波变换对矿井提升机的动态系统的故障检测与诊断也具有很好的效果,为矿井提升机的智能故障诊断技术提供了一种强而有力的分析手段。

3.4 基于人工智能的矿井提升机故障诊断方法

基于免疫粒子群算法的矿井提升机故障诊断方法是将人工免疫模型和离散粒子群进化算法相结合的一种矿井提升机故障诊断方法。该方法提高了矿井提升机故障诊断的执行效率,并且能够适应提升机故障诊断过程中出现的不确定性,还可以实现多种提升机故障诊断。

基于遗传神经网络算法的矿井提升机故障诊断方法是将遗传算法和人工神经网络相结合的一种新的提升机故障诊断方法。该方法将遗传算法的全局特性和神经网络的并行处理信息能力强等优点相接合,能够有效的克服人工神经网络收敛速度慢以及容易陷入局部极小等缺点,从而更加准确的建立矿井提升机故障诊断系统,快速地判断出矿井提升机的故障。

4 结束语

随着现代科技的发展,越来越多的新型智能诊断理论开始应用于矿井提升机的故障诊断,如小波分析、人工神经网络、免疫算法以及遗传算法等。开展对矿井提升机的智能故障诊断的研究,将会极大地提高提升机运行的安全可靠性,避免矿井事故的发生,减少不必要的损失, 为矿井提升机设备的经济、高效以及安全运行提供强而有力的技术支持。

参考文献

[1]张平.矿用机电设备常见故障及其解决策略[J].硅谷,2012(6):88.

[2]罗永仁,晏飞.故障智能诊断技术及其在矿井提升机上的应用研究[J].2006(11):117-119.

[3]吴舰,吴楠.基于小波分析的煤矿机电设备故障检测关键技术应用研究[J].自动化与仪器仪表,2011(5):85-86.

[4]汪楚娇,夏士雄,牛强.免疫粒子群算法及其在矿井提升机故障诊断中的应用[J].电子学报,2010:94-98.

作者简介